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Abstract

The emergence of antimicrobial resistance (AMR) threatens modern medicine

and necessitates more personalised treatment of bacterial infections. Sequencing

the whole genome of the pathogen(s) in a clinical sample offers one way to im-

prove clinical microbiology diagnostic services, and has already been adopted for

tuberculosis in some countries. A key weakness of a genetics clinical microbi-

ology is it cannot return a result for rare or novel genetic variants and therefore

predictive methods are required. Non-synonymous mutations in the S. aureus dfrB

gene can be successfully classified as either conferring resistance (or not) by cal-

culating their effect on the binding free energy of the antibiotic, trimethoprim. The

underlying approach, alchemical free energy methods, requires large amounts of

molecular dynamics simulations to be run.

We show that a large number (N=15) of binding free energies calculated from

a series of very short (50 ps) molecular dynamics simulations are able to satisfac-

torily classify all seven mutations in our clinically-derived testset. A result for a

single mutation could therefore be returned in less than an hour, thereby demon-

strating that this or similar methods are now sufficiently fast (and reproducible)

for clinical use, which is a necessary pre-condition for starting the certification

process.
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Introduction

Much of modern medicine relies on being able to prevent and treat bacterial infections.

The effectiveness of antibiotics is diminishing since resistance is evolving faster than

the rate at which new antibiotics are being developed and brought to market. This rise

of antibiotic resistance (AMR) is now accepted as posing a threat to modern medicine

requiring urgent and concerted action [1–3]. Clearly activity is required on all fronts,

including improving infection control and encouraging the development of new antibi-

otics. An important part of any solution will be helping clinicians make appropriate

treatment decisions by improving the coverage, portability, speed, accuracy and cost

of species identification and antibiotic susceptibility testing. A particularly promising

approach is to sequence the genome of any infecting pathogen(s) found in a clinical

sample and, by looking up genetic variants found in genes known to confer resistance

to the action of antibiotics, return a prediction of the effectiveness, or otherwise, of a

panel of antibiotics to the clinician [4–8].

Genetic clinical microbiology has been shown to be cheaper, faster and probably

more accurate than traditional culture-based clinical microbiology for the drug suscep-

tibility testing of tuberculosis [9] and, in addition, facilitates the rapid identification of

epidemiological clusters, allowing outbreaks to be rapidly identified. Public Health

England adopted whole-genome sequencing for species identification and antibiotic

susceptibility testing of tuberculosis in 2017 [3, 10] and other pathogens are likely to

follow suit. Although catalogues relating genetic variants to phenotype have been care-

fully and extensively developed, they all share a common weakness: such an approach

is fundamentally inferential and so cannot make a prediction when it encounters a ge-

netic variant not present in the catalogue, such as is the case for rare genetic mutations.

Predictive methods are therefore needed to give the clinician some information about

the likely effectiveness of a drug in treating an infection whilst, at the very least, they

wait for the clinical sample to be cultured and tested [11].

Trimethoprim (TMP) is a competitive inhibitor of S. aureus dihydrofolate reductase

(DHFR, Fig. 1a), an enzyme in the essential folic acid pathway encoded by the chro-

mosomal gene dfrB. It is usually administered in combination with sulfamethoxazole,

which also inhibits the bacterial folic acid pathway, and is used to treat urinary tract

and soft tissue infections. Predicting resistance to trimethoprim is a good test of a novel

method since there exists a large amount of structural, biophysical and clinical data and

the most common mutation that confers resistance to trimethoprim is F99Y (Fig. 1b),
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which is a comparatively small mutation and therefore is a stringent test of any predic-

tive method. Since DHFR is essential, our hypothesis is that non-synonymous protein

mutations can confer resistance by reducing how well the antibiotic, but not the natural

substrate (dihydrofolic acid, DHA), binds. This reduces the problem to calculating how

the binding free energy of the drug (∆∆Gtmp) changes upon introducing the protein mu-

tation. If the mutation reduces the binding free energy below a certain threshold, then

one can predict the mutation confers resistance. It has been shown that alchemical free

energy methods, a simulation method derived from classical statistical mechanics, can

be successfully employed to predict the effect of individual amino acid mutations on the

action of trimethoprim [12]. By applying some simple kinetic theory to clinically ob-

served minimum inhibitory concentrations of trimethoprim for resistant and susceptible

samples that work was also able to establish that for a mutation to confer resistance,

∆∆Gtmp≥ 0.8 kcal/mol.

