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Abstract 
Mobile health, the collection of data using wearables and sensors, is a rapidly growing field in 
health research with many applications.  Deriving validated measures of disease and severity 
that can be used clinically or as outcome measures in clinical trials, referred to as digital 
biomarkers, has proven difficult.  In part due to the complicated analytical approaches 
necessary to develop these metrics​.​ ​Here we describe the use of crowdsourcing to specifically 
evaluate and benchmark features derived from accelerometer and gyroscope data in two 
different datasets to predict the presence of Parkinson's Disease (PD) and severity of three PD 
symptoms: tremor, dyskinesia and bradykinesia.  40 teams from around the world submitted 
features, and achieved drastically improved predictive performance for PD (best AUROC=0.87), 
as well as severity of tremor (best AUPR=0.75), dyskinesia (best AUPR=0.48) and bradykinesia 
(best AUPR=0.95). 
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Mobile health and digital health, that is, the evaluation of health outside of the clinic using 
wearables and smartphones, and, specifically, the collection of real world evidence using 
sensors​1​ demonstrates great potential in understanding the lived experience of disease.  These 
efforts have been implemented using both research-grade wearable sensors and, increasingly, 
through the use of smartphones, smartwatches, and consumer devices, which are readily 
available to the general public. While most of this work has been in the context of exploratory 
and feasibility studies, we are increasingly seeing evidence of their use as digital endpoints from 
sensors in clinical trials.​2​  Digital measures provide the opportunity to more accurately monitor  
the degree to which disease status and/or treatments affect an individual’s daily life, typically 
through the capture of large amounts of longitudinal real world data.  Development of sensitive 
“digital biomarkers” extracted from these rich data offer the opportunity for better decision 
making in both trials and health care. 
 
One area of emerging digital biomarker development is Parkinson’s disease (PD), a 
neurodegenerative disorder that conspicuously affects the motor coordination, along with other 
domains such as cognitive function, mood, and sleep. Classic motor symptoms of the disease 
include tremor, slowness of movement (bradykinesia), posture and walking perturbations, and 
muscle rigidity. Additionally, motor symptoms can be common side effects of medical treatment, 
chiefly involuntary movement, known as dyskinesia. Given the strong motor component of the 
disease and treatment side-effects, multiple approaches have leveraged accelerometer and 
gyroscope data from wearable devices for the development of digital biomarkers in PD (see for 
example ​3,4​). However, they have yet to be translated into the clinic or as primary biomarkers. 
 
The use of digital biomarkers as endpoints or measures of disease in the clinical or regulatory 
setting requires robust evidence for their validity. Unfortunately, this work is both expensive and 
difficult to perform, leading to often underpowered validation studies evaluated by a single 
research group and, hence, subject to the self assessment trap.​5​ Pre-competitive efforts are 
underway such as Critical Path’s Patient Reported Outcome (PRO) Consortium ​6​ and the Open 
Wearables Initiative (OWI).  Here we describe an open initiative to both competitively and 
collaboratively evaluate analytical approaches for the assessment of disease severity in an 
unbiased manner. The Parkinson’s Disease Digital Biomarker (PDDB) DREAM Challenge 
(https://www.synapse.org/DigitalBiomarkerChallenge) benchmarked crowd-sourced methods of 
processing sensor data (i.e. feature extraction), which can be used in the development of digital 
biomarkers that are diagnostic of disease or can be used to assess symptom severity. In short, 
the PDDB Challenge participants were provided with training data, which included sensor data 
and disease status or symptom severity labels, as well as a test set, which contained sensor 
data only. Given raw sensor data from two studies, participating teams engineered data features 
that were evaluated on their ability to predict disease labels in models built using an 
ensemble-based predictive modeling pipeline. 
 
