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Abstract

In  order  to  discover  molecular  pathways  and  players  in  renal  cancer  development  and

metastasis,  we  developed  a  mouse  model  to  generate  sequentially  more  aggressive  and

specialized cell  lines. Multiple cell lines for primary tumor growth, survival in the blood

circulation and lung metastasis or metastatic spread from the primary tumor were generated

and  analyzed  using  a  multi-layered  approach  which  includes  large-scale  transcriptome,

genome  and  methylome  analyses.  Transcriptome  and  methylome  analyses  demonstrated

distinct  clustering  in  three  different  groups.  Remarkably,  DNA sequencing  did  not  show

significant  genomic  variations  in  the  different  groups  which  indicates  absence  of  clonal

selection during the  in vivo amplification process. Transcriptome analysis revealed several

markers and signatures  of tumor aggressiveness which were validated,  at  the mRNA and

protein level,  in  patient  cohorts  from TCGA, local  biobanks and clinical trials.  This also

includes soluble markers. In particular, SAA2 and CFB were highly predictive for survival

and tumor progression.  Methylome analysis of full-length DNA allowed clustering of the

same groups and revealed clinically predictive signatures. We also uncovered IL34 as a key

regulator of renal cell carcinoma (RCC) progression which was also functionally validated in

vivo,  and a mathematical model of IL34-dependent primary tumor growth and metastasis

development was provided. These results indicate that such multilayered analysis in a RCC

animal model leads to meaningful results that are of translational significance.
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INTRODUCTION

Renal Cell Carcinoma (RCC) encompasses a heterogeneous group of cancers derived from

renal  tubular  epithelial  cells,  including  multiple  histological  and  molecular  sub-types,  of

which clear cell RCC (ccRCC) is the most common1. The incidence and prevalence of RCC

are rising2,3, along with increases in related risk factors such as hypertension, diabetes and

obesity4. Gandaglia et al5 reported a continuing upward trend in both incidence and mortality

even in  patients  with localized disease.  When disease is  localized to the kidney, surgical

resection is the preferred option and the prognosis is favorable. However, therapeutic options

for metastatic disease are limited. ccRCC metastasizes primarily to the lungs (secondarily to

liver and bone), and 5-year survival ranges 10-12 %6–8. Furthermore, 40% of patients with

seemingly  localized  disease  later  relapse  with  localized  or  metastatic  disease.  Localized

recurrence is also difficult to treat and difficult to predict, and has a poor prognosis9,10.

Challenges associated with treatment of RCC include high levels of resistance to traditional

chemotherapeutic  drugs4. The  majority  of  currently  available  targeted  therapies  focus  on

inhibiting  angiogenesis  driven  by  the  VEGF/VEGFR  axis11.  More  recently,

immunotherapeutic agents (nivolumab and ipilimimab) have also been added as first  line

treatment12,13.  However, such therapies are rarely curative,  and eventual drug resistance is

almost inevitable. Furthermore, clinical treatment of RCC is hampered by a lack of relevant

biomarkers. Currently, no fully validated molecular biomarkers for RCC are used in clinical

practice.  Response  to  available  treatments  and  long-term  disease-free  survival  is  highly

variable and unpredictable. Patient diagnosis, prognosis and clinical decisions are currently

based on histological information such as Fuhrman grade and tumor stage, and are included

in the SSIGN or UISS classification for primary tumor risk of recurrence14–17,  and in the

MSKCC and/or IMDC classification for metastatic disease 18–20. In addition, therapy selection
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is based on limited guidelines and response to previous treatments. In this respect, clinical

treatment of RCC lags behind other cancers for which molecular knowledge is invaluable in

guiding clinical decisions (e.g. hormone receptor status in breast cancer).

Tumor progression from initiation to full metastasis is a multi-step process and occurs via a

series  of  overlapping  stages.  Tumor  progression  can  be  seen  as  an  evolutionary  process

whereby tumor cells within the primary tumor adapt to varied selection pressures. Cells must

detach  from  the  primary  tumor,  gain  access  to  and  survive  in  the  circulation,  exit  the

vasculature, and survive and proliferate in the environment of the secondary organ. Thus,

different mechanisms come into play at different stages, and overall tumor progression is the

sum of these processes. A better understanding of the molecular changes that enable cancer

cells  to  overcome  the  barriers  imposed  during  the  metastatic  process  could  aid  in  the

diagnosis, prevention and treatment of metastatic cancer.

The process of serial implantation of a cell line in vivo is a known method to render a cell line

increasingly aggressive21,22. In this study, we leveraged this technique to generate increasingly

aggressive sub-lines of RENCA cells, a mouse renal carcinoma cell line. To this purpose, we

used different implantation strategies to dissect the different stages of tumor progression and

metastasis. Cell-line derived RNA and DNA were used to analyze transcriptional, DNA and

methylome  profiles  of  the  cell  types,  and  to  generate  signatures  able  to  predict  global,

disease-free and progression-free survival time in human patients. Furthermore, we identified

and  investigated  a  number  of  genes  with  the  potential  to  be  biomarkers  and  therapeutic

targets and characterized interleukin-34 (IL34) as an important universal driver in RCC.
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RESULTS

Generation and characterization of the mouse model

We used a syngeneic (and thus immunocompetent) orthotopic murine model in which the

mouse renal carcinoma cell line RENCA23, expressing GFP for visualization purposes, were

implanted  orthotopically  under  the  kidney  capsule  in  female  BALB/c  mice.  Under  these

conditions,  metastasis  occurred  specifically  to  the  lungs  after  14-16  days,  with  ethical

sacrifice at 26 days following implantation (Fig. 1a). We adapted this model to produce new

sub-cell  lines  with  progressively  enhanced  aggressiveness  and  metastatic  potential  with

differing  characteristics.  We  serially  passaged  the  cell  lines  using  different  implantation

strategies designed to replicate different aspects of tumor development and metastasis (Fig.

1a). After each passage, primary tumor cells were purified from organ explant cultures to

generate new sub-cell lines. The three injections modes were as follows:

(1) Orthotopic injection under the renal capsule leading to formation of a primary tumor

(“Kidney”  group).  The  primary  tumor  was  explanted  and  cell  lines  purified  for  re-

implantation into the kidney. The “Kidney” cell lines thus derived have undergone repeated

cycles of primary tumor formation and are expected to reveal enhancement of mechanisms

relevant to primary tumor growth and evolution.

(2)  Intravenous injection (“Tail  vein” group).  Tumor cells  were injected directly  into the

blood stream leading to formation of tumors in the lungs in the absence of a tumor in the

kidney.  This injection mode is expected to recapitulate key aspects of metastasis such as

survival in the blood stream, evasion of host immune response, colonization and growth in

the lungs. 

(3) Orthotopic injection under the renal capsule followed by metastasis to the lungs (“Lung”

group).  Tumor  cells  were  purified  from the  lung  metastases  and  re-implanted  under  the
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kidney capsule for the subsequent passage. These “Lung” cell lines have undergone the full

cycle of primary tumor formation, dissemination in the blood, and secondary tumor formation

at a distant site, and were, thus, enhanced for all steps required for tumor progression.

The sub-cell lines derived as described above were then sequentially passaged 6 times in vivo

using multiple mice per injection mode and per passage to finally give a total of 67 newly

derived  sub-cell  lines.  The  generated  tumors  became  increasingly  aggressive  with  each

passage, with a reduced survival time for the mice of all groups (Fig. 1b), from 26 to 15 days

after 6 in vivo cycles. Furthermore, we assessed primary tumor and lung tissue at Passage 6

(Fig. 1c, d).  “Kidney” cell lines generated primary tumors that were significantly larger  than

tumors generated with either parental or “Lung” cell lines (Fig. 1c, d). The lungs of mice with

orthotopic  implant  of  parental  cells  showed  no  macroscopic  metastases,  whereas  visible

metastases were detected in 55% of “Kidney” and 77% of “Lung” cell implanted mice (Fig.

1d,  e)  indicating  that  metastatic  ability  was  enhanced  in  passaged  cell  lines.  In  the

intravenous injection experimental metastasis model (i.e. “Tail” cell line), the number and

size  of  metastases  were  drastically  increased  (Fig.  1f),  as  a  consequence  of  enhanced

aggressiveness  and  specialization  of  serial  passaged cells  compared  to  the  parental  cells.

Thus,  serial  passaging resulted in  generation of cell  lines  that  were more aggressive and

specialized when compared to control cells.

Functional genomics of amplified mouse cell lines

Transcriptomic analysis

We performed full genome transcriptomic analysis of the 67 cell lines. The P1 cell line was

excluded from the analysis because of insufficient number of animals (<3). Therefore, data

acquired from the different lines were labeled S0 to S5 (S0 being the parental cells and S1 to

S5  representing  P2  to  P6).  We  used  Principal  Component  Analysis  (PCA)  in  order  to
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summarize the information contained in our data sets for sample series S2 and S5. Principal

Component Analyses  showed that, while the subtypes had similar expression profiles in the

early passages, the transcriptional profiles became different between “Kidney” (K), “Tail”

(T), and “Lung” (L) groups in later passages and, thus, clustered into distinct groups (Fig. 2a,

b). Tight clustering of the biological replicates (one mouse per data point) also showed that

the  profiles  were  stable.  When  all  genes  that  were  major  contributors  to  the  Principal

Component 1 (PC1) and 2 (PC2) were pooled, the heat map of the transcriptomic profiles

revealed a gradual change in expression (Fig. 2c).

Enrichment analysis of these most contributing genes (see Methods for details) demonstrated

several  highly  enriched  categories.  These  include  the  following  GO  terms:  extracellular

matrix,  angiogenesis, cell  proliferation,  cell  adhesion, cell  migration,  immune process and

inflammation and apoptosis. Fig. 2d, e and f represent enriched GO terms in common for PC1

and PC2 or specific to PC1 or PC2, respectively.

Next,  we investigated  whether  transcriptional  signatures  derived  from  the  differentially

expressed genes in the K, T and L groups could predict outcome for patients using the Clear

Cell Renal Cell Carcinoma dataset (KIRC) from The Cancer Genome Atlas (TCGA).

The general strategy is outlined in Supplementary Fig. 1. We compared genes that changed

their expression between the parental and S5 cell line and named these genes as progressively

regulated (up or down) (Supplementary Table 1). We included in our analysis only genes

having their expression consistently increasing in the different series. 

The analysis  has been performed by comparison to the parental cell  line for K, T and L

groups alone. The additional group “Kidney-Tail-Lung” (KTL) is represented by pooling the

different groups in a unique group. The KTL group is also compared to the parental cell line
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(see Methods for details). The Supplementary Table 1 lists genes differentially expressed in

each group (K, T, L, KTL).

A total of 131 genes for all groups satisfied the inclusion criteria. Among these, 26 were in

the K, 45 in the T, 59 in the L and 31 in the KTL group (Supplementary Table 1). Among

those, 123 genes were upregulated and only a small fraction was downregulated.

We next investigated the predictive value of these 4 gene signatures using TCGA (KIRC

cohort). Since only 8 genes were downregulated, we chose only to include the upregulated

genes in the validation of our signatures. Supplementary Table 2 depicts the list of genes for

each group. For each gene, we fitted a Cox-proportional hazard regression model based on

overall  survival  (OS)  or  disease-free  survival  (DFS).  A gene  was  conserved  if  its  false-

discovery rate (FDR) adjusted p-value of its log-rank test was lower than 0.01 and if the

hazard ratio was in agreement with the differential expression. We have further created a 5th

“All Merged” signature composed of genes that are members of all of the previously defined

4 signatures.

Table 1 depicts the signatures for each group (K, T, L, KTL) and their significance for OS and

DFS. In Fig. 3 the results of “Lung” subgroup are depicted. We analyzed OS (Fig. 3a) of all

patients and DFS (Fig. 3b) of M0 patients. We validated our signatures by computing an

empirical p-value and by testing our signature against 1000 random signatures of equivalent

size (Fig.  3c,  d).  Furthermore,  we performed multivariate Cox regression analysis  of our

signature (Fig. 3e, f). After adjusting for clinical variables (TNM stage and Fuhrman grade),

the Lung signature remained an independent prognostic factor for predicting both OS and

DFS. The results for the other signatures are shown in Supplementary Fig. 2-5. The Lung

signature remains the most significant for OS and DFS when compared to the others, except

for the “All Merged” signature. The performances of the signatures were the following for the
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different groups when ranked according to the hazard ratio: K<T<KTL<L<All Merged for

both OS and DFS.