F99Y

L21V

L41F

F123L A135T

V76AI83V

TMP

NADPH

TMP

NADPH

(a) (b)

Figure 1: The structure of S. aureus DHFR [14] showing (a) the overall topology and

the trimethoprim (TMP) binding site and (b) the location of the seven mutations studied.

The three mutations that confer resistance are coloured in different shades of red, whilst

the four mutations that have no clinical effect on the action of trimethoprim are coloured

in different shades of blue.

For such a method to be deployed clinically it must be both fast and consume as

little computational resource as possible. Whilst broadly successful, the previous study

required 32,344 molecular dynamics simulations to be run, yielding a total of 8.1 µs.

At the time of writing, one can simulate about 10 ns per day of DHFR using 4 computer

cores slaved to a single consumer-grade graphics processing unit (GPU). The calcula-

tions underlying a single prediction therefore would require 9,720 CPU hours and 2,430
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GPU hours which, although feasible, is still too large for routine use.

Any method must also meet the thresholds for accuracy and reproducibility as laid

out by the existing international standards for new drug susceptibility testing methods

[13]. The relevant criteria are the very major discrepancy (VMD) and major discrepancy

(MD) rates. The former is defined as the number of samples that classified as susceptible

by the method under test which the reference method determined as being resistant

as a proportion of the total number of resistant samples and, to pass, VMD ≤ 3%.

The definition of the major discrepancy rate is similar but inverted, i.e. the number of

samples incorrectly interpreted as resistant that are susceptible. Again, to pass, MD ≤
3%.

In this paper we shall examine how varying the computational resource allocated

to the calculations affects the qualitative prediction and its reproducibility and thereby

answer the question:“just how quickly can we reliably predict the effect of a mutation in

dfrB on the action of trimethoprim?”. The answer to this question will guide whether

it is yet feasible to deploy this kind of approach clinically.
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Results

Datasets

A previous study calculated 32 independent values of ∆∆Gtmp and ∆∆G f ol for each of

seven mutations [12]. Three of the mutations (F99Y, F99Y/L21V, L41F) are known

to confer resistance (Fig. 1b) whilst the remaining four (F123L, A135T, V76A, I83V)

have no clinical effect on the action of TMP. Each pair of free energies (∆∆Gtmp &

∆∆G f ol) required 13 separate alchemical free energies to be calculated, each of which

in turn used between 8 and 16 molecular dynamics (MD) simulations at different values

of the progress parameter, λ . By the standards of the field, all of the MD simulations

were short, at just 250 ps in duration. We call this collection of simulations Set2 (Ta-

ble 1). So that we may assess the impact of simulation duration on the accuracy and

precision of the free energy calculations, and thence the sensitivity and specificity of

predicting antimicrobial resistance, we extended the simulations underlying ten of the

32 free energy pairs by an order of magnitude, i.e. to 2.5 ns (Set1, Table 1). We shall

not consider any further the effect of the mutations on the binding free energy of the

natural substrate (DHA).

Name Number of values of ∆∆Gtmp per mutation Simulation duration (ps)

Set1 10 2,500

Set2 32 250

Table 1: We took a published set of thirty two values of ∆∆Gtmp per mutation (Set2)

and extended the simulations underlying ten of these values by an order of magnitude

creating a second set (Set1). Note therefore that there is overlap between the two sets

since the first 250 ps of all the simulations in Set1 appear also in Set2.
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Varying the duration of the simulations affects the estimated precision of ∆∆Gtmp

for F99Y.

First let us consider how extending the duration of all the molecular dynamics simu-

lations necessary for the alchemical free energy calculations affects the accuracy and

precision of how the F99Y mutant affects the binding free energy of trimethoprim. The

mean value of ∆∆Gtmp and its associated error (95% confidence) was calculated as a

function of the simulation duration (t) for the F99Y mutation in both Set1 and Set2 us-

ing bootstrapping (n = 100). Comparing ∆∆Gtmp(t) to published thermodynamic data

for this mutant measured using isothermal titration calorimetry (ITC) [14–18] shows

how although increasing the duration of the simulations beyond 250 ps brings the pre-

dicted value into agreement with the experimental data (Fig. 2a), this is mainly through

a gradual but sustained increase in the estimated uncertainty, which is clearly unsatis-

factory. The lack of precision is such that once more than ∼1 ns of data are included

the qualitative prediction would also not be definitive and on occasion will be incorrect.