The challenge leveraged two different datasets--mPower​7​, a remote smartphone based study, 
and the Levodopa (L-dopa) Response Study​8,9​, a multi-wearable clinical study --which were not 
previously publicly available, so that evaluation could be performed in a blinded, unbiased 
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manner. For both studies, time-series data were recorded from sensors while participants 
performed pre-specified motor tasks. In the mPower Study, accelerometer and gyroscope data 
from a gait and balance test in 4,799 individuals were used to discriminate Parkinson’s patients 
from controls using 76,039 total measures. In the L-dopa Response Study, accelerometer 
recordings from GENEActiv and Pebble watches were captured on two separate days from 25 
patients exhibiting motor-fluctuations​10​ (i.e. the side effects and return of symptoms after 
administration of levodopa),  as they were evaluated for symptom severity during the execution 
of short (30 second) motor tasks designed to evaluate tremor, bradykinesia, and dyskinesia. 
Data collection during the battery of tasks was repeated six to eight times over the course of 
each day in 30 minutes blocks, resulting in 3-4 h-motor activity profiles reflecting changes in 
symptom severity. In total 8,239 evaluations were collected across 3 different PD symptoms.  

  
  

Results 
We developed 4 sub-challenges using the two datasets; one using data from the mPower Study 
and 3 using data from the L-dopa Response Study. Using the mPower data, we sought to 
determine whether mobile sensor data from a walking/standing test could be used to predict PD 
status (based on a professional diagnosis as self-reported by the study subjects) relative to age 
matched controls from the mPower cohort (sub-challenge 1 (SC1)). The three remaining 
sub-challenges used the L-dopa data to predict symptom severity as measured by: active limb 
tremor severity (0-4 range) using mobile sensor data from 6 bilateral upper-limb activities 
(sub-challenge 2.1 (SC2.1));  resting upper-limb dyskinesia (presence/absence) using bilateral 
measurements of the resting limb while patients were performing tasks with the alternate arm 
(sub-challenge 2.2 (SC2.2)); and presence/absence of active limb bradykinesia using data from 
5 bilateral upper-limb activities (sub-challenge 2.3 (SC2.3)). Participants were asked to extract 
features from the mobile sensor data, which were scored using a standard set of algorithms for 
their ability to predict the disease or symptom severity outcome (Figure 1). 

For SC1, we received 36 submissions from 20 unique teams, which were scored using 
area under ROC curve (AUC) (see methods). For comparison, we also fit a ‘demographic’ 
model which included only age and gender. Of the 36 submissions, 2 scored significantly better 
(unadjusted p-value ≤ 0.05) than the demographic and meta-data model (AUROC 0.627), 
though this is likely due to the relatively small size of the test set used to evaluate the models. 
The best model achieved an AUROC score of 0.868 (Figure 2A). 

For SC2.1-SC2.3, we received 35 submissions from 21 unique teams, 37 submissions 
from 22 unique teams, and 39 submissions from 23 unique teams, respectively (Figure 2B-D). 
Due to the imbalance in severity classes, these sub-challenges were scored using the area 
under precision-recall curve (AUPR). For prediction of tremor severity (SC2.1), 16 submissions 
significantly outperformed baseline model developed using only meta-data at an unadjusted 
p-value ≤ 0.05. The top performing submission achieved an AUPR of 0.750 (null expectation 
0.432). For prediction of dyskinesia (SC2.2), ​8 submissions significantly outperformed the 
meta-data based baseline model. The top performing submission achieved an AUPR of 0.477 
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(null expectation ​0.195). For prediction of bradykinesia (SC2.3), ​22 submissions significantly 
outperformed the baseline  model. The top performing submission achieved an AUPR of 0.950 
(null expectation ​0.266). While this score is impressive, it is important to note that in this case 
the meta-data based baseline model was also highly predictive (AUPR = 0.813). 

The top performing team in SC1 used a deep learning model with data augmentation to 
avoid overfitting (see Methods for details), and 4 of the top 5 models submitted to this 
sub-challenge employed deep learning models. In contrast, each of the winning methods for 
SC2.1-SC2.3 used signal processing approaches (see Methods). While there are differences in 
the data sets used for the sub-challenges (e.g. size), which could contribute to differences in 
which type of approach is ultimately most successful, we surveyed the landscape of approaches 
taken to see if there was an overall trend relating approaches and better performance. Our 
assessment, which included aspects of data used (e.g. outbound walk, inbound walk, and rest 
for the mPower data), sensor data used (e.g. accelerometer, pedometer, or gyroscope), use of 
pre- and post- data processing, as well as type of method used to generate features (e.g. neural 
networks, statistical-, spectral-or energy- methods), found no methods or approaches which 
were significantly associated with performance in any subchallenge. ​This lack of statistical 
significance could be attributed to the large overlap in features, activities and sensors for 
individual submissions in that, most teams used a combination of the different methods. ​We 
also clustered submissions by similarity of their overall approaches based on the aspects 
surveyed. While we found ​four distinct clusters for each sub-challenge ​ no clusters associated 
with better performance in either sub-challenge (​Supplementary Figure 1 ​). 