The identification of signatures predictive of patient outcome also validates our experimental

approach and shows that the strategy of generation of increasingly specialized mouse cell

lines revealed novel genes and signatures with relevance to human RCC.

DNA sequencing analysis

We subjected both the parental RCC line and those that were passaged 6 times (series S5) to

low-coverage whole-genome sequencing to assess whether  copy number variability could

possibly underlie the change in phenotype (Supplementary Fig.  6). We failed however to

observe significant differences in copy numbers between parental and passaged samples, both

at the level of the number of breakpoints detected (45 for parental versus 41.75±6.32 for

passaged lines) and the percentage of the genome with a copy number different than 2 (19%

for parental versus 18%±1% for passaged lines). Visually, we also failed to observe new copy

number  events.  When  using  ABSOLUTE  to  estimate  purity  (proportion  of  cancer  cells

present in the sample) and mean ploïdy of the samples, no differences were noted (purity and

ploïdy in parental line were of 63% and 2.69, respectively versus 64%±2% and 2.65±3% for

passaged lines). This suggests the altered profile of the “Kidney”, “Tail” and “Lung” lines

was not due to clonal selection.

Methylome sequencing analysis

Since  DNA sequencing  did  not  provide  conclusive  evidence  for  clonal  selection,  we

conducted a methylome analysis by full methylome sequencing of the S5 series samples for
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the K, T and L groups as well as of the parental control cells. Similarly to the transcriptional

data, Principal Component Analysis (PCA) showed clustering of the global methylome in 4

clusters corresponding to the K, T, L and parental cell line samples (Fig. 4a). Enrichment

analysis  demonstrated  several  highly  enriched  categories  (Fig.  4b).  These  include  cell

cytokine activity,  nervous system development,  regulation of cell  population/proliferation,

extracellular  matrix,  transcription  and  gene  regulation,  angiogenesis,  regulation  of  gene

expression among the most significantly enriched categories.

We focused on CpGs that were located in the gene body with methylation equal or higher

than 20 % and with a q-value of 0.05. We found 33 095 CpGs differentially methylated, out

of  which  9  731  were  associated  with  a  known  gene.  They  were  confronted  with  the

transcriptome results (Fig. 4c). Differentially expressed and methylated genes were included

in this analysis if they contained at least one differentially methylated CpG in their gene-

body. Several genes contained in the transcriptome signatures were found in this analysis. For

progressive signatures (Supplemental Table 1):  Gm2012 (K),  B3galt1 (T),  Krt20 (T),  Thbd

(T),  Adam22 (L),  Apbb1ip (L),  Arap3 (L),  Wscd2 (L).  For  final  signatures  (Table 1  and

Supplemental Table 2, corresponding to red dots):  IL34 (KTL),  Rik/MAGEC2/3 (T),  Krt17

(L), Samsn1 (L). 

We then investigated the clinical relevance of CpG methylation in the gene body of these

genes in the KIRC TCGA cohort. Two CpGs (cg01782798 and cg26831220) in the gene body

of  IL34 were predictive for OS (Supplementary Fig. 7). In our data sets, the differentially

methylated cytosine (DMC) was located in intron 1 of IL34 (Supplementary Fig. 7a), as were

cg01782798  and cg26831220  (Supplementary  Fig.  7b).  According  to  ENSEMBL for  the

GRCm38 mouse  genome and GeneHancer  for  the  GRCh37 Human  genome,  these  three

CpGs are part of enhancer regions. Correlations of IL34 transcription levels and cg01782798
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or cg26831220 are depicted in Supplementary Fig. 7c and d. Kaplan-Meier and log-rank test

for OS were done by separating samples into 2 groups by the median value for each CpG

resulting in a p-value of 1.62e-05 and 0.00057 and a Hazard Ratio (HR) of 2.422 (1.651-

3.551 95% CI)  and  1.970 (1.342-2.894 95% CI)  for  CpG cg01782798 and cg26831220,

respectively (Supplementary Fig. 7e-g). In the same manner as for the transcriptomics data,

the clinical relevance and prognostic performance of the 2 CpGs were tested against 1000

random  1-CpG  signatures  resulting  in  empirical  p-values  of  0.015  and  0.033  for  CpG

cg01782798 and cg26831220, respectively (Supplementary Fig. 7g).

Since  the  differential  analyses  of  methylation  presents  only  few  similarities  with  the

transcriptomic results, we checked whether these modifications/dis-regulations are related to

the same processes. To this aim, we compared enrichment results (GO terms) obtained in the

transcriptome and methylome analyses (Fig. 4d). This comparison revealed that in both data

sets, a limited number of GO terms are shared (26 GO terms in common of a total of 160 for

the  transcriptome  and  112  for  the  methylome).  This  suggests  that  gene  expression  and

methylation analysis converge only partially to a common set of processes (26/160 = 16%

and 26/112=23%).

Novel RCC biomarkers and clinical relevance

We  used  the  molecular  data  from  the  mouse  model  to  select  novel  potential

diagnostic/prognostic/therapeutic  targets.  Potential  targets  were  chosen  in  terms  of  their

possible relevance in different aspects of tumor progression, their upregulated expression in

the transcriptomic data (in one or multiple cell subgroups), and their correlation with reduced

OS/PFS in the TCGA KIRC dataset.  Some of the genes (SAA2,  CFB) selected using this

approach,  were  included  in  the  signatures  above  determined  with  our  stringent  method.
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Others (GRPC5a,  PODNL1) could not be included in the signatures, because they did not

strictly full-fill the stringency criteria applied for signature determination. We also obtained

tissue samples and clinical data from the UroCCR Kidney Cancer tissue bank in Bordeaux as

a confirmation cohort for the selected genes. 

Serum Amyloid A2 (SAA2)

SAA2 is an acute phase protein related to SAA1, which was previously linked to metastasis24.

Its expression was strongly upregulated with passage in the Lung cell lines (Supplementary

Fig. 8a). In silico analysis of the TCGA KIRC database SAA2 was a very strong predictor of

OS (Supplementary Fig. 8b) and DFS (Supplementary Fig. 8c). Furthermore, the analysis was

also done for the M0 and M1 subgroups (Supplementary Fig. 8d-g). Analysis of the UroCCR

patient cohort confirmed the effect on OS and DFS (Supplementary Fig. 8h, i). Tumors from

patients  with the highest  Fuhrman Grade,  had a significantly  increased SAA2 expression

compared  to  all  other  grades  (Supplementary  Fig.  8j).  We  used  grade-matched  plasma

samples from patients with and without metastases, collected before primary tumor surgery

(Supplementary Fig. 8k). Patients with metastases had higher plasma levels of SAA2. When

patients were divided into two groups of equivalent size, the group with higher SAA2 levels

had a significantly shorter DFS (Supplementary Fig. 8l). A second set of plasma samples,

collected in the weeks following surgery for removal of the primary tumor, was tested for

SAA2 (Supplementary Fig. 8m). In this case, patients with higher expression had shorter OS.

Hence, circulating SAA2 levels appear as an indicator of metastatic progression that deserves

to be evaluated at diagnosis.

We next  used  plasma  samples  from metastatic  patients  before  receiving  a  first  cycle  of

sunitinib  or  bevacizumab  (SUVEGIL and  TORAVA clinical  trials).  Patients  treated  with
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sunitinib only and stratified according to low and high SAA2 levels, had a spectacular better

OS and progression-free survival (PFS) when belonging to the SAA2 low group (cut-off of

269  µg/ml)  (Fig.  5  a,  b).  When  patients  treated  with  sunitinib  and  bevacizumab  were

analyzed together, the PFS was of limited significance (borderline p-value of 0.0507) (Fig.

5c). The median of PFS for SAA2high patients was of 5.35 month versus 16.17 month for the

SAA2low group.  Thus,  determining  SAA2 plasma levels  could  be  a  useful  measure  for

deciding a treatment strategy in RCC.

Complement factor-B (CFB)

CFB was most strongly upregulated in the “Lung” and to a lesser extent in the “Tail” group,

both  considered  to  recapitulate  features  of  metastasis  (Supplementary Fig.  9a,  b).  TCGA

analysis  in  ccRCC  showed  that  CFB expression  is  correlated  in  primary  tumors  with

shortened DFS and OS (Supplementary Fig. 9c, d). We also performed the analysis in the M0

and M1 subgroups (Supplementary Fig. 9e-h). Using samples and data from the UroCCR

cohort, we demonstrated that CFB was overexpressed in the tumor tissue versus the adjacent

kidney at the mRNA level (Supplementary Fig. 9i), and that increased expression correlated

with  reduced  DFS  and  OS,  consistent  with  the  results  obtained  with  the  TCGA cohort

(Supplementary  Fig.  9j,  k).  As  for  SAA2,  CFB can  be  measured  in  the  blood.  For  this

purpose,  we used  UroCCR plasma samples  collected  from patients  either  before  surgery

(primary tumor intact) or in the following weeks after surgery (no primary tumor present but

metastases  in  situ  possible).  Before  surgery,  a  trend was  observed  without  reaching

significance whereas after surgery patients with metastases had higher plasma CFB levels

compared  to  patients  without  metastases  (Supplementary  Fig.  9l,  m).  This  suggests  that

circulating CFB measurement may be useful as a blood-born marker of metastasis in the
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follow-up after  surgical tumor removal.  As for SAA2, CFB plasma levels  were tested in

patients  with  metastases  before  the  first  cycle  treatment  with  sunitinib  or  bevacizumab

(SUVEGIL and TORAVA clinical trials). Patients whose levels were high (cut-off 310 µg/ml)

had faster disease progression compared to patients whose levels were low (high CFB, 3.58

month; low CFB, 18.7month, p=0.0004) (Fig. 5d).

We then grouped the significance of testing SAA2 and CFB plasmatic levels (Fig.5 e, f).

Three different groups with different survival can be identified: group 1 (CFB low+SAA2

low, PFS: 19.37 months, OS: NR), group 2 (CFB high SAA2 low or CFB low SAA2 high,

PFS: 9.87 months, OS: 20.9 months), group 3 (CFB high Saa2 high, PFS: 2.8 month, OS:

8.33 months). Group 1 had the best survival rate while group 3 had the worst. Group 2 had

intermediate  survival  outcome.  Thus,  the  combined  analysis  of  these  two  markers  is  a

powerful predictor of patient outcome following anti-angiogenic treatment with sunitinib or

bevacizumab. 

Podocan Like Protein-1 (PODNL1)

PODNL1 is a member of the small leucine-rich proteoglycan (SLRP) family of 17 genes. It is

secreted extracellularly and its function is currently unknown. High expression has previously

been linked with poor outcome in ovarian cancer25and glioblastoma26.  PODNL1 expression

was upregulated in our mouse cell lines in the “Kidney” subgroup (Supplementary Fig. 10a),

although the increase was relatively modest. However, this gene showed a very strong link

with reduced DFS and OS in the TCGA KIRC database (Supplementary Fig. 10b, c). We

have also performed this analysis in M0 and M1 patients (Supplementary Fig. 10d-g). When

using UroCCR samples, PODNL1 was overexpressed at the mRNA level in the tumor versus

healthy tissue (Supplementary Fig. 10h). In the UroCCR biobank, DFS also showed different
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trends depending on  PODNL1 expression albeit statistically not significant,  the latter  was

also the case for OS (Fig. 10i, j). This largely unknown and interesting gene may play a key

role in RCC and further studies are required to investigate this possibility.

G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5a)

GPRC5a is involved in epithelial cancers27 and is proposed to be an emerging biomarker in

several human cancers28. It was upregulated in all 3 conditions (K, L, T) (Supplementary Fig.

11a).  In  the  TCGA,  GPRC5a expression  was  correlated  with  shortened  OS  and  DFS

(Supplementary  Fig.  11b,  c).  This  analysis  was  also  conducted  in  M0  and  M1  patient

subgroups (Supplementary Fig. 11d-g). Using UroCCR samples, we confirmed the link with

DFS but not with OS (Supplementary Fig. 11h, i). Furthermore, Fuhrman grade 4 samples

showed higher expression compared to the lower grades (Supplementary Fig. 11j).