In contrast, as the duration of the simulation shrinks (< 50 ps) the magnitude of the

estimated error increases, until, again, the lack of precision is such that the calculated

value agrees with experiment and the method no longer reliably predicts this mutation

to confer resistance.

Increasing the duration of the simulations leads to an apparent decrease in preci-

sion

There is no experimental binding free energy data for the other six mutations, so let

us now investigate how varying the simulation duration affects the estimated error of

∆∆Gtmp along with the sensitivity and specificity of the resistant/susceptible prediction

and the very major discrepancy (VMD) and major discrepancy (MD) rates. Using Set1

we calculated how the free energy of trimethoprim binding (N = 10) is affected by each

of the seven protein mutations (Fig. 3a & b). As the simulation duration is increased,

the estimated errors also increase for all mutations, as was seen for F99Y (Fig. 2a).
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Figure 2: The estimated error for the ∆∆Gtmp for the F99Y mutation initially falls

as the simulation duration increases, but then rises again. (a) The calculated value of

∆∆Gtmp for F99Y for N = 10 using Set1 becomes less precise as the simulations are

extended, resulting in agreement with the published isothermal titration calorimetry

(ITC) data [14–18]. Ultimately the lack of precision leads to the method no longer

reliably predicting this mutation to confer resistance. (b) To examine the behaviour as

the simulation duration is shortened, the same analysis was repeated but this time using

Set2. The precision rapidly increases in the first 50-100 ps, after which the method

reliably and correctly predicts this mutation to confer resistance.
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Figure 3: Keeping the number of calculations constant (N = 10) and increasing the sim-

ulation duration by an order of magnitude leads to an apparent decrease in precision.

(a) How the calculated binding free energy of trimethoprim (∆∆Gtmp) varies by muta-

tion as the simulation duration is increased. At each duration, ten values of ∆∆Gtmp for

the mutation are drawn from the dataset with replacement and their mean and standard

deviation are calculated. This is repeated 100 times to provide an estimate of mean and

standard error. The latter is at 95% confidence and was calculated using the appropriate

t-statistic. The region where ∆∆Gtmp> 0.8 kcal/mol, and therefore resistance can be in-

ferred, is shaded grey. The mutations are coloured using the same scheme as in Fig. 1.

(b) Bar charts for each of the seven mutations at t = 250 ps and t = 2500ps. The former

corresponds to the duration used in a previous study [12]. The longer duration leads

to larger estimated errors. (c) Converting the values of ∆∆Gtmp into a ternary Resis-

tant/Uncertain/Susceptible classification (Fig. S1) allows us to calculate the sensitivity

and specificity of the method. (d) The very major discrepancy (VMD) rate remains

below the required 3% threshold throughout whilst the major discrepancy (MD) rate

reaches a maximum of 24% before falling below the threshold after t = 0.38ns
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Each bootstrapped value of ∆∆Gtmp (n = 100) is then converted into a ternary pre-

diction. If calculated value of ∆∆Gtmp for the mutation in question is indistinguishable

from the threshold of 0.8 kcal/mol [12], then it is classified as Uncertain (U), other-

wise it is classified as Resistant (R) or Susceptible (S) depending whether it lies entirely

above or below the threshold. This is repeated for all mutations as a function of the sim-

ulation duration (Fig. S1). This analysis makes clear what one can observe in Fig. 3:

since the values of ∆∆Gtmp(t) for the three resistant mutations are all ≥ 0.8 kcal/mol, ex-

cept at larger simulation durations, they are uniformly predicted to be Resistant, except

in the case of F99Y which has an increasing probability of being predicted Uncertain

once t > 1.5 ns. Since the values of three of the four susceptible mutations lie close to

the threshold for at least some values of t, the picture here is more complex. V76A is

always predicted to be Susceptible, whilst F123L and A135T are predicted to be Sus-

ceptible or Uncertain with varying proportions. I83V has a high initial probability of

being incorrectly classified as Resistant (Fig. S1) and is then mostly predicted to have

an Uncertain phenotype (with a small chance of being correctly predicted susceptible)

when t > 0.5 ns.

The resulting sensitivity is high as one would expect from the performance of the

three resistant mutations (mean 93.4 %, maximum 100 %, minimum 68.3 %), whilst the

specificity is mostly between 50-60 % (mean 57.6 %, maximum 100 %, minimum 44.0

%). Formally since the definitions of sensitivity and specificity assume a binary not a

ternary phenotype the implication of a low specificity is that the method is incorrectly

classifying Susceptible samples as Resistant, which is not the case since they are, for

the most part, being classified as Uncertain. We are therefore perhaps being unduly

conservative by including the cases where an Uncertain phenotype has been predicted.