We then turned our focus to the collection of features submitted by participants to 
determine which individual features were best associated with disease status (SC1) or symptom 
severity (SC2.1-2.3). ​For SC1, the 21 most associated individual features were from the two 
submissions of the top performing team (which were ranked 1-2 among all submissions). These 
21 features were also individually more informative (higher AUC) than any of the other teams 
entire submission (Supplementary Figure 2B).  Among the runner-up submissions, 
approximately half of the top-performing features were derived using signal processing 
techniques (36 out of 78 top features, see Supplementary Figure 2A) with a substantial 
proportion specifically derived from the return phase of the walk. Interestingly, the performance 
of individual features in the runner-up submissions did not always correspond to the final rank of 
the team. For example the best individual feature of the second best performing team ranked 
352 (out of 4546). Additionally, a well-performing individual feature did not guarantee good 
performance of the submission (the best feature from runner-up submissions belongs to a team 
with ranking 22 out of 36).  

We then performed two-dimensional manifold projection and then clustered the 
individual features to better understand the similarity of feature spaces across teams 
(Supplementary Figure 3). One of the expected observations is that the relation between 
features associated with the same team and the cluster membership is strongly significant 
(p-value~0, mean Chi-Square=8461 for t-SNE and 5402 for MDS with k-means k > 2). This 
suggests most of the teams had a tendency to design similar features such that within team 
distances were smaller than across-team distances (on average 26% smaller for t-SNE and 
16% smaller for MDS projections). We also found that cluster membership was significantly 
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associated with submission performance (mean p-value = 1.55E-11 for t-SNE and 1.11E-26 for 
MDS with k-means k > 2). In other words, features from highly performing submissions tended 
to cluster together. This enabled us to identify several high-performance hot-spots. For 
example, in Supplementary Figure 3C a performance hot-spot is clearly identifiable and 
contains 51% (respectively 39%) of the features from the two best teams in SC1: Yuanfang 
Guan and Marlena Duda, and ethz-dreamers, which were the top performing teams, both of 
which employed Convolutional Neural Net (CNN) modeling. Interactive visualizations of the 
clusters are available online at ​https://ada.parkinson.lu/pdChallenge/clusters​ and 
https://ada.parkinson.lu/pdChallenge/correlations​. 

For SC2.1-2.3, we found that the best performing individual feature was part of the 
respective sub-challenge winning teams’ submission, and that these best performing individual 
features were from submissions that have fewer features (Supplementary Figure 4B, 4D, 4F). 
Similar to the observations in the SC1, the individual feature performance was typically not 
correlated with overall performance (Pearson correlation = -0.05, 0.10 and 0.04 for SC2.1, 
SC2.2 and SC2.3, respectively, ​p​-values = 0.17, 0.0003, 0.44). Instead, individual features with 
modest performance, when combined, achieved better performance than feature sets with 
strong individual features. For SC2.1 and SC2.3 (tremor and bradykinesia), machine learning 
approaches showed higher performing individual features than other methods, however, signal 
processing based methods showed better performing individual features in SC2.2 
(Supplementary Figure 4A, 4C, 4E). We also attempted to improve upon the best submissions 
by searching among the space of submitted features for an optimal set. Attempts to optimally 
select features using Random Forests or recursive feature elimination resulted in an AUPR of 
0.38 and 0.35, respectively, in SC2.2, placing behind the top eight and twelve individual 
submissions. An approach using the top principal components (PCs) of the feature space, fared 
slightly better, outperforming the best model in SC2.2 (AUPR = 0.504 AUPR, above the top 5 
feature submissions of 0.402-0.477), but failing to outperform the top models in SC2.1 and 
SC2.3 (AUPR =  0.674, below the top five submission scores for SC2.1; and 0.907 AUPR, 
within the range of the top 5 feature submissions of 0.903-0.950 for SC2.3).  
 