Expression, clinical relevance and functional analysis of Interleukin-34

In our mouse cell lines,  IL34 mRNA expression was strongly upregulated with increasing

passage in all cell lines groups, suggesting that it may play a role in multiple stages of tumor

progression  (Fig.  6a).  This  was  confirmed  in  an  independent  experiment  where  mRNA

expression in  primary tumor cells  and lung metastatic  cells  was compared (Fig.  6b).  We

confirmed by ELISA that higher amounts of IL34 protein was produced and secreted into the

culture  medium by Passage  6 in  “Kidney”,  “Tail”  and  “Lungs”  cells  when compared  to

parental cells (Fig. 6c).  In silico analysis in TCGA demonstrated that higher IL34 mRNA

expression correlated with shortened OS and DFS (Fig. 6 d, e). This was also analyzed in M0

and M1 patients where IL34 expression was significantly correlated to OS and DFS in M0

patients  (Supplementary Fig.  12a-d). Furthermore,  IL34 expression was also correlated to
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tumor grade in TCGA (Fig. 6f). In the UroCCR cohort, IL34 mRNA expression was higher in

tumors compared to healthy tissue (Fig. 6g). A Tissue MicroArray (TMA) from the same set

of  samples  was  stained  for  IL34  and  graded  and  scored  by  a  pathologist.  In  the  tissue

sections,  expression  was  detected  in  tumor  cells  but  also  in  normal  tubules  (Fig.  6h).

Immunohistochemical staining correlated with Fuhrman grade, and was predictive of DFS

(Fig. 6i-j).  We also tested a limited number of plasma samples from a different cohort of

patients  undergoing  treatment  for  metastases  with  the  receptor  tyrosine  kinase  inhibitor

sunitinib  (SUVEGIL  an  TORAVA  clinical  trial)  (Supplementary  Fig.  12e).  In  these

conditions, a subset of patients (6/20) showed a marked spike in plasma IL34 following the

first cycle of treatment. The sample size is too small to conclude a link between this spike and

clinical parameters such as treatment response, and requires further investigation. However,

in a xenograft mouse model (human 786-0 ccRCC cell line implanted s.c. in immunodeficient

mice),  treated with  sunitinib,  IL34 mRNA  expression  was  increased  in  tumor  cells

(Supplementary Fig.  12f, left panel).  Stromal mouse  IL34 showed a similar trend towards

increased expression indicative of a similar, though weaker, host response (Supplementary

Fig. 12f, right panel).

To further study the role of IL34 in RCC, we overexpressed IL34 (variant 1) in RENCA-GFP

cells, using a lentiviral vector and analyzed in vivo tumor development (Supplementary Fig.

13a-c).  Tumors  generated  with  IL34-overexpression  versus  control  cells  did  not  show

significant altered size, and lifespan of mice was not changed (Supplementary Fig. 13d). IL34

expression was validated in tumors at the mRNA and protein level (Supplementary Fig. 13e,

f). We next hypothesized that IL34 overexpression could alter the balance of Type 1 and 2

macrophages within the tumor and analyzed the levels of various macrophage markers in

IL34-overexpressing  versus  control  primary  tumor  lysates.  We  observed  that  IL34-
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overexpressing tumors contained higher levels of the total macrophage markers  F4/80 and

CFSR1 (Fig. 7a) compared to control tumors, suggesting an increase in total  macrophage

number. No significant difference was detected in levels of the Type 1 markers  IL1β and

IL12a (Fig.  7b),  whereas  the  Type 2  markers  MMR and  ARG1 were  increased  in  IL34-

overexpressing tumors (Fig. 7c). Furthermore, MMR mRNA levels correlated positively with

the level of IL34 in primary tumors (Fig. 7d) as well as the level of CSF1R (Supplementary

Fig.  13g).  Increased MMR expression  in  IL34 overexpressing tumors  was validated at  a

protein level by Western Blot (Fig. 7e). Importantly, the level of CSF1, a twin cytokine to

IL34  and  also  involved  in  macrophage  attraction  and  differentiation,  was  not  altered

(Supplementary Fig. 13h). Furthermore, an analysis of MMR-stained tumor sections revealed

an increased density of MMR-positive cells in the primary tumor (Fig. 7f). 

Analyses of expression in metastases are limited by the relatively low number of metastases

using the orthotopic model. Using the intravenous tail vein injection of IL34 overexpressing

tumor cells and immunohistochemical analysis, we did not observe a significant increase in

the  metastasis  area  (Supplementary  Fig.  13i).  Nevertheless,  we  did  detect  an  increased

density  of  MMR-positive  macrophages  in  IL34-overexpressing  metastases  (Fig.  9g),

similarly to orthotopic primary tumor results. 

Taken  together,  these  data  suggest  that  IL34  overexpression  mediates  an  influx  of

macrophages  with  a  polarization  towards  the  type  2  phenotype.  Furthermore,  our  data

suggests  that,  in  our  mouse  model,  IL34 overexpression  alone  is  insufficient  to  increase

tumor size or speed of progression. It is important to note that parental RENCA cells do not

express the CSFR1 receptor, and, thus, an autocrine role of the IL34-CSFR1 axis was not

examined.
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We next deleted IL34 in RENCA cells using two different Crispr/cas9 constructs targeting

IL34 (CrisprIL34_1a,  CrisprIL34-1c).  We used  a  Crispr-Cas9  vector  targeting  LacZ as  a

control (Crispr_LacZ). Targeting IL34 by Crispr-Cas9 strongly decreased IL34 release in the

medium when analyzed by ELISA (Supplementary Fig. 14a). Control and IL34-deleted cell

lines were then implanted in the kidney (sub-capsular implantation) and mice were sacrificed

at 26 days. Primary tumor growth was strongly inhibited when using the IL34-deleted cell

lines (Fig. 8a). In vitro cell proliferation was however not affected (Supplementary Fig. 14b).

We used magnetic resonance imaging (MRI) to track primary tumor volume dynamics, and

appearance of metastases in the orthotopic model for one of the IL34-deleted cell lines (≥5

mice/group). Survival was significantly increased in the IL34-deleted cell line (Fig. 8b) and

metastasis appearance was delayed (Fig. 8c). Primary tumor growth and metastasis formation

was  monitored  in  IL34  KO  tumor  and  control  tumor  mice  by  Dynamic  MRI.  Tumor

development and spread was mathematically modeled using ordinary differential equations

(ODE, see Methods) (Fig. 8d). In the IL34 Crispr group, 3 mice did not develop primary

tumors and were therefore not included in the ODE modeling. Furthermore, two of these

mice did not develop metastasis  and were also excluded. Consequently,  the prediction of

primary tumor volume and of metastasis number for the IL34 Crispr group shown in Fig. 8d

is overestimated, but nevertheless demonstrated slower primary tumor growth and metastatic

spread. The data were fitted using a population approach by means of a non-linear mixed

effect  model  (see  Methods).  This  approach  allows  individual  modeling  of  growth  and

dissemination kinetics, while also quantifying inter-animal variability and group effects. It is

particularly  adapted  to  sparse  data  and  strengthens  the  statistical  power.  The  data  fitted

reasonably well the mathematical model, both at the population (Fig. 8d) and individual level

(Supplementary Fig. 14c) which is composed of two parameters: a growth coefficient α and a

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.904235doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.904235


19

dissemination coefficient µ. A negative group effect for IL34 KO was observed for both α

(p=0.0615) and µ (p=0.053) (Supplementary Table 3). 

To  examine  macrophage  density  in  the  lungs  after  IL34  deletion,  we  used  the  tail  vein

metastasis model since this model is more efficient in generating lung metastasis. In the tail

vein model, metastasis formation was drastically reduced using two of the CrisprIL34 cell

lines (Fig. 8e). We used lung sections stained for GFP to calculate tumor area/Lung area, and

MMR staining to calculate macrophage density. Within the metastases, MMR+ cell density

was reduced in IL34-deleted tumors (Fig. 8f).
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DISCUSSION

The  usual  strategy  in  translational  research  is  to  start  from human  samples,  to  identify

molecular markers and gene networks and then to functionally validate them in vitro and in

animal models. We devised herein a completely opposite strategy (from “mouse to man”)

starting from the animal  model  and used functional genomics,  imaging,  clinical data and

computational approaches. We took advantage of a syngeneic mouse model and developed it

further to unravel mechanisms of RCC development and metastasis formation, and to identify

novel therapeutic targets and biomarkers.

The strengths  of our model are the following. The model  is  based on iterative cycles of

injection using 3 different  injection modes capturing local  tumor development (“Kidney”

group),  metastasis  formation  from  the  primary  tumor  involving  all  steps  of  metastasis

formation (“Lung” group; local invasion, transmigration into vessels, survival in the blood

stream, extravasation into the lung tissue and seeding, metastatic tumor expansion), or only

the  last  steps  of  metastasis  formation  (“Tail”  group;  presence  in  the  blood  circulation,

extravasation). With increasing cycles, a shortening of the mice’s lifespan was also observed.

The model  is,  furthermore,  a syngeneic mouse model which leaves the adaptive immune

system intact. Another important strength of our model is that the 3 different groups yield

very distinct transcriptomic and methylome clustering and signatures, which are clinically

relevant.  These  strengths  outweigh  the  inconvenience  of  the  model.  The RENCA mouse

model is indeed not a ccRCC model and does not have the VHL mutation. The advantages,

however, are that the model is robust and reproducible, develops in an immunocompetent

context in a relative short  time frame and leads to the formation of lung metastasis after

orthotopic implantation29. Our aim was to uncover the molecular changes that are occurring

with increasing aggressiveness and tumor specialization and not the genetic characteristics of
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the tumor itself, for which this RENCA model is well suited. This is different from human

ccRCC  models  including  implantation  of  cell  lines  or  patient  derived  xenograft  (PDX)

models which require longer time to develop in vivo in an immunocompromised context and

are mainly focused on primary tumor growth. In addition, no suitable genetically engineered

mouse model (GEMM) for RCC that recapitulates with fidelity the metastatic process exists

to date30–33. It is true that around 10 different GEMMs for RCC have been developed34 such as

the  MYC  activation,  Vhl  del  Cdkn2adel,  Ink4a/Arf  del  model35,  the  Bap1  and  Pbrm1

inactivation model36. Only the Vhl del Ink4a/Arf del model the produce some metastasis but

only in the liver, which is not suitable for our study. Thus, even if our model does not strictly

reflect the exact characteristics of a ccRCC tumor, it, nevertheless, recapitulates critical steps

of tumor development and spread of a renal carcinoma.

In  the  sequentially  amplified  cell  lines,  RNA  expression  and  methylation  analysis

demonstrated distinct clustering for the 3 different injection modes. DNA sequencing did not

show clonal variations based on chromosomal variability, which indicate that the phenotypic

changes were epigenetically regulated.  Transcriptomic analysis led to the identification of

specific gene signatures for each injection cycle which were predictors of overall, disease-

free  or  progression-free  survival  in  RCC as  based  on  TCGA analysis  and  on  our  RCC

cohorts.  Importantly,  some of  the  signatures,  especially  the  Lung  signature,  are  stronger

predictors than current predictors in clinical use such as Fuhrman Grade or clinical stage.

Beuselink  et  al  determined  four  ccRCC  signatures  (ccrcc1-4  signatures)  from  the

transcriptome of metastatic patient treated sunitinib  37.  The HR reported in their  article is

lower than in our study. In a follow-up study by this team, HR were calculated in a patient

cohort  treated  with  pazopanib  which  is  different  to  our  study38.  Recently,  Ricketts  et

al39 reported a comprehensive molecular characterization using the TCGA database where
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they compared the 3 types of RCC (ccRCC, papillary RCC and chromophobe RCC). For

ccRCC  the  signature  were  related  to  increased  ribose  metabolism  pathway  and  to  Th2

immune profile. However our study is very different, because starting from an animal model

we specifically focused our comparative translational analysis on the ccRCC subtype and,

thus,  the results  cannot be compared,  albeit  their  study also revealed immunology-related

gene expression. Furthermore, a recent study reported tracking of ccRCC evolution at the

genomic level and demonstrated that metastatic competence was afforded by chromosomal

complexity with loss of 9p as a selective event for metastasis and patient survival40. Our study

did not include an analysis of the chromosomal events, since our animal model did not reveal

chromosomal  alterations  and,  thus,  we  specifically  focused  on  modifications  of  the

transcriptome and the methylome.   

Methylome analysis from the S5 series revealed that only 29 % of 33095 CpGs differentially

methylated genes were associated with a known gene. Only a restricted number of genes

found in  this  analysis  was  contained in  the transcriptome signatures  which include  IL34,

Krt17, RIK/MAGEC2/3, and SAMSN1. 

Thus, despite the excellent clustering only a restricted number of genes are in common. When

GO terms are crossed between transcriptomics  and methylome data sets,  they also,  only,

converge partially to a common set of processes. The reason for this resides in the fact that

many methylation sites are found within intronic sequences, the role of which is not really

understood,  but  which may have major  regulatory functions.  For IL34,  three CpGs were

identified as part of enhancer regions with two of those found in the gene body and predictive

for OS which points to a possible epigenetic regulation of IL34 (see for more on IL34 later in

discussion).
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We further selected, for a more detailed investigation, a number of individual genes having

no defined roles in RCC, which we showed to be predictive of patient outcome in online

databases and verified in a second local patient cohort.