What is curious is that whilst the values of ∆∆Gtmp do not yet converged and the

precision is likely underestimated, they appear sufficiently accurate to allow a reason-

able prediction of whether a mutation confers resistance to trimethoprim or not across

a wide range of simulation durations.

Reducing the simulation duration increases error

Let us, therefore, use Set2 to examine how the method performs when very short dura-

tions are used to calculate ∆∆Gtmp. Since Set2 has a larger number of simulations we

shall now calculate the mean and uncertainty in ∆∆Gtmp for each mutation using N = 30,

again with bootstrapping. Now the opposite trend is observed: initially the estimated

errors are large but as the simulation duration is increased, their magnitudes decrease.
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We have therefore recapitulated for all mutations the trends observed for F99Y (Fig. 2).

Bearing in mind that we are now drawing more values of ∆∆Gtmp from a larger

dataset, we observe similar trends: the values of ∆∆Gtmp for all three resistant mu-

tations tend to lie above the resistance threshold, however we are now probing very

short simulation durations and can see (Fig. S2) how there is an appreciable probability

that these mutations are classified as Uncertain, rather than Resistant, when t < 50 ps,

leading to an initial rise in the sensitivity (Fig. 4c, mean 96.3 %, maximum 100 %,

minimum 45 %) whilst the VMD rate remains below 3% throughout (Fig. 4d). This

time, the values of ∆∆Gtmp for A135T and V76A remain firmly below the resistance

threshold, resulting these mutations being consistently classified as Susceptible, with

the exception of t < 20ps for A135T (Fig. S2). The values of ∆∆Gtmp for F123L and

I83V, are consistently predicted to be close to the resistance threshold with the result

that they are predicted to be Uncertain or Susceptible in varying proportions, except at

very short durations (t < 20 ps) for F123L where there is a small probability that it is

predicted Resistant (Fig. S3). The specificity is again lower, as expected (mean 71.8

%, maximum 83.4 %, minimum 39.8 %) and, apart from an initial peak in the major

discrepancy rate at small values of t, the MD rate also remains below the required 3%

threshold.

Using a fixed amount of computational resource

Keeping the number of values of ∆∆Gtmp contributing to the average constant ensures

that the amount of computer resource increases as the length of the simulations in-

crease. Perhaps a more helpful question to answer is, if one has a fixed amount of

computational resource, should one calculate a large number of values of ∆∆Gtmp using

very short simulations, or should instead one calculate relatively few values of ∆∆Gtmp

using longer simulations?

First, let us investigate how one might best use the amount of resource required to

calculate three independent values of ∆∆Gtmp using simulations of duration 2500 ps

(Fig. 5). The estimated errors when the mean is calculated using 3 values of ∆∆Gtmp

derived from simulations 2.5 ns long are much larger than those than when e.g. the mean

is calculated from 30 values of ∆∆Gtmp derived from simulations 0.25 ns long (Fig.

5b). There is therefore a much greater probability that a value of ∆∆Gtmp for any given

mutation is predicted as having an Uncertain phenotype, or even an incorrect phenotype

(Fig. S3). Only V76A is consistently predicted to have the correct phenotype, with the

all other six mutations having an increasing chance of being predicted Uncertain as t is
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Figure 4: Keeping the number of calculations constant (N = 30) and decreasing the

simulation duration by an order of magnitude also leads to an apparent decrease in

precision. (a) How the calculated binding free energy of trimethoprim (∆∆Gtmp) varies

by mutation as the simulation duration is increased. The process followed is the same

as in Fig. 3 except that thirty values of ∆∆Gtmp are drawn from Set2, rather than ten

from Set1. (b) Bar charts for each of the seven mutations at t = 25 ps and t = 250ps.

The latter corresponds to the duration used in a previous study [12]. (c) Converting

the values of ∆∆Gtmp into a ternary Resistant/Uncertain/Susceptible classification (Fig.