Age, gender and medication effects in mPower 

Because rich covariates were available in the mPower data set, we sought to explore the 
prediction space created by the top submissions, in order to identify whether we could discern 
any patterns with respect to available covariates or identify any indication that these models 
could discern disease severity or medication effects (Supplementary Figure 5). To visualize this 
complex space we employed topological data analysis (TDA)​11​ of the top SC1 submissions, to 
explore grouping of subjects, firstly based on the fraction of cases with presence or absence of 
PD. The algorithm outputs a topological representation of the data in network form (see 
Methods) that maintains the local relationship represented within the data. Each node in the 
network represents a closely related group of samples (individuals) where edges connect nodes 
that share at least one sample. Next we used TDA clustering to explore whether the top models 
showed any ability to discern symptom severity, as possibly captured by medication status 
(Supplementary Figure 6). Specifically, we sought to identify whether PD patients "on-meds" 
(right after taking medication) cases are more similar to controls as compared to patients who 
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were "off-meds" (right before taking medication or not taking at all). To this end, we created a 
topological representation for both cases, treating on-med and off-med states separately for 
each individual and comparing each case with the controls. Here we considered only subjects 
with both on-med and off-med sessions, to ensure the comparison was between the same 
population of subjects and using only 3 of the top six submissions (ethz-dreamers 1, 
ethz-dreamers 2 and vmoroz), whose features values varied within individual. We observed no 
separation between patients who were on-meds versus off-meds. This was consistent with the 
statistical analysis which showed no significant difference in the predicted PD status for patients 
who were “on-meds” versus “off-meds” at the time they performed their walking/balance test for 
any of the top models, even among patients who have previously been shown to have motor 
fluctuations ​12,13​.  

We then explored whether the ability of the predictive models to correctly assess PD is 
influenced by factors associated with the study participants’ demographics, such as their sex, 
age, or the total number of walking activities they performed. We evaluated the relative 
performance of the top features sets when applied to specific subsets of the test data. When 
comparing the predictive models' performances in female subjects and male subjects aged 57 
or older, we found that the predictive models' were on average more accurate in classifying 
female subjects than male subjects with an average increase AUROC of 0.17 (paired ​t​-test 
p​-value = 1.4e-4) across the top 14 models (i.e. those scoring better than the model using only 
demographic data). We note that the magnitude of the relative change is likely driven by the 
class balance differences between male and female subjects in the test set. In particular, a 
larger fraction of the female subjects aged 57 or older had a prior professional PD diagnosis 
than the male subjects. 80% of female subjects aged 57 or older (n=23) had PD, and 64% of 
male subjects aged 57 or older (n=66). And indeed, when compared to the Demographic model, 
several of the top submissions are actually performing worse than the Demographic model in 
the female subjects, while almost all are outperforming the Demographic model in the male 
subjects (Supplementary Figure 7). Generally, it appears that mobile sensor features are 
contributing more to prediction accuracy in the male subjects than the female subjects.  

We also compared the performance of the top 14 feature sets when applied to subjects 
in various age groups, and found that the models performed similarly across age groups 
(Supplementary Figure 7). However, in comparison to the Demographic model, the top 
submissions perform relatively better in younger age groups (57 to 65) than in older age groups 
(65 and up), and in particular, the Demographic model outperforms all of the top submissions in 
the highest age bracket (75 and up). This implies that the mobile features do not contribute and 
actually add noise in the older age brackets. Of note, the winning model by Yuanfang Guan and 
Marlena Duda performs well in across most age and gender subgroups, but performs especially 
poorly in oldest subgroup, which have the fewest samples. 