In this context, we selected SAA2, an acute phase protein related to SAA1, which was found

to be a strong predictor of OS and DFS in the TCGA KIRC database globally and also for the

M0 and M1 subgroups. In patients with the highest Fuhrman Grade, significantly increased

SAA2 expression was observed. Furthermore, analysis of plasma samples from patients with

metastases before or after  surgery showed higher  plasma levels  of SAA2 and worse OS.

Analysis  of  samples  from  the  clinical  trials  evidences  SAA2  as  an  excellent  predictive

biomarker  especially  in  the  sunitinib  treated  patient  cohort.  Serum amyloid  A has  been

previously reported to be prognostic marker in RCC41–43. In the Vermaat et al study42,43, there

is no distinction between the four SAA variants (SAA1-4) contrary to our study where we

clearly identified SAA2. In addition, in the first article42, most of the patients included in their

study were treated with interferon as first line treatment and not with anti-angiogenic drugs

currently in clinical use and in this case PFS was not analyzed and only the combination with

apolipoprotein A2 (ApoA2) was predictive for OS. The second study43, which demonstrated

highly significant predictive value for SAA in RCC metastatic patients treated by tyrosine-

kinase inhibitors (TKI), is in agreement with our data, albeit they did not specify the SAA

variant. 

Another  molecule  of  interest  is  complement  factor  B  (CFB)  which  was  upregulated  in

“Lung” and “Tail” cell lines.  Complement factor B expression correlated with survival and

metastasis in the TCGA data set and in the UroCCR cohort. Plasma measurements showed

that, similarly to SAA2, patients with metastases had higher CFB plasma levels compared to

patients without metastases. This remained the case whether the samples were taken before or
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after surgery, suggesting that CFB may be a useful blood borne marker of metastasis. Like

SAA2, CFB plasma levels were tested in patients with metastasis treated with antiangiogenic

drugs, before and after first cycle treatment with sunitinib. Patients whose CFB levels were

increased  following  treatment  had  faster  disease  progression  and  shortened  survival

compared to patients whose level were decreased. Interestingly, the combination of SAA2

and CFB plasma level measurements produced a more powerful analysis than either marker

alone. This suggests that a combined analysis of these two markers represent a powerful tool

for  predicting  patient  outcome  following  sunitinib  treatment.  Interestingly,  CFB  is  a

prognostic  preoperative marker in pancreatic  carcinoma which outperformed CA19-9 and

CEA44. However, the combination of CFB and SAA2 was not tested in this study.

PodocanLike-1(PODNL1) which was upregulated in cell lines specialized for primary tumor

development was one of the strongest predictors of survival and metastasis in the TCGA and

UroCCR cohort. Immunohistochemistry showed strong expression in patient tumor samples.

The function of PODNL1 is completely unknown and further studies are required.

GPRC5a is   a  potential therapeutic target and biomarker in several solid tumors including

prostate cancer, lung cancer or colon cancer45,46. It has been identified in a differential gene

expression analysis comparing T1 and T3 ccRCC stages47. In our study, increased GPRC5A

expression was associated with a shorter survival.  This is in agreement with results from

prostate cancer, where GPRC5A expression also predicts a worse OS and was shown to be

involved  in  metastasis  since  knock-down  of  this  molecule  limited  bone  metastasis27.

Interestingly, GPRC5A has been identified as a novel hypoxia-induced protein that functions

to  protect  cancer  cells  from  apoptosis  during  oxygen  deprivation  and  was  found  to  be

upregulated  in  colorectal  cancers.  Mechanistically,  GPRC5A acts  via  the  Hippo pathway

effector YAP48. However, in non-small cell lung carcinoma (NSCLC), GPRC5A is expressed
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as much lower levels than in the corresponding noncancerous tissues and was associated to a

worse prognosis46. Thus, the role of GPRC5A seems context-dependent and either associated

with a pro-tumor or anti-tumor context.

One of the most interesting genes in our study was Interleukin-34 (IL34), a secreted cytokine,

which  binds  to  CSFR149,  receptor-type  protein-tyrosine  phosphatase  ζ  (PTP-ζ)50 and

Syndecan-151. It is expressed in several organs, including in tubular cells of the kidney52. IL34

supports  the  growth  and  survival  of  primary  human  monocytes  and  induces  their

differentiation  into  type  2  macrophages53 IL34  has  been  linked  with  autoimmune  and

inflammatory  diseases  such  as  rheumatoid  arthritis53,54,  hepatitis  C  infection55,  lupus

nephritis56,  inflammatory bowel disease57.  It  has been linked to chronic kidney injury and

kidney graft rejection52, and to cancers including osteosarcoma58 or lung cancer59.

In our study, interleukin-34 was upregulated in all 3 groups of aggressive mouse cell lines,

suggesting  that  it  could  contribute  to  all  stages  of  RCC  progression,  acting  as  a  key

driver/regulator of aggressiveness.  We showed that its expression in RCC correlated with

increased Fuhrman grade, and shortened survival and faster metastatic progression, using two

cohorts of patients, and RNA and immunohistochemistry data. We also provided evidence

that IL34 is detected in the plasma of a subset of patients treated with sunitinib, the first line

treatment for metastatic RCC.

For  functional  analysis,  we  focused  on  IL34  since  IL34  was  a  common  driver  to  all

experimental groups and since our data also indicated a potential epigenetic regulation of this

gene with two potential methylation sites predictive for OS and PFS. We first overexpressed

IL34 in RCC and determined the effect on macrophages and tumor development in the mouse

model. Our studies showed that mouse tumors overexpressing IL34 had an altered pool of
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tumor  associated  macrophages.  Markers  of  total  macrophages  were  increased  relative  to

control tumors indicating an increased number of macrophages. A further examination of

macrophages markers showed that this  was due to an increase in type 2 pro-tumorigenic

macrophages while type 1 macrophages were not significantly altered. We further confirmed

the increase in type 2 macrophage density in the tail vein metastasis assay. It is known that

Type 2 macrophages are associated with worsened progression in multiple cancer types59.

However, IL34 overexpression alone was not sufficient to further increase tumor progression

in our model, but CrisprCas9-mediated deletion of IL34 in RENCA cells strongly inhibited

primary tumor formation and metastasis after both, sub-capsular implantation and tail vein

injection. In vitro proliferation in IL34 KO cells was not modified, suggesting that this effect

is  microenvironment-dependent.  Mouse  survival  time  was  increased,  and  MRI  analysis

showed  reduced  numbers  and  slowed  development  of  metastases  which  was  also

mathematically modeled. Importantly, RENCA cells do express CSF1, but our experiments

showed that the loss of IL34 cannot be compensated by the presence of CSF1. Our data also

point to the fact that IL34 is already required at an early stage of tumor development. Taken

together,  these studies demonstrate a previously unknown role for IL34 in progression of

RCC and suggest it as an important potential target. IL34 has been also shown to promote

tumor progression and metastasis in other tumor types such as osteosarcoma60–66. The effect

of  IL34 and CSF-1  blockade was  recently  explored  using  specific  blocking  antibodies58.

Mouse colon carcinoma (MC38 cell line) development was only weakly inhibited by both

IL34 and CSF-1 blockade but only CSF1 blockade had an effect on TAM homeostasis and

CD4+ T cell accumulation which is very different from our data. 
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All in all, our work demonstrates that a multilayered systems approach, from mouse to man

as described in this work, generates many meaningful results that are not only important for

the understanding of tumor biology but which are also highly relevant for clinical translation.
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Methods

Mice  and  cell  lines. All  animal  experiments  were  approved  by  the  “Ministère  de
l’Enseignement  Supérieur,  de  la  Recherche  et  de  l’Innovation  (MESRI)”  (authorizations
numbers  2016072015478042;  2015110618597936  and  2015070315335217),  and  were
carried out in accordance with the approved protocols.

Mouse tumor and metastasis models. The Renca murine renal cancer cells, and the human
786-0  cancer  cells  were  maintained  in  Roswell  Park  Memorial  Institute  (RPMI)  1640
medium supplemented with 10% feral bovine serum (FBS) and 1% penicillin/streptomycin
(Complete Medium), and were incubated at 37°C, 5% CO2 in an incubator.
For sub-capsular implantations of Renca cells, 1*105 cells were injected under the left kidney
capsule of 6-week-old female BALB/c mice (Charles River Laboratories).
For intravenous injections of Renca cells, 5*106 cells were injected into the caudal vein (tail
vein)  of  6-week-old female BALB/c mice.  When the  endpoints  defined by the  approved
protocols were reached, mice were sacrificed and tumor tissues and lungs were collected.
When a first mouse from a group was determined as having reached an endpoint, all mice
from  that  group  were  sacrificed.  Mice  were  housed  in  the  animal  facility  of  Bordeaux
University (Animalerie Mutualisée, Université de Bordeaux, France).
For sub-cutaneous implantations of 786-O cells, 5*106 cells were injected into the flank of 5-
week-old nude (nu/nu) female mice (Janvier, France). The tumor volume was determined
with a caliper (v = L*l2*0.5). When the tumor reached 100 mm3, mice were treated five a
week for 4 weeks, by gavage with placebo (dextrose water vehicle) or sunitinib (40 mg/kg).

Tissue dissociation and tumor cells purification. For tumor cell purification, tissues were
cut  into small  pieces  with  a  scalpel  and  digested  with  Collagenase  I  and Collagenase  II
(Liberase TL, Roche, 05401020001) for 1 hour at 37°C. To further improve the dissociation,
digested  tissues  were  filtered  in  cell  strainers  (100µm,  70µm and  40µm) and  seeded  in
complete medium, and incubated at 37°C, 5% CO2 in incubator. Cell cultures were checked
daily and passaged as necessary. Tumor cell outgrowth and primary cell death resulted in
tumor cell  only cultures,  verified by visualization of GFP using fluorescence microscopy
When  no  GFP-negative  cells  could  be  visually  detected,  cell  cultures  were  considered
sufficiently pure. RENCA-GFP cells were collected for analysis or re-implanted into mice for
the next in-vivo passage.

Tissue treatments. For immunochemistry, tissue were fixed in paraformaldehyde 4% (PFA
4%, Santa Cruz Biotechnology, sc-281692) for 2 hours and then incubated for 72 hours in
30% sucrose. Tissues were frozen in OCT Compound (Tissue-Tek OCT compound, Sakura,
4583). Prior to embedding, lungs were inflated with 1mL of diluted OCT (1:1 PBS/OCT
dilution).  Frozen  tissues  were  preserved  at  -80°C.  For  protein,  DNA and  RNA analysis,
tissues were snap-frozen in liquid nitrogen and preserved at -80°C.

Low-coverage  whole-genome  sequencing. Genomic  DNA was  isolated  use  the  Dneasy
Blood and Tissue Kit (Qiagen, 69504), according to the manufacturer’s protocols. 13 samples
were subjected to low-coverage whole-genome sequencing. Libraries were created using the
KAPA LTP library preparation kit for Illumina platforms (Kapa Biosystems) following the
manufacturers recommendations and sequenced on an Illumina HiSeq4000 sequencer in 51bp
single-end mode. Raw reads were mapped to the mouse reference genome (mm10/GRCm38)
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using the Burrows-Wheeler Aligner67. On average, 6,882,693 reads were mapped per sample.
PCR  duplicates  were  removed  using  Picard  (v1.43)  resulting  in,  on  average,  5,966,979
uniquely  mapped  reads  per  sample.  These  reads  were  further  processed  with  the
Bioconductor package QDNASeq.mm10. Problematic regions were excluded and read counts
were corrected for mappability using LOESS regression. The number of reads was counted in
bins  of  50kb along the  genome,  log2-transformed and normalized  by the  median.  These
resulted  in  logR  values  per  bin,  that  were  subsequently  segmented  using  the  ASCAT
algorithm68.These segmented values, as well as the individual logR values per bin, were used
to plot the individual copy-number profile of each sample. Subclonal tumor fractions of the
samples were estimated by ABSOLUTE69.