S2) allows us to calculate the sensitivity and specificity of the method. (d) For this

set, the very major discrepancy (VMD) rate remains below the required 3% threshold

throughout whilst the major discrepancy (MD) rate reaches a maximum of 20% before

falling below the threshold after t = 0.005ns
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increased (and therefore N decreases) with F123L, A135T and I83V also having a small

probability of being predicted Resistant. As was observed before, I83V also has a high

probability of being predicted Resistant at low values of t, even given the corresponding

high values of N. The values of the sensitivity and specificity are correspondingly more

modest, as one would expect given ≤ 30 % of the computer resource is being used

compared to Fig. 3. The very major discrepancy and major discrepancy rates remain

below and above, respectively, the 3 % threshold throughout.

Since the magnitude of the estimated error increases with simulation duration, lead-

ing to a worse classification performance, we conclude that the additional statistical

power introduced by having more values of ∆∆Gtmp contributing to the mean is dom-

inating the improved exploration of phase space made possible by longer individual

trajectories. We note, however, that since Set1 only contains ten independent values

of ∆∆Gtmp for each mutation, the bootstrapping process will be creating datasets with

large numbers of repeated values as the simulation duration is reduced and the number

of values increases which may be introducing artefacts into our analysis particularly in

the region t < 0.8 ns.

Let us therefore switch to using Set2, since this has 32 independent values of ∆∆Gtmp

for each mutation available so that we may investigate just how short the simulations

can be (Fig. 6). Apart from probably spurious behaviour at very short times, the mag-

nitude of estimated error remains more constant as t increases (and N decreases, Fig.

6a), suggesting that the statistical and phase space effects are more balanced in this

regime. Only one of the three resistant mutations (F99Y/L21V) is classified as Resis-

tant throughout, whilst the other two have a roughly constant probability of being pre-

dicted Uncertain. Two (V76A & A135T) of the susceptible mutations are consistently

classified as Susceptible, with both having a small chance of being classified Uncertain

at large values of t. The other two are most likely to be predicted as having an Uncertain

phenotype, with both having a very small chance of being incorrectly predicted as Re-

sistant and F123L having a high probability of being incorrectly classified as Resistant

if t < 20 ps. Aggregating these effects leads to approximately constant values of the

sensitivity (mean 80.2 %) and specificity (mean 58.8 %), although we emphasise that

by including the cases predicted Uncertain in the denominator of the sensitivity and

specificity calculations, we are probably being over-conservative and excluding these

cases would result in much higher values for the sensitivity and specificity.
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Figure 5: Given a computational resource equivalent to the amount necessary to cal-

culate 3 values of ∆∆Gtmp using simulations 2.5 ns long, then running more, shorter

simulations results in a better classification method. (a) How the calculated bind-

ing free energy of trimethoprim (∆∆Gtmp) varies by mutation as the simulation du-

ration is increased (and the corresponding number of values of ∆∆Gtmp drawn from

Set1 decreases). (b) Bar charts for each of the seven mutations at t = 250 ps (n=30)

and t = 2500ps (n=3). (c) Converting the values of ∆∆Gtmp into a ternary Resis-

tant/Uncertain/Susceptible classification (Fig. S3) allows us to calculate the sensitiv-

ity and specificity of the method. (d) For this set, the very major discrepancy (VMD)

rate remains below the required 3% threshold throughout whilst the major discrepancy

(MD) remains above the 3% threshold throughout, and reaches a maximum of 25%.
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Figure 6: Given a computational resource equivalent to the amount necessary to cal-

culate 3 values of ∆∆Gtmp using simulations 0.25 ns long, then running more, shorter

simulations results in a better classification method. This dataset uses a tenth of the

computational resource applied to Fig. 5. (a) How the calculated binding free energy of

trimethoprim (∆∆Gtmp) varies by mutation as the simulation duration is increased (and

the corresponding number of values of ∆∆Gtmp drawn from Set1 decreases). (b) Bar

charts for each of the seven mutations at t = 250 ps (n=30) and t = 2500ps (n=3). (c)

Converting the values of ∆∆Gtmp into a ternary Resistant/Uncertain/Susceptible classi-

fication (Fig. S3) allows us to calculate the sensitivity and specificity of the method.

(d) For this set, the very major discrepancy (VMD) rate remains below the required 3%

threshold throughout whilst the major discrepancy (MD) remains above the 3% thresh-

old throughout, and reaches a maximum of 25%.
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How fast could we predict whether a mutation confers resistance to trimethoprim?