To assess whether the total number of tasks performed by a subject had an impact on 
predictive performance, we attempted to compare subjects that had performed more tasks with 
those that had performed fewer. However, we found that in the mPower dataset the number of 
walking activities performed was predictive in itself, i.e. PD cases on average performed more 
tasks than the corresponding controls. We could therefore not conclusively determine whether 
having more data from walking activities on a subject increased the performance of the 
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predictive models. Though, related work has shown that repeatedly performed smartphone 
activities can capture symptom fluctuations in patients​3​.  

 
Task performance across  L-dopa sub-challenges 

While the L-dopa data set had fewer patients, and thus was not powered to answer 
questions about the models’ accuracy across demographic classes, the designed experiment 
allowed us to examine the predictive accuracy of the different tasks performed in the L-dopa 
data to understand which tasks showed the best accuracy with respect to predicting clinical 
severity. We scored each submission separately by task applying the same model fitting and 
scoring strategies used on the complete data set. For the prediction of tremor (SC2.1) and 
bradykinesia (SC2.3), the different tasks showed markedly different accuracy as measured by 
improvement in AUPR over null expectation (Supplementary Figure 8). We observe statistically 
significant differences in improvement over expected value for tremor and bradykinesia 
(Supplementary Table 1-2). For tremor, activities of everyday living such as folding laundry and 
organizing paper perform better than UPDRS-based tasks such as finger-to-nose and 
alternating hand movements (Supplementary Figure 8, Supplementary Table 1), and the 
demographic model outperformed participant submissions in almost all cases. While the 
assembling nuts and bolts task showed the highest improvement over the null expectation, the 
demographic model also performed well, outperforming a substantial proportion of the 
submissions. For bradykinesia, the expected AUPR varied widely (from 0.038 for pouring water 
to 0.726 for alternating hand movements). For most tasks, the participant submissions 
outperformed the demographic model, except in the case of the alternating hand movements 
task. For dyskinesia, there was no statistical difference between finger-to-nose or alternating 
hand movements, but since these were assessed on the resting limb, it is to be expected that 
this is not affected by the task being performed on the active limb. 
 

Discussion 
Given the widespread availability of wearable sensors, there is significant interest in the 

development of digital biomarkers and measures derived from these data with applications 
ranging from their use as alternative outcomes of interest in clinical trials to basic disease 
research ​1​. Even given the interest and efforts toward this end, to-date, there are very few 
examples where they have been deployed in practice beyond the exploratory endpoint or 
feasibility study setting.  This is partially due to a lack of proper validation and standard 
benchmarks.  Through a combination of competitive and collaborative effort we engaged 
computational scientists around the globe to benchmark methods for extracting digital 
biomarkers for the diagnostics and severity of PD. With this challenge we aimed to separate the 
evaluation of methods from the data generation by creating two sets of challenges looking at 
diagnostic and measures of severity in two separate datasets.  

Participants in this challenge used an array of methods for feature extraction spanning 
unsupervised machine learning to hand tuned signal processing.  We did not, however, observe 
associations between types of methods employed and performance with the notable exception 
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that the top two teams in the diagnostic biomarker challenge based on mPower data (SC1) 
generated features using CNNs while top performing teams in SC2.1-2.3 that used the smaller 
L-Dopa dataset derived features using signal processing (though a CNN-based feature set did 
rank 2nd in SC2.3). The top performing team in SC1 significantly outperformed the submissions 
of all remaining teams in the sub-challenge. This top performing team was unique in its use of 
data augmentation, but otherwise used similar methods to the runner up team. And indeed deep 
learning has previously been successfully applied in the context of detecting Parkinsonian gait​14​. 
However, given it’s relatively poorer performance in SC2, which utilized a substantially smaller 
dataset, we speculate that CNNs may be most effective in very large datasets.  This was further 
supported by the observation that the top SC1 model did ​not perform well in the oldest study 
subjects which corresponds to the smallest age group.​ If sample size is indeed a driver of 
success of CNNs, this suggests that applying these methods to most digital validation datasets 
will not be possible as they currently tend to include dozens to hundreds of individuals in 
contrast to the thousands available in the SC1 data and the typical deep learning dataset​15​.  