Transcriptomic data generation and analysis. Total RNA was extracted using the RNeasy
Plus  Mini  Kit  (Qiagen,  #74134),  according  to  the  manufacturer’s  protocols.  Analyses  of
transcription sets, signature computation and enrichment analysis were done using R studio
(R v3.5.270, R studio v1.1.46371). 
Sample count by group and series:
Group S0 S1 S2 S3 S4 S5

Parental cell line 2 NA NA NA NA NA

Kidney NA 2 2 3 5 5

Tail NA 2 3 4 6 4

Lung NA 1 5 3 4 3

From the log2 scale normalized data set, Principal Component Analysis was performed on
series S0 and S2 as well as S0 and S5 (function prcomp of stats R package (v3.5.2) with the
parameter center = T). Genes with the most important association where selected by keeping
genes whose contribution is above the mean of all contributions for PC1 and/or PC2 for both
S0 and S5 PCA analysis. This resulted in a set of 5140 genes. Expression values of these
genes were further centered and reduced. For each of the series S0 through S5, a mean value
was  computed.  We further  built  a  heatmap of  these  mean  values  (pheatmap  R package;
v1.0.12). 

Biomarker discovery. (1) Differential expression between parental cell line (series 0, S0)
and series 5 (S5): To select genes that present the strongest difference in expression between
parental cell line and series 5 experiments, we used a z-score approach. First, we compute the
log fold (logFC) change for each gene. Second, we compute the mean and standard deviation
of the logFC and a z-score for all genes. A gene was considered as differentially expressed if
the absolute value of its z-score was ≥ 2.58 and if its logFC is ≤ -1 (down expressed) or ≥ 2
(up expressed).  (2) Progressive expression pattern through series: To capture genes that
present a progressive expression through series, we compute mean values of expression for
each series. A gene will be considered progressive if its mean values between replicates for a
given series are strictly increasing (up) or decreasing (down) through series 0 to 5. As the S1
of Lung group had only one measure, it was not usedfor the  determination of the  progressive
quality of genes. (3) Differentially expressed and progressive genes. A gene was considered
differentially progressively expressed through series if it was in the intersection of the gene
sets selected in steps (1) and (2) with the additional consistency constraint that the expression
should be in the same direction (up or down).
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Biomarker validation. Only genes whose overexpression was predictive of a bad prognostic
were conserved. (1) Selection of clinically relevant genes: In order to conserve genes that are
relevant in human kidney cancer, we used the TCGA KIRC cohort. For each gene, we fitted a
Cox proportional hazard regression model based on overall survival (OS) time and disease-
free survival (DFS). A gene was conserved if its cox proportional hazard ratio (HR) was in
accordance with the differential expression (HR ≥ 1 for up regulated genes and HR ≤ 1 for
down regulated genes) and if the FDR adjusted p-value of its log-rank test was ≤ 0.01 for OS
and/or DFS.  (2) Relevance of the association of selected genes: To measure the clinical
relevance of the resulting signature and check their prognostic performance against random
signatures, we used SigCheck R package (v 2.14.0). To separate samples into groups, we
computed a score corresponding to the mean value of all the expression values of genes for
each sample  (scoreMethod="High" in the sigCheck function). Patients were then classified
in  accordance  to  their  score  and  splited  in  3  groups  using  a  log-rank  test  followed  by
computation  of  the  associated  log-rank  HR (survival  v2.44-1.1  and  survminer  v0.4.3  R
packages).  We then compared the performance of  our previously defined signatures  with
1000 signatures composed of the same number of randomly selected genes. TCGA Kidney
Renal Clear Cell Carcinoma (KIRC) HiSeqV2 data were downloaded from XenaBrowser72.
We  chose  log2(x+1)  transformed  RSEM  normalized  count  (version  2017-10-13)  as
recommended  on  its  web  site  (https://xenabrowser.net/;  page:  «dataset:gene  expression
RNAseq-IlluminaHiSeq percentile»). We removed genes where there were more than 90% of
samples that had null values resulting in 19186 genes. Complementary associated clinical
data  were  download  from  cbioportal  (https://www.cbioportal.org/).  Conversion  of  Mus
Musculus to Human gene name was done by downloading conversion table from the Biomart
website (https://www.ensembl.org73). 

Methylomics data generation and analysis. Whole Genome Bisulfite Sequencing (WGBS)
was performed for 3 replicates of the S5 series for K, T, and L groups and 1 for the parental
cell line at the GeT-PlaGe core facility, INRA Toulouse. WGBS libraries have been prepared
according to Biooscientific’s protocol using the Biooscientific NEXTflex™ Bisulfite Library
Prep Kit for Illumina Sequencing. Briefly, DNA was fragmented by sonication, size selection
was  performed  using  Agencourt  AMPure  beads  XP and  adaptators  were  ligated  to  be
sequenced.  Then,  bisulfite  treatment  was  performed  for  2.5  hours  using  the  EZ  DNA
Methylation-Gold™  Kit  from  Zymo  Research,  and  12  cycles  of  PCR  were  performed.
Library quality was assessed using an Advanced Analytical Fragment Analyser and libraries
were quantified by QPCR using the Kapa Library Quantification Kit. WGBS experiments
have been performed on an Illumina HiSeq3000 using a paired end read length of 2x150 pb
with the Illumina HiSeq3000 Reagent Kits. To determine conversion efficiency, fastq files
were trimmed for adapters and low quality bases with Trim Galore (v0.4.4, calling cutadapt
1.374) then mapped to the pUC19 reference genome (pUC19.fa) with Bismark (v0.13.075).
Samtools (v0.1.19-44428cd76) was used to remove duplicated reads. Then methylation calling
was  performed  with  Bismark_methylation_extractor.  As  methyled  and  non-methylated
cytosine positions are known on the pUC19 reference genome, over and under-conversion
could  be  assessed.  Filtered  fasq  file  were  generated  by  CASAVA 2.17.  Fastq  files  were
aligned  with  Bismark  (v0.17.1_dev77)  against  the  GRCm38.p5  mus  musculus genome
(download from http://www.ensembl.org/, release 8976) with following parameters -N 0 and --
maxins 800. Bismark use Bowtie 2 (v2.3.4.374) and samtools (v1.978). Incomplete bisulfite
conversion filtering was done on Bismark BAM files in order to remove reads that exceed a
certain threshold of methylated calls in non-CG context.  Then, deduplication was applied
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(deduplicate_bismark)  followed  by  extraction  of  methylated  positions
(bismark_methylation_extractor).  Next  analysis  were  done  using R  studio  (R v3.5.271,  R
studio  v1.1.46372).  We then  considered  CG positions  with  at  least  10  reads  of  coverage
resulting to 106303 CGs on chromosomes 1-19 and X. CGs were then annotated with RefSeq
(download from UCSC website77) using the biomaRt R package (v2.38.079) resulting in 6606
unique gene names. Principal Component Analysis (PCA) was performed on S0 and S5 for
methylation frequencies of all CGs (function prcomp of stats R package (v3.5.2) with the
parameter center = T). CGs with the most important association were selected by keeping
CGs whose contribution is up to 5 times the mean of all contributions for PC1 or PC2 of the
PCA. The resulting 2063 CGs were localized in the gene body of unique 1427 genes used to
perform enrichment analysis.
We further used the methylKit R package (v1.9.4) to calculate differential methylation at base
resolution80. After normalization of coverage values between samples by the median, reads
covering both strands of a CpG dinucleotide were  merged. Fisher's exact test was applied to
identify  differentially  methylated cytosines  (DMCs).  Resulting DMCs in gene body were
then confronted with genes that were differentially expressed between S0 and S5. TCGA
methylation  data  sets  (illuminaMethyl450_hg19_GPL16304_TCGAlegacy)  of  the  KIRC
cohort  were  download  from  XenaBrowser.  Refseq  (download  for  GRCh37  from  UCSC
website) was used to conserve only CGs that were in accord with the locus of the DMCs and
only for genes that were in transcriptomics signatures. The resulting  5 CGs were located the
intron 1 of IL34 and all had a positive correlation with IL34 expression. For each of these 5
CGs, we fit a Cox proportional hazard regression model based on overall survival (OS)  and
disease-free survival (DFS). Two CGs had an HR > 1 and a p-value of its log-rank test ≤ 0.01
for OS. As for transcriptomics data, the clinical relevance and prognostic performance of the
2 CGs were test against 1-CG random signatures using SigCheck R package. To separate
samples  into  groups we computed a  score  corresponding  to  the  mean value over  all  the
methylation  values  for  each  sample   (scoreMethod="High"  in  the  sigCheck  function).
Patients were then split into 2 groups (low and high) to perform a log-rank test and compute
associated HR (survival v2.44-1.1 and survminer v0.4.3 R packages). The Genome Browser
screen  shots  were  produced  by  using  http://genome.ucsc.edu  webtool  (GRCm38  and
GRCh3781)  and  ensembl  regulation  data  sets
(mus_musculus.GRCm38.Regulatory_Build.regulatory_features)  for  GRCm38  and
GeneHancer for GRCh3782. 

Enrichment  analyses. To  perform  enrichment  analyses  we  used  hypergeometric  test
(enricher function of Cluster Profiler R package83; v3.10.1) with go_terms.mgi download on
Mouse  Genome  Database  (MGD)  at  the  Mouse  Genome  Informatics  website  (URL:
http://www.informatics.jax.org84 (04,  2019).  Enrichment  analysis  was  done  for  following
gene sets: (i) transcriptomics data: gene set related to PC1, gene set related to PC2 and gene
sets related to PC1 and PC2 (universe was setting to the set of genes which are measured in
transcriptomic experiments) (ii) methylomics data: gene sets related to PC1 and PC2.

Data  availability.  Microarray  gene  expression  data  is  available  via  Gene  Expression
Omnibus using the accession GSE142109, Access: Upon request.
DNA sequencing was deposited in ArrayExpress:
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8645, Access:Upon request.
Methylation data is available via Gene Expression Omnibus using the accession GSE139338
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139338;  Access: upon request.
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Immunochemistry  and  immunofluorescence. For  frozen  tissues,  10µm  sections  were
performed  with  a  cryostat  (Leica  CM1900).For  paraffine  tissues,  10µm  sections  were
performed with a microtome. For frozen tissue immunofluorescence, sections were incubated
1 hour  with  a  blocking  buffer  (5% BSA in  PBS).  Slides  were  incubated  overnight  with
primary  antibody  (MMR  R&D  Systems,  AF2535),  and  then  with  secondary  fluorescent
antibody  (Interchim,  FP547H)  and  DAPI  (ThermoFisher  Scientific,  62247).  For  paraffin
tissues immunohistochemistry, slides were deparaffinized, re-hydrated and heated in Antigen
Retrieval Solution pH6 (HIER Sodium Citrate Buffer, pH6; 10mM Sodium Citrate, 0,05%
Tween 20, pH 6,0). To block endogenous peroxidase activity, slices were treated with 0,3%
hydrogen  peroxide.  After  1  hour  of  blocking  in  PBS  5%  BSA,  slides  were  incubated
overnight with primary antibody (see table), and then incubated with biotinylated secondary
antibody for 1h (see table). Secondary antibodies were HRP-conjugated using the “ABC”
technique (Vectastain PK-6100)  and then revealed with a  peroxidase substrate  kit  (DAB,
Vector Laboratories, SK-4100).

Target Antibody dilution Reference Secondary

Mouse MMR 1/25 R&D Systems, AF2535 Interchim, FP-SA2110

Human IL34 1/200 Abcam, ab101443 Dako, E0433

Bright-field microscopy was performed with a Nikon Eclipse E4000 microscope (Nikon) and
NIS-Elements F 3.2 software (Nikon). Fluorescent microscopy was performed with a Nikon
Eclipse i90 microscope (Nikon) and NIS-Elements AR 4.30 software (Nikon). A slide scanner
(Hamamatsu, Nanozoomer 2.0HT) from the Bordeaux Imaging Center was used for whole
slide imaging using NDP.scan software (Hamamatsu). Analysis were performed using Fiji.
Cell counting was performed with “Cell Counter” plugin (Kurt De Vos).

Generation of  GFP,  IL34,  overexpressing cells  and crispr/cas9  induced IL34 knock-
down cells.
EGFP  expressing  lentivirus  (pRRLsin-MND-eGFP-WPRE)  was  obtained  from  the
vectorology plateform of the University of Bordeaux (Vect’UB).