Given the detailed analysis in Fig. 3-6 we are able to optimise our choice of (N, t),

however one does not a priori usually have this amount of information and, in any case,

it is possible that as yet unseen mutations in dfrB could have effects not congruent with

our test set of seven mutations. For example, our test set does not contain any mutation

that is marginally resistant and hence the magnitude of the sensitivity is always greater

than the specificity, which may be true in general. This analysis therefore should be

taken as indicative. That said, it is clearly interesting to consider just how rapidly one

could predict whether a mutation confers resistance or not.

Let us choose N = 15 and t = 50 ps (Fig. 6) since the trajectories are long enough to

avoid the observed transients in classification behaviour and thence major discrepancy

rate but are still short enough to run quickly using a consumer grade GPU. We estimate

that a single 50 ps trajectory will take ∼ 7.5 minutes to complete, assuming GPU is large

enough (or there is more than one on the motherboard) so that all the replicas can run on

the same node so they can undergo Hamiltonian replica exchange. We have restricted

ourselves in this paper to only calculating ∆∆Gtmp and therefore each value requires 8

alchemical free energies to be calculated, each in turn requiring 8-16 coupled molecular

dynamics simulations, making a total of 960-1,920 simulations, which is still daunting.

If we arbitrarily decide that a prediction must be complete within one hour, then we

would require twenty nodes, each with one or more GPUs and 8-16 CPU cores, which

is moderately large and could easily be provided by a commercial cloud platform. That

would leave 15 minutes for setup and analysis. The paradigm of preparing all simulation

input files on a single machine would not be sufficiently fast, and hence one would have

to distribute all the setup tasks using the same high performance computer that the

simulations would run on. We conclude that, whilst there are obvious challenges, it is

now feasible to predict whether individual mutations confer resistance to an antibiotic

using free energy methods and that this can be done fast enough to be clinically useful.

Prevalence of the studied mutations in the European Nucleotide Archive

The seven different non-synonymous dfrB mutations studied here were selected from

a relatively small dataset of 501 unrelated S. aureus isolates collected from patients in

the UK [12, 19]. Our analyses and conclusion depend on our testset of seven mutations

being representative of the likely mutations one might encounter clinically in dfrB. To

estimate how prevalent these mutations are globally, we searched an index of the Euro-

pean Nucleotide Archive [20]. Due to how the index is created, only results for amino
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acids 11-148 incl. were returned, and samples containing multiple amino acid muta-

tions fewer than ten positions apart are unlikely to have been detected. That said, this

is as comprehensive a scan of all deposited S. aureus genomes as is currently possible

and approximately 19,200 S. aureus genomes were searched (Table S1). The three dfrB

mutations implicated in samples that were resistant to trimethoprim were detected. Al-

though F99Y was found in 13.8 % (69) of the clinical isolates, the prevalence in the

ENA was only 0.7 % (137), suggesting the clinical dataset was substantially enriched

for trimethoprim resistance. Both L41F and L21V F99Y were only detected once in the

original clinical dataset (0.2 %). Whilst the double L21V F99Y was not present in the

much larger ENA dataset, 421 genomes (2.3 %) containing the L21V mutation without

F99Y were detected, however the effect of L21V on its own on the effectiveness of

trimethoprim is unknown. The L41F mutation was found in the ENA, but at a very low

prevalence (0.02 %, n=3). Of the four mutations, A135T (n=162, 32.3 %), V76A (89,

17.8 %), I83V (8, 1.6 %) and F123L (5, 1.0 %), identified as susceptible in the clini-

cal study [19], only two were found in the ENA: A135T (n=6,578, 34.3 %) and V76A

(1,412, 7.4 %). Further examination of the results returned for k-mers used to probe

variation at Val76 and Phe123 showed that comparatively few sets of short-reads in the

ENA were identified around these positions, suggesting that some samples were missed

since they contained multiple amino acid mutations within the width of the k-mer (21

amino acids) or that similar k-mers are found in other species and therefore our ability

to detect variation at these sites using this method is probably limited.
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Discussion

We conclude that it is now possible to rapidly and reproducibly predict whether individ-

ual non-synonymous mutations confer resistance (or not) to trimethoprim, an antibiotic,

and we have shown that, for this system at least, it is theoretically possible to make a

prediction in less than one hour. This relies on our observation that calculating a large

number of values of ∆∆Gtmp using very short alchemical molecular dynamics simu-

lations allows the seven mutations in our test set to be adequately classified with rea-

sonable sensitivities and specificities and low very major and major discrepancy rates,

thereby using an order of magnitude less computational resource than in a previous

study [12].