Traditionally, biomarkers used clinically have a well-established biological or 
physiological interpretation (e.g. temperature, blood pressure, serum LDL) allowing a clinician to 
comprehend the relationship between the value of the marker and changes in phenotype or 
disease state.  Ideally, this would be the case for digital biomarkers as well, however, machine 
learning models vary in their interpretability.  In order to try to understand the features derived 
from machine learning models, we computed correlations between the CNN derived features 
submitted by teams with signal processing based features, which are often more physiologically 
interpretable. We were unable to find any strong linearly related signal processing analogs. 
Further work is necessary to try to interpret the effects being captured, though previous work 
has identified several interpretable features includin ​g step length, walking speed, knee angle, 
and vertical parameter of ground reaction force ​16​, most of which are not directly measurable 
given the available data available in mPower. Other work has suggested that Parkinsonian 
freezing of gait is most pronounced at the start and during turns​17–19​. 

Understanding the specific tasks and aspects of those activities which are most 
informative helps researchers to optimize symptom assessments while reducing the burden on 
study subjects and patients by focusing on shorter, more targeted tasks, ultimately aspiring to 
models for tasks of daily living instead of prescribed tasks​20​. To this end, given the availability of 
multiple tasks in SC2, we analyzed which tasks showed the best accuracy. For the tremor 
severity for example, the most informative tasks were not designed to distinguish PD symptoms 
specifically (pouring water, folding laundry and organizing sheets of paper) but mimic daily 
activities. Whereas finger-to-nose and alternating hand movements, which are frequently used 
in clinical assessments, showed the lowest predictive performance, and top models did not 
outperform the demographic model for these tasks. For the assessment of bradykinesia, the 
finger-to-nose, organizing paper and alternating hand movements tasks showed the best model 
performance. However, in the case of alternating-hand-movements, the improved performance 
could be fully explained by the demographic model. 

We believe that there are opportunities to improve the submitted models further 
specifically in the sub-populations where they performed worse.  For example, given the 
difference in performance between male and female in top submissions, as well the relatively 
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better performance in younger patients (57-65) it might be possible that different models and 
features might be necessary to capture different aspects of the disease by age and gender. For 
example, it stands to reason that the standard for normal gait differs in older people relative to 
younger people. Given the heterogeneity of symptom manifestation in PD, there might be very 
many sub-populations or even personalized differences in severity​12​.  That is, the changes in 
disease burden as explored in SC2 might best be learned by personalized models.  To help 
answer this question and to explore further the use of data collected in free living conditions, we 
have recently launched a follow-up challenge looking at predicting personalized differences in 
symptom burden from data collected passively during free living conditions. 

 
 

Online Methods 
 
 
The mPower Study 

mPower​7​ is a longitudinal, observational iPhone-based study developed using Apple’s 
ResearchKit library (​http://researchkit.org/​) and launched in March 2015 to evaluate the 
feasibility of using mobile sensor-based phenotyping to track daily fluctuations in symptom 
severity and response to medication in PD. The study was open to all US residents, above the 
age of 18 who were able to download and access the study app from the Apple App Store, and 
who demonstrated sufficient understanding of the study aims, participant rights, and data 
sharing options to pass a 5-question quiz following the consent process. Study participants 
participated from home, and completed study activities through their mobile device.  

Once enrolled participants were posed with a one-time survey in which they were asked 
to self report whether or not they had a professional diagnosis of PD, as well as demographic 
(Table 1) and prior treatment information. On a monthly basis, they were asked to complete 
standard PD surveys (Parkinson Disease Questionnaire 8 ​21​ and a subset of questions from the 
Movement Disorder Society Universal Parkinson Disease Rating Scale instrument​22​). They were 
also presented daily with four separate activities: ‘memory’ (a memory-based matching game), 
‘tapping’ (measuring the dexterity and speed of 2-finger tapping), ‘voice’ (measuring sustained 
phonation by recording a 10-second sustained “Aaaahhh”), and ‘walking’ (measuring 
participants’ gait and balance via the phone’s accelerometer and gyroscope). For the purposes 
of this treatment, we focus on the ‘walking’ test, along with the initial demographic survey data. 

The walking test instructed participants to walk 20 steps in a straight line, turn around, 
and stand still for 30 seconds. In the first release of the app (version 1.0, build 7), they were 
also instructed to walk 20 steps back