The IL34 lentiviral vector was obtained the in following way. Total RNA was extracted from
Renca  cell  and  reverse-transcribed  into  cDNA  using  the  high-capacity  cDNA  reverse
transcription kit (Applied Biosystems). Mouse IL34 variant 1 cDNA were then amplified by
PCR using  specific  primers  containing  attB  site :  fwd :  5'-GGGG-ACA-AGT-TTG-TAC-
AAA-AAA-GCA-GGC-TTC-ATG-CCC-TGG-GGA-CTC-GCC-TGG-CTA-3’;  rev:  5’-
GGGG-AC-CAC-TTT-GTA-CAA-GAA-AGC-TGG-GTC-TCA-GGG-CAA-CGA-GCC-
ATG-GCT-TGA-3’.  attB-PCR  product  was  cloned  into  pDONR221  (ThermoFisher,
#12536017) by BP gateway cloning and then transferred into pLenti CMV/TO Puro DEST
(Addgene #17293) by LR gateway cloning to give pLenti CMV/TO-mIL34v1-Puro lentiviral
vector.  For  the  IL34  lentiviral  cripr/cas9  construct,  lentiCRISPRv2  plasmid  containing
spCas9 cassette and expressing guide RNA targeted LacZ or mouse IL34 exon 1 were kindly
provided  by Michel  Tremblay  (McGill  University)  with  the  following targeted  sequence:
mIL34 ex1a: 5’-gatcctacttgacgtggctttgg-3’ and mIL34 ex1c: 5’-gaccttacaggctaccttcgggg-3’.
Viral particles were produced by calcium phosphate co-transfection of HEK293T cells with
the packaging plasmids pVSVg (Addgene 8454), psPAX2 (Addgene 12260) and a transfer
plasmid  (e.g.  EGFP-  or  mIL34v1-plasmid  or  pLentiCRISPRv2-LacZ,  -mIL34_1a,  -
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mIL34_1c). Renca cells were infected with lentiviruses at a multiplicity of 25 infectious units
per cell and selected for 4 days in media supplemented with 1µg/ml puromycin.

qPCR gene expression analysis. Total RNA was extracted using the RNeasy Plus Mini Kit
(Qiagen, #74134), according to the manufacturer’s protocols. 1µg of total RNA was reverse-
transcribed  into  complementary  DNA  (cDNA)  using  the  high-capacity  cDNA  reverse
transcription kit (Applied Biosystems, 4368814). The resulting cDNA were amplified using
specific  primers  for  the  genes  of  interest.  For  RT-qPCR,  Taqman  (Eurobio  Scientific,
EurobioProbe)  or  SybrGreen  (Eurobio  Scientific,  EurobioGreen)  technologies  were  used.
HPRT was used as internal control.
Gene name Primer Reference / sequences

Mouse HPRT ThermoFisher Scientific, TaqMan Assay Mm01545399_m1

Mouse IL34 ThermoFisher Scientific, TaqMan Assay Mm01243248_m1

Mouse MMR SybrGreen, fwd : 5’-TGCCGGCGTTGCAGCCTATT ; rev : 5’-
GCTCATTCTGCTCGATGTTGCCCA

Mouse CSF1R ThermoFisher Scientific, TaqMan Assay Mm01266652_m1

Mouse CSF1 ThermoFisher Scientific, TaqMan Assay Mm00432686_m1

Mouse ARG1 ThermoFisher Scientific, TaqMan Assay Mm00475988_m1

Mouse IL1β ThermoFisher Scientific, TaqMan Assay Mm00434228_m1

Mouse IL12a SybrGreen, fwd : 5’-CATCGATGAGCTGATGCAGT ; rev : 5’-
CAGATAGCCCATCACCCTGT

Mouse F4/80 SybrGreen, fwd : 5’-TGAGCAGATACAGCAATGCCA ; rev : 5’-
AGCTGCACTCTGTAAGAACAC

Mouse CFB ThermoFisher Scientific, TaqMan Assay Mm00433909_m1

Mouse PODNL1 SybrGreen, fwd : 5’-CACTCCGGTTCTGTGTACCTC ; rev : 5’-
GTGGAAGGTGTTAGGTGGCA

Mouse GPRC5a SybrGreen, fwd : 5’-AGTCGCAAGTTCTCGCTTCA ; rev : 5’-
TCATTCTGGTTGGTCCTGGG

Mouse SAA2 SybrGreen, fwd : 5’-TTCAGAAGGCTGTGTTGGGG ; rev : 5’-
CCCTCTCCTCCTCAAGCAGT

Mouse IL12a SybrGreen, fwd : 5’-CATCGATGAGCTGATGCAGT ; rev : 5’-
CAGATAGCCCATCACCCTGT

Human IL34 ThermoFisher Scientific, TaqMan Assay Hs00380959_m1

Human CFB SybrGreen, fwd : 5’-CAAAGCAAGCCAGGACACAC ; rev : 5’-
GTGGTCACACCTCCAGACAA

Human GPRC5A SybrGreen, fwd : 5’-GGCACTAGGGTCCAGAATGG ; rev : 5’-
CAGTCCGATGATGAAGGCGA

Human PODNL1 SybrGreen, fwd : 5’-CACCTTCAGCAAGCRGCATA ; rev : 5’-
CTGCAGCAACAAATAGCGCA

Human SAA2 SybrGreen, fwd : 5’-ACCCCAATCACTTCCGACC ; rev : 5’-
GCTTCTCTGGACATAGACCTCACTA

Human HPRT ThermoFisher Scientific, TaqMan Assay Hs99999909_m1
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Western Blot analysis. Cells were washed with PBS and dissolved in lysis buffer (50mM
Tris-HCl pH 7,4, 150mM NaCl, 1% TritonX-100, 0,1% SDS, 0,1% sodium deoxycholate)
supplemented with protease and phosphatase inhibitors cocktails (Roche, Complete Protease
Inhibitor Cocktail; PhosSTOP). For tissues, pieces of approximately 5mm3 were dissolved in
lysis buffer. Protein concentration was quantified by Bradford assay (Euromedex). Protein
lysates were diluted in Laemmli buffer (62,5mM Tris-HCl pH 6,8, 10% glycerol, 2,5% SDS,
2,5% β-mercaptoethanol), boiled for 5 minutes at 95°C and resolved by SDS-PAGE. Protein
were then transferred onto a nitrocellulose membrane (BioTrace, 66485). Membranes were
incubated with blocking buffer (see table) for 1 hour, and then probed with primary antibody
(see table). A fluorescent secondary fluorescent antibody (see table) was used as detection
system.  Membranes  were  scanned  with  an  infrared  imaging  system  (Odyssey,  Li-Cor
Biosciences, Nebraska, US). Densitometry analysis were performed using Image Studio Lite
4,0 Software (Li-Cor).

Protein of interest Associated Blocking
buffer

Concentration,
Buffer

Antibody
Reference

Secondary
antibody reference

Mouse IL-34 TBS-T 3% BSA 1/250,
TBS-T 0,5% BSA

R&D systems,
F5195

IRDye 800CW 925-
32214
(Li-Cor
Biosciences)  (also
react  with  sheep
IgG)

Mouse MMR TBS-T 5% BSA 1/200,
TBS-T 5% BSA

R&D Systems,
AF2535

IRDye 800CW 925-
32214
(Li-Cor
Biosciences)

Mouse vinculin
Odyssey  Blocking
Buffer  (Li-Cor
Biosciences)

1/500,  Odyssey
Blocking  Buffer
(Li-Cor
Biosciences)

Sigma, V9131
IRDye 800CW 926-
32212  (Li-Cor
Biosciences)

ELISA.  ELISA were  performed  according  to  the  manufacturer’s  protocols:  human  IL34
(R&D systems,  D3400),  human SAA2 (DLDEVELOP,  DL-SAA2-Hu-96T),  Human CFB
(abcam, ab137973).

Human  patient  samples.  Patient  samples  (tumor  tissue  and  plasma)  from the  UroCCR
cohort  were  used  with  associated  clinical  data  (clinicaltrial.gov,  NCT03293563).  Eligible
patients for SUVEGIL and TORAVA trials were at least 18 years of age and had metastatic
ccRCC  histologically  confirmed,  with  the  presence  of  measurable  disease  according  to
Response  Evaluation  Criteria  in  Solid  Tumors  v1.1.  Patients  had  not  received  previous
systemic therapy for RCC and were eligible for sunitinib or bevacizumab treatment in the
first-line  setting.  Patients  were  ineligible  if  they  had  symptomatic  or  uncontrolled  brain
metastases, an estimated lifetime less than 3 months, uncontrolled hypertension or clinically
significant cardiovascular events (heart failure, prolongation of the QT interval), history of
other primary cancer. All patients gave written informed consent. Tumors were assessed at
baseline and then every 12 weeks by thoracic, abdominal, pelvic and bone CT scans. Brain
CT scans  were  performed  in  case  of  symptoms.  This  cohort  includes  patients  from the
SUVEGIL  (24  patients)  and  TORAVA  (35  patients)  trials.  The  SUVEGIL  trial
(clinicaltrial.gov,  NCT00943839) was a multi-center prospective single-arm study. The goal
of the trial is to determine whether a link exists between the effectiveness of therapy with
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sunitinib  malate  and  development  of  blood  biomarkers  in  patients  with  kidney  cancer.
Patients received oral sunitinib (50 mg per day) once daily for 4 weeks (on days 1 to 28),
followed by 2 weeks without treatment.  Courses repeat every 6 weeks in  the absence of
disease  progression  or  unacceptable  toxicity.  The  TORAVA  trial  (clinicaltrial.gov,
NCT00619268) was a randomized prospective study. Patient characteristics and results have
been previously described85. Briefly, patients aged 18 years or older with untreated metastatic
ccRCC were randomly assigned (2 : 1 : 1) to receive the combination of bevacizumab (10 mg 
kg−1 iv every 2 weeks) and temsirolimus (25 mg iv weekly) IFN-α (9 mIU i.v. three times per
week),  or  one  of  the  standard  treatments:  sunitinib  (50 mg  per  day  orally  for  4  weeks
followed by 2 weeks off)86.  These studies were approved by the ethic committee at  each
participating  center  and  run  in  agreement  with  the  International  Conference  on
Harmonization of Good Clinical Practice Guideline. Blood samples were collected during the
inclusion visit (baseline).

Magnetic Resonance Imaging for in vivo mouse monitoring. Experiments were performed
on a 7T Bruker BioSpec system equipped with a gradient coil of 660 mT.m-1 maximum
strength and 110 µs rise time. A volume resonator operating in quadrature mode was used for
excitation (75.4mm inner diameter, 70mm active length), and a proton phased array (RAPID
Biomedical GmbH) was used for signal reception (4 elements of 30 mm long around an
elliptic  cylinder  housing:  19  ×  25.5  mm).  A  Self-Gating  balanced  Steady  State  Free
Precession sequence (SG-bSSP87) was employed to image the mouse lungs in order to count
the  pulmonary  metastases.  The  following  parameters  were  used:  Field-Of-View  (FOV):
25x22x20mm,  spatial  resolution:  195x172x156um,  TE/TR=2/4ms,  reception  bandwidth
(BW): 100kHz, flip angle: 30°, 4 repetitions, 4 phase offsets, total acquisition time: 22min.
Thereafter, the motion correction technique was used as already explained in Ribot EJ et al87.
A standard bSSFP sequence was also applied to image the mouse abdomen and measure the
primary tumor volumes. The following parameters were used: FOV: 25x22x20mm, spatial
resolution: 195x172x156um, TE/TR=2/4ms, BW: 75kHz, flip angle: 30°, 4 averages, 4 phase
offsets, total acquisition time: 22min.

Mathematical modeling methods. The data consisted of longitudinal observations of total
volume of the kidney and the primary tumor (PT) coupled with lung metastases counts, for
two groups of six mice, the control group LacZ and the IL34 KO CRISPR group. These data
were obtained from MRI images of subcapsular implanted mice. The volumes of the mice
kidneys were measured and were approximately equal to 187 mm3, enabling then to deduce
the PT volume for each mouse. We considered a model that included two ordinary differential
equations: one for the primary tumor growth, and the other for metastatic invasion (counts of

𝑉metastases) as a result of dissemination from the PT. We denoted by 𝑝 𝑁 and  the volume
𝑡of the PT and the number of lung metastases, respectively. The initial time 0=0 is the time of

𝑉tumor cells implantation. The initial volume of the primary tumor 𝑝
0 is set at the volume

converted from the number of injected cells (using the conversion rule 1 mm3 ≈106 cells88,
𝑉𝑝thus 0= 105 cells here. The model writes 

The first equation describes the growth kinetics of the PT with a growth rate that depends on
the  volume of  the  PT.  It  is  assumed to  follow a  power  law model89 𝛼 with  parameters  
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𝛽(proliferation rate)  and  (fractal  dimension of the PT vasculature).  The second equation
features  the metastatic  development through a PT volume-dependent  rate,  defined by the

𝜇 𝛽 𝜇parameters  and . The parameter  is the per cell probability of successful emission of
metastases from the primary tumor to the lungs. We refer to this parameter as the intrinsic

𝛽dissemination coefficient. The same fractal dimension  is used following the assumption
that  cells  able  to  leave  are  cells  close  to  the  vasculature90.  In  order  to  calibrate  the
mathematical models with the data, we used a statistical population approach by means of the
non-linear  mixed  effects  formalism91.  We  assumed  log-normal  distributions  for  the

𝛼parameters ( 𝑖 𝜇, 𝑖 𝑖) with  the animal index, with group effect considered as a categorical
𝛼 𝜇 𝛽on  and . Parameter  was found to exhibit small variability and no random effects were

considered for this parameter.