The pattern we observe of the magnitude of the estimated error reducing as the

simulation duration increases before reaching a minimum and then increasing again

was commented on over fifteen years ago [21]. We infer that the initial high variance

is due to each set of alchemical molecular dynamics simulations are starting from a

different structure seeded from one or more longer equilibrium trajectories and therefore

starting in a different part of phase space. As the simulations progress, and explore

phase space, a process sped up by the use of Hamiltonian replica exchange, they begin

to converge, reducing the observed variation. Then a point is reached where simulations

stochastically start to access new parts of phase space, that were perhaps not explored

by the equilibrium simulation due to an energetic barrier, and the variance starts to

increase again again. It is therefore likely that our simulations, and hence our values

for ∆∆Gtmp, are not converged. Only by running far longer simulations would it be

possible to infer that convergence. Curiously, since our objective is producing a ternary

classification, success is only notably dependent on quantitative accuracy (and hence

presumably convergence) if the mutation under study has a value of ∆∆Gtmp that is

close to the resistance threshold.

Our conclusions are reliant on the seven mutations that form the testset and we

have investigated whether these are representative of the genetic variation one might

expect to observe clinically. Since several of mutations were detected at either very

low prevalences or not at all in the European Nucleotide Archive, we conclude that our

testset is not truly representative and therefore our conclusions may not transfer into

the clinic. Clearly the method needs to be tested on additional dfrB mutations as well

as other antibiotic/protein target combinations in a wide range of pathogenic bacterial

before we can make more definitive statements about its applicability.
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Although we were able to show that calculating 15 values of ∆∆Gtmp from alchemi-

cal simulations only 50 ps long led to acceptable classification behaviour, this is almost

certainly a form of overfitting since we had a free choice of a wide range of combina-

tions and may have simply chosen one that works best for our testset. It will only be

possible to gain confidence through applying such parameter combinations ‘blind’ to

other mutations. We have also restricted ourselves here to only considering the effect of

the mutation on the binding of the antibiotic; previous work has shown that taking the

effect on the natural substrate, DHA, into account changes and may improve the predic-

tion [12]. Also, all of the mutations studied (with the possible exception of the double

mutant, F99Y/L21V) are tractable by alchemical methods: it remains to be seen how

successful this approach will be for mutations involving a change in electrical charge,

that involve a proline, or simply require a large number of atoms to be perturbed. We

have assumed here that all the eight alchemical free energies that are required to cal-

culate a single value of ∆∆Gtmp all converge and behave similarly, which is almost

certainly not true. Further work will be needed to assess if different types of alchemi-

cal transition (e.g. removing the electrical charges from the alchemical atoms) require

more or less simulation time and/or numbers of molecular dynamics simulations. It is

possible up to another order of magnitude saving is available through careful dynamic

control (i.e. ‘steering’ [22]) of the makeup and number of alchemical free energies run.

This will necessarily complicate the calculation of errors which was done here at the

level of ∆∆Gtmp and in future will likely have to be done at the level of each alchemical

free energy with errors then added in quadrature.

The translation of genetics into clinical microbiology shows no sign of abating, with

the most progress being made using whole-genome sequencing for antibiotic suscepti-

bility testing (AST) of tuberculosis where catalogues of observed genetic variants and

their associated effects on different drugs are most advanced [23]. Since this approach

is purely inferential, there remains a need to develop predictive methods [11]. Even a

low-quality prediction for a single antibiotic may prove useful clinically, since it will be

viewed alongside the results for other drugs which often allows nonsensical predictions

to be discounted. Such a Bayesian approach has already been shown to improve AST of

tuberculosis [11]. In any case, if the prediction affects the clinical decision, it is likely

that the sample would still be sent for culturing and testing.

Although we have focussed primarily on calculating the effect of the mutation on

the binding free energy of the antibiotic, there are a range of other methods that could
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be brought to bear. Machine learning methods, using genetic, structural and/or chem-

ical features, are likely to sufficiently accurate and also fast [11, 24, 25]. Such meth-

ods could be used to screen out mutations that have no effect on an antibiotic, leaving

only the marginal cases for computationally more intensive approaches such as we are

proposing. One key advantage of our approach we have not discussed is that it rarely

makes an incorrect classification. This potentially enables a guided process whereby

simulations are run until a definite (R/S) prediction is returned, saving further compu-

tational resource and time. More work needs to be done if this, or other, methods are

to be formally certified for use in AST. For example, to pass the relevant international

standard [13], not only must the very major and major discrepancy rates be ≤ 3 %, but

also there must be a high level of categorial agreement with a reference method. This

will necessitate carefully designed and thorough studies in collaboration with clinical

microbiology laboratories using standard methods.