𝑥where 𝑖 𝑖=1 if animal  is in the IL34 KO group and 0 if not.We assumed a proportional error
model for the PT volume observations and a constant error model for the metastases counts.
To compute the parameters of interest, we maximized the likelihood of the pooled data using
the  stochastic  approximation  expectation  maximization  (SAEM)  algorithm  implemented
within the Monolix 2019R1 software (Lixoft SAS). 

Additional statistical analysis. Additional statistical analysis (Besides R studio, see above)
was performed using GraphPad Prism version 6.00 for Windows, GraphPad Software, La
Jolla California USA, www.graphpad.com. For the statistical tests used, see figure legends.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.904235doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.904235


37

Figure Legends

Fig.  1  The  design  and  development  of  the  experimental  model.  a  Time  scale  of  tumor
metastasis  in  mice  implanted  orthotopically  with  RENCA cells.  Three  different  injection
modalities were used to develop increasingly aggressive cell lines: Kidney (1), expected to
reveal enhancement of mechanisms related to primary tumor formation; Tail (2), expected to
recapitulate key aspects that precede metastasis formation (i.e. survival in the blood stream,
evasion of host immune response, and distant organ colonization);  Lung (3), representing
cells  which  underwent  the  full  cycle  of  primary  tumor  formation,  dissemination,  and
secondary  tumor  formation  at  a  distant  site.  At  the  bottom,  scheme  of  different  tumor
progression phases and mechanisms which are expected to be enhanced in the relevant cell
line.  b the  graph  shows  reduced  mice  survival,  represented  as  time  passed  since  the
implantation  until  the  day  of  sacrifice,  after  6  cycles  of  RENCA injection.  Data  are
represented as mean ± SEM. c Dots graph shows the weight of primary tumors generated by
parental (P0), or late passaged Kidney P6 or Lung P6 RENCA cells, after implantation into
kidney. Data are represented as mean ± SEM. Stats ANOVA followed with Tukey’s multiple
comparisons.  *p<0.05 ;  **p<0.01.  d Representative  pictures  of  primary tumors  and lung
metastasis  generated  by  orthotopic  implant  into  kidney  of  either  parental  (P0)  or  late
passaged cell lines (Kidney P6 or Lung P6). Bar = 1cm. e Bars graph showing the percentage
of mice presenting visible metastases in the lungs, upon injection of late passaged RENCA
(either Kidney P6 or Lung P6) compared to parental (P0) cell line. f representative pictures of
lung metastases formed, at day 15, by late passaged RENCA cells (Tail P6), compared to
parental cells (P0), which were tail injected. To note, upon tail injection, parental cell line P0
requires a wider window of time (i.e. 26 days) to form visible lung metastases. 

Fig.  2 Analysis  of  transcription  data  sets.  a,  b Projection  of  samples  onto  principal
component (PC) 1 and 2 for series 2 and 5 respectively. Samples of series 2 did not cluster
whereas series 5 did. c Heatmap for PC1- et PC2-associated gene expression from the PCA
analysis through S0 to S5. A progressive pattern is displayed. d, e, f Each enriched GO term
is represented in function of the -log10 of its adjusted p-value. Count: number of genes in the
GO term. Intersection of enriched GO terms for PC1-andPC2-associated genes from the PCA
analysis for S5 (d); Unique enriched GO terms for PC1 (e) or PC2 (f) associated genes from
PCA analysis for S5.

Fig. 3  Validation of the "Lung" signature.  a ,b Kaplan-Meier for overall (OS) and disease-
free (DFS) survival analysis stratified in 3 groups of equivalent size. Signature “low”: patient
group with low score; signature “medium”: patient group with a medium score; signature
“high”: patient group with high score. c, d Density plot of p values (log-rank test) from 1000
random signatures of equal size for OS and DFS. p = empirical p-value.  e, f Forest plot of
multivariate  Cox proportional  hazards  model  for  the  Lung signature  in  the  KIRC cohort
adjusted for clinical variables (Fuhrman grade and TNM stage).

Fig. 4 Analysis of methylome data sets.  a Principal component of full-genome methylation
analysis for S5 series.  b Enriched GO terms for PC1/PC2-associated genes from the PCA
analysis of the S5 methylation series. Each enriched GO term is represented in function of the
-log10  of  its  adjusted  p-value.  Count:  number  of  genes  in  the  GO  term;  c Dot-plot  of
differentially expressed genes (DEG) corresponding to differentially methylated CpGs in the
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gene body or the promoter. d Intersection between transcription and methylation of enriched
GO terms for PC1 and PC2 -associated genes.

Fig.  5  Clinical  relevance  of  SAA2 and CFB after  anti-angiogenic  treatment  (SUVEGIL-
TORAVA cohorts). a, b Correlation between plasmatic SAA2 levels at diagnosis and survival
(OS and PFS) in patients after sunitinib treatment (plasmatic level at the diagnosis less or
greater  than  a  cut-off  for  SAA2  (269  µg/ml)[OS:  HR(log-rank)=5.557;  PFS:  HR(log-
rank)=7.669. c Correlation between plasmatic SAA2 levels at diagnosis and PFS in patients
after sunitinib or bevacizumab treatment (plasmatic level at the diagnosis less or greater than
a third quartile cut-off for SAA2 (269 µg/ml; HR(log-rank)=1.987).  d Correlation between
plasmatic  CFB  levels  at  diagnosis  and  PFS  in  patients  after  sunitinib  or  bevacizumab
treatment (plasmatic level at the diagnosis less or greater than a third quartile cut-off for CFB
(310µg/ml; HR(log-rank)=3.113) e, f PFS (e) and OS (f) patients treated with either Sunitinib
of bevacizumab and stratified according to plasma levels  of both SAA2 and CFB. Three
subgroups were identified i) CFB low and SAA2 low, ii) CFB low and SAA2 high or CFB
high and SAA2 low,  iii)  CFB high and SAA2 high (Low-low vs high-high: OS HR(log-
rank)=5.086; PFS HR(log-rank)=4.196).

Fig. 6  Analysis of IL34 expression and its significance for RCC progression.  a Expression
analyses of IL34 gene expression in amplified RENCA cell lines (Kidney, Tail and Lung)
where IL34 was strongly upregulated compared to  Parental cells  (Series 0).  Of note,  the
increase of expression is cell-passage dependent and, thus, related to progression toward a
more aggressive phenotype. Graph shows mean ± SEM. b IL34 expression in primary tumor
cells and in tumor cells from lung metastasis compared to the parental cell line.  c ELISA
assay of IL34 in supernatants in late passaged (S5) cell lines compared to control (Parental
S0) of 1 million cells. Graph shows mean ± SEM. d Correlation of IL34 expression to overall
survival (OS) in patients from TCGA KIRC cohort ((HR(log-rank)=1.857 (1.38-2.498)). e IL
34  expression  correlated  to  Disease  Free  Survival  (DFS)  in  patients  from TCGA KIRC
cohort. ((HR(log-rank)=2.056 (1.315-3.214)) f Correlation of Fuhrman grade with IL34 gene
expression  in  the  TCGA KIRC cohort.  g.  qPCR analyses  of  IL34 expression  in  healthy
kidney and in tumors from patients (UroCCR). Results as mean and SEM. Analysis by two-
tailed paired t-test. P=0.0006. h Histological of IL34 in healthy kidneys and in tumors from
patients (UroCCR). Scale bar = 50µm. i Evaluations of IL34 expression in TMA from RCC
patients (UroCCR cohort) (Scoring by a pathologist, D. Ambrosetti). ANOVA followed with
tukey’s multiple comparisons. **p<0.01 ; ****p<0.0001 j Disease Free Survival (DFS) from
the TMA IL34 scoring (UroCCR Cohort)HR(log-rank)=1.878 (1.056-3.342).

Fig. 7  Analysis of IL34 overexpression on macrophages. Expression analysis conducted in
orthotopic implanted tumors generated from IL34-overexpressing RENCA cells. Expression
of markers in IL34-overexpressing tumors for (a) total macrophages (F4/80 and CSF1R), (b)
M1-type macrophages  (IL12a and IL1β) and (c) M2-type macrophages (MMR and ARG1)
compared  to  control  tumors.  Graph show mean  ±  SEM. T-test.  *p<0.05;  ***p<0.001.  d
Correlation relationship between IL34 and MMR (type 2 macrophage marker).  Statistical
test: Spearman correlation test.  e Semi-quantitative analysis of MMR protein expression in
mouse tumors generated from IL34-overexpressing and control RENCA cells from western
blots (Quantification of band intensities compared to vinculin and using a reference sample).
On the right, a representative WB of MMR in IL34-overexpressing and control tumors. T-
test.  ****p<0.0001.  f Quantification of MMR-positive cells in the kidney tumors. On the
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right, representative images of primary tumors stained by IF using an anti-MMR fluorescent
antibody  (red)  and  DAPI  (blue)  for  DNA counterstaining.  Scale  bar,  100  µm.  T-test.
****p<0.0001.  g Quantification  of  MMR-positive  cells  in  lung  metastasis  after  tail  vein
injection. On the right, representative images of lung metastases stained by IF using an anti-
MMR fluorescent antibody (red) and DAPI (blue) for DNA counterstaining. Scale bar, 100
µm. T-test. ****p<0.0001.

Fig. 8: Effect of IL34 silencing in vivo. a Weight from kidney bearing tumors after orthotopic
implanted IL34 knock-out (Crispr-Cas9) or control (LacZ) cells represented as mean+-SEM.
The pictures on the right shows images of implanted tumors. ANOVA followed by Dunnett’s
multiple  comparisons  test.  ***p>0.001;  ****p<0.0001. b  Mouse  survival  (HR(log-
rank)=8.09 (1.7-38.497)) and c number of mice without lung metastasis (HR(log-rank)=3.839
(0.967-15.244)). d Mathematical modeling issued of tumors from sub-capsular implant of IL
34  Crispr  or  control  (LacZ)  cells.  Volume  of  primary  tumors  and  the  number  of  lung
metastasis were quantified by MRI and fitted to generate simulations for tumor growth and
metastasis formation, using a population mixed-effects approach.  e Metastasis density after
tail-vein injections of IL34-silenced and control (LacZ) cells. The graph shows the means of
the  metastasis  area  in  lung  sections  relative  to  the  tissue  area  ±  SEM.  Examples  of
macroscopic images of lungs,  and  lung metastasis  from GFP+ RENCA cells  are shown .
Statistical  analysis:  ANOVA followed  by  Dunnett’s  multiple  comparisons  test.  *p<0.05 ;
**p<0.01.  f Quantification  of  MMR-positive  cells  in  lung  metastasis  after  the  tail  vein
injection. Representative images of IF staining for MMR (red) and DAPI(blue) are shown.
Scale bar = 100µm. Statistics:  ANOVA followed by Dunnett’s  multiple  comparisons test.
****p<0.0001

Table 1 Summary table of the signatures and their predictive value in the KIRC TCGA cohort
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Supplementary Figure Legends

Supplementary Fig. 1 The figure depicts the general strategy used to determine clinically-
relevant signatures from the transcriptomic data.

Supplementary Fig. 2  Validation of K signature in the KIRC TCGA cohort.  a, b Kaplan-
Meier  for overall  (OS) and disease-free (DFS) survival  analysis  stratified in  3 groups of
equivalent size. Signature “low”: patient group with low score; signature “medium”: patient
group with a medium score; signature “high”: patient group with high score. c, d Density plot
of p values (log-rank test) from 1000 random signatures of equal size for OS and DFS. p =
empirical p-value.  e, f Forest plot of multivariate Cox proportional hazards model for the
Lung signature in the KIRC cohort adjusted for clinical variables (Fuhrman grade and TNM
stage).