Clinical microbiology is built upon a binary paradigm of a sample being Resistant or

Susceptible. Converting a quantitative measurement which has a confidence limit into a

binary result necessitates a third Uncertain category for those cases that cannot be defi-

nitely classified as R or S. This is a subtle point (and one can probably trace its origins

back to the Law of the Excluded Middle) but it is nonsensical to deny predictive and

experimental methods the option of returning an Uncertain result. The Clinical Labo-

ratory and Standards Institute, which provides clinical microbiology standards mainly

to the U.S.A, has adopted a ternary system, however, the European Committee on An-

timicrobial Susceptibility Testing have only recently begun to introduce such a category

into some antibiotic/pathogen combinations [26]. Many of the tools rely on the binary

paradigm and new tools and language need developing, as we have seen here when

calculating the sensitivity and specificity of our method.

As computational resource becomes faster and more widespread, the broader field

of molecular simulation is gradually moving away from running single simulations to-

wards running large number of replicas [27, 28]. This potentially exposes underlying

problems with the molecular dynamics codes and how we, as computational scientists,

typically work. For example, when setting up and running thousands of molecular dy-

namics simulations the time taken to setup a simulation becomes appreciable. Likewise,

one must use some kind of object store or file hierarchy to archive all the simulation

files. Without progress in these areas, it is possible that the time taken to setup, copy

files, queue simulations, retrieve and analysis files could become the limiting factor in
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speeding up and therefore applying these methods clinically.

In the field of alchemical free energy calculations much attention has understandably

been focussed on demonstrating that free energies can be calculated that agree with

experimental data to a high degree of precision. A high degree of precision and accuracy

is spurious in this application and one might speculate that applying alchemical methods

in this way is a sign that the field is maturing. Finally, whilst thermodynamic integration

is usually described as an equilibrium method, it is not obvious if this remains true

when the duration of an alchemical simulation is only 50 ps. Despite this, it is both

illuminating and encouraging to look back over the last thirty years on the progress

made by the field of alchemical free energy calculations [29] and infer what might be

possible in just a few more years.
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Methods

The GROMACS molecular dynamics [30] simulations underlying the alchemical free

energy calculations were setup and run as described previously [12] and followed best

practice [31], including using pmx [32] to mutate the wild-type structure of DHFR with

trimethoprim bound [14]. The alchemical simulations underlying ten of the thirty-two

values of ∆∆Gtmp for each of the seven mutations were extended by an order of magni-

tude (from 0.25 ns to 2.5 ns) to enable this study. To cope with the very large numbers

of MD simulations, all data was stored in a file hierarchy and tagged using the datreant

Python module [33]. All simulation data was then parsed and alchemical free energies

were calculated as a function of simulation time t using a purpose-written Python class.

In each case, only the second half of each dataset was used and then a single alchemical

free energy was calculated using thermodynamic integration (via the trapezium rule).

This yielded a large table of alchemical free energies for both Set1 and Set2 that was

stored as a Pandas dataframe [34]. The resulting values of ∆∆Gtmp were then calculated

and stored. These dataframes can be found in the Supplemental Information. Bespoke

Python code then read these tables and applied the bootstrapping process described in

the main body of the paper to produce the Fig. 3-6. Standard errors were calculated

in the usual way and converted to a 95% confidence interval using the appropriate t-

statistic for the number of values. All graphs were plotted using Matplotlib [35] and all

protein images were rendered using VMD [36]. The BIGSI search index for microbial

genomes [20] is interrogated using a k-mer where k ≥ 61 bases. Since searching the

index for amino acid mutations involves permuting the bases in a triplet, leading to 80

different variations, we wrote a Python module, called pygsi, that automatically inter-

rogates the index using a 63-mer constructed with 20 base pairs flanking the codon of

interest [37]. Once all the permutations have been tried, the code moves on to the next

codon.
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Data Accessibility Statement

The two tables containing all the values of ∆∆Gtmp for the different mutations used to

construct the figures in this paper are provided as Supplemental Files in the CSV format

and are described in the Supplemental Information. The results of searching the BIGSI

bacterial genomic index are provided in Table S1.
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