Supplementary Fig. 3  Validation of T signature in the KIRC TCGA cohort.  a, b Kaplan-
Meier  for overall  (OS) and disease-free (DFS) survival  analysis  stratified in  3 groups of
equivalent size. Signature “low”: patient group with low score; signature “medium”: patient
group with a medium score; signature “high”: patient group with high score. c, d Density plot
of p values (log-rank test) from 1000 random signatures of equal size for OS and DFS. p =
empirical p-value.  e, f Forest plot of multivariate Cox proportional hazards model for the
Lung signature in the KIRC cohort adjusted for clinical variables (Fuhrman grade and TNM
stage).

Supplementary Fig. 4 Validation of KTL signature in the KIRC TCGA cohort. a, b Kaplan-
Meier  for overall  (OS) and disease-free (DFS) survival  analysis  stratified in  3 groups of
equivalent size. Signature “low”: patient group with low score; signature “medium”: patient
group with a medium score; signature “high”: patient group with high score. c, d Density plot
of p values (log-rank test) from 1000 random signatures of equal size for OS and DFS. p =
empirical p-value.  e, f Forest plot of multivariate Cox proportional hazards model for the
Lung signature in the KIRC cohort adjusted for clinical variables (Fuhrman grade and TNM
stage).

Supplementary Fig. 5  Validation of AllMerged signature in the KIRC TCGA cohort.  a, b
Kaplan-Meier for overall (OS) and disease-free (DFS) survival analysis stratified in 3 groups
of  equivalent  size.  Signature  “low”:  patient  group  with  low  score;  signature  “medium”:
patient group with a medium score; signature “high”: patient group with high score.  c,  d
Density plot of p values (log-rank test) from 1000 random signatures of equal size for OS and
DFS. p = empirical p-value. e, f Forest plot of multivariate Cox proportional hazards model
for the Lung signature in the KIRC cohort adjusted for clinical variables (Fuhrman grade and
TNM stage).

Supplementary  Fig.  6 Low-coverage  shallow  DNA sequencing  of  the  S5  series  versus
parental cells. 5 Kidney, 3 Lungs and 4 tail samples were sequenced. There is no significant
copy number variation in these different groups.

Supplementary  Fig.  7 IL34  CpG  methylation  and  clinical  relevance.  a Locus  of  the
identified DMC in intron 1 of  IL34 (GRCm38) overlapping an enhancer  (ENSEMBL)  b
Locus  of  the  CpGs  cg01782798  and  cg26831220  in  the  intron  1  of  IL34  (GRCh37)

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2020.01.13.904235doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.904235


41

overlapping an enhancer (GeneHancer); c, d Scatterplot comparing the IL34 transcription and
methylation level  of the CpGs X (f)  and Y (g) respectively;  e,  f Kaplan-Meier  plots  for
overall survival stratified in 2 groups (TCGA KIRC cohort).  low: patient group with low
methylation level; high: patient group with high methylation level. g Summary of results. HR
(95%  CI):  Hazard  Ratio  with  95%  Confidence  Interval;  p  value:  log-rank  test  p-value;
empirical  p value:  prognostic  performance of the 2 CGs were test  against  1-CG random
signatures.

Supplementary Fig.  8 SAA2 and clinical relevance.  a SAA2 expression in Lung cell lines
with increasing passages compared to parental cells (Series 0). graph shows means ± SEM. b
Overall  Survival  (OS) of  patients  stratified according to  SAA2 expression (TCGA KIRC
Cohort).  (HR(log-rank)=2.472  (1.835-3.329)) c Disease  Free  Survival  (DFS)  of  patients
stratified according to SAA2 expression (TCGA KIRC Cohort)(HR(log-rank)=3.562 (2.278-
5.57)).  d, e, f, g OS and DFS of patients stratified according to SAA2 expression (TCGA
KIRC  Cohort)  and  their  metastatic  status(OS:  M0  HR(log-rank)=2.334  (1.591-3.423);
M1[NS] HR(log-rank)=1.62 (0.955-2.749) – DFS: M0 HR(log-rank)=3.511 (1.851-6.658);
M1[NS] HR(log-rank)=2.055 (1.038-4.07)). h Overall  Survival  (OS) of  patients  stratified
according to SAA2 expression in the UroCCR cohort (HR(log-rank)=2.901 (1.526-5.517)). i
Disease  Free  Survival  (DFS)  of  patients  stratified  according  to  SAA2 expression  in  the
UroCCR  cohort  (HR(log-rank)=2.342  (1.211-4.529)). j Correlation  between  SAA2
expression in patients and the Fuhrman grade (UroCCR cohort). k Plasma SAA2 levels in
non-metastatic (M0) and metastatic (M1) patients at diagnosis in the UroCCR cohort. l DFS
and correlation with pre-surgery SAA2 plasma levels (UroCCR cohort)(HR(log-rank)=8.191
(2.04-32.891)). m OS  and  correlation  with  post-surgical  SAA2  plasma  levels  (UroCCR
cohort)(HR(log-rank)=Inf (Inf-Inf)[not calculable]).

Supplementary Fig. 9  CFB and Clinical Relevance.  a CFB expression in Lung and  bTail
cell lines with increasing passage compared to parental cells (Series 0). graph shows means ±
SEM.  c  Correlation  of  CFB  to  OS  in  patients  from  the  TCGA KIRC  Cohort.(HR(log-
rank)=1.684 (1.251-2.266)) d Correlation of CFB to DFS in patients from the TCGA KIRC
Cohort (HR(log-rank)=1.935 (1.238-3.025)). e, f, g, h Correlation of CFB to OS and DFS in
metastatic  and  non-metastatic  patients  patients  from  the  TCGA KIRC  Cohort  (OS:  M0
HR(log-rank)=1.616 (1.105-2.363); M1[NS] HR(log-rank)=0.883 (0.514-1.518) – DFS: M0
HR(log-rank)=2.605  (1.379-4.921);  M1[NS]  HR(log-rank)=0.771  (0.388-1.532)).  i CFB
expression in tumor and healthy tissues from UroCCR cohort. j Correlation of CFB to OS in
patients from the UroCCR cohort (HR(log-rank)=2.556 (1.24-5.267)). k Correlation of CFB
to DFS in patients from the UroCCR cohort.(HR(log-rank)=2.846 (1.323-6.123)).  l,  m.CFB
plasma level in patients from the UroCCR cohort (l) before and after (m) surgery.

Supplementary Fig. 10  PODNL1 and clinical relevance.  a PODNL1 expression in kidney
cell lines with increasing passages compared to parental cells (Series 0). graph shows means
± SEM. b  Overall  Survival  (OS)  of  patients  stratified  according  to  PODNL1 expression
(TCGA KIRC Cohort) (HR(log-rank)=2.566 (1.904-3.458)). c. Disease Free Survival (DFS)
of  patients  stratified  according  to  PODNL1  expression  (TCGA KIRC  Cohort)(HR(log-
rank)=3.731  (2.385-5.838)).  d,  e,  f,  g OS  and  DFS  of  patients  stratified  according  to
PODNL1 expression (TCGA KIRC Cohort)  and their  metastatic status (OS: M0 HR(log-
rank)=2.621 (1.788-3.844); M1[NS] HR(log-rank)=1.633 (0.983-2.711) – DFS: M0 HR(log-
rank)=6.528  (3.445-12.37);  M1[NS]  HR(log-rank)=1.606  (0.844-3.055)). h Expression  of
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PODNL1 in  healthy  and tumor  tissue  in  the  UroCCR cohort  i Overall  survival  (OS)  of
patients  stratified  according  to  PODNL1  expression  in  the  UroCCR  cohort.(HR(log-
rank)=0.764 (0.384-1.516)). j Disease Free Survival (DFS) of patients stratified according to
PODNL1 expression in the UroCCR cohort (HR(log-rank)=1.933 (0.967-3.866)).

Supplementary Fig. 11 GPRC5a and Clinical Correlations. a GPRC5a expression in all cell
lines with increasing passages compared to parental cells (Series 0). graph shows means ±
SEM. b Overall Survival (OS) of patients stratified according to GPRC5a expression (TCGA
KIRC  Cohort)  (HR(log-rank)=2.183  (1.621-2.939)). c Disease  Free  Survival  (DFS)  of
patients  stratified  according  to  GPRC5a  expression  (TCGA  KIRC  Cohort)  (HR(log-
rank)=2.884 (1.845-4.508)). d, e, f, g OS and DFS of patients stratified according to GPRC5a
expression (TCGA KIRC Cohort) and their metastatic status (OS: M0 HR(log-rank)=2.305
(1.577-3.369); M1[NS] HR(log-rank)=1.875 (1.147-3.065) – DFS: M0 HR(log-rank)=5.492
(2.908-10.374);  M1[NS]  HR(log-rank)=1.908  (1.01-3.604)). h Overall  survival  (OS)  of
patients  stratified  according  to  GPRC5a  expression  in  the  UroCCR  cohort  (HR(log-
rank)=0.787 (0.333-1.86)) i Disease Free Survival (DFS) of patients stratified according to
GPRC5a  expression  in  the  UroCCR  cohort  (HR(log-rank)=2.451  (1.062-5.658)).  j
Correlation  of  GPRC5a  expression  in  patient  tumors  and  correlation  to  Fuhrmann  grade
(UroCCR cohort).

Supplementary Fig. 12  IL34 and clinical correlations.  a, b, c, d. OS and DFS of patients
stratified according to IL34 expression (TCGA KIRC Cohort) and their metastatic status (OS:
M0 HR(log-rank)=1.985 (1.359-2.9); M1[NS] HR(log-rank)=1.368 (0.834-2.242) – DFS: M0
HR(log-rank)=3.542  (1.874-6.694);  M1[NS]  HR(log-rank)=1.38  (0.731-2.606)). e IL34
plasmatic  levels  in  patients  before  and  after  sunitinib  treatment  (SUVEGIL-TORAVA
cohorts)  f IL34 mRNA expression  in  mice  implanted  with  786-O cells  and  treated  with
sunitinib. Specific primers were used for human (left panel) and mouse (right panel) IL34.
Results presented as mean± SEM. *p<0.05. ns :Non significant. Unpaired t test.

Supplementary Fig. 13 IL34 overexpression in renal carcinoma cells.  a, b. Validation of
IL34 expression by qPCR (a) and western-blot (b) in RENCA cells transduced with lentiviral
vector (pLenti CMV/TO-mIL34v1-Puro) encoding for mouse IL34. In  c, The IL34 ELISA
assay  from  supernatants  of  transduced  cells  is  shown. d Tumor  weights  of  IL34
overexpressing and control tumors. e, f Validation of IL34 expression in IL34 overexpressing
tumors by qPCR (e) (T-test. ***p<0.001) and Western Blot (f). g. Correlation between IL34
mRNA and CSF1R mRNA (global macrophage marker). And Spearman correlation test.  h
CSF1 mRNA expression in IL34 overexpressing and control tumors.  i Quantification of the
metastasis area in lung sections after tail vein injection of IL34 overexpressing or control
cells. T-test (ns).

Supplementary  Fig.  14  Validation  of  IL34  knock-out  and  mathematical  modeling.  a
validation of IL34 knock-down by ELISA in conditioned media of RENCA cells. b Incucyte
proliferation assay with crispr IL34-ko (IL341a, IL341b) and control cells (LacZ) with no
significant  differences  (Dunnett’s  multiple  comparison  tests  on  all  timepoints). c
mathematical modeling of primary tumor growth kinetics for 7 different animals.

Supplementary  Table  1  Summary  table  of  up  and  downregulated  genes  from the  first
biomarker discovery step.
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Supplementary Table 2 List of genes present for each signature with details of the predictive
value

Supplementary  Table  3 Parameter  values  of  the  mathematical  model  of  primary  tumor
growth  and  metastatic  dissemination.  A mixed-effects  approach  was  used  and associated
likelihood maximization for the pooled data (all animals from all groups). Belonging to the
IL34  KO group was  considered  by  means  of  covariates  on  parameters  α  and  µ.  S.D.  =
standard deviation of the random effects. R.S.E = relative standard error of the estimate. p-
value refers to a Wald test for statistical significance of the covariate.
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Fig. 1 The design and development of the experimental model.
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Fig. 2 Analysis of transcription data sets.
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Fig. 3 Validation of the "Lung" signature.
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Fig. 4 Analysis of methylome data sets.
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Fig. 5 Clinical relevance of SAA2 and CFB after anti-angiogenic treatment (SUVEGIL-TORAVA cohorts).
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Fig. 6 Analysis of IL34 expression and its significance for RCC progression.
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Fig. 7 Analysis of IL34 overexpression on macrophages.
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Fig. 8: Effect of IL34 silencing in vivo.
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Table 1 Summary table of the signatures and their predictive value in the KIRC TCGA cohort.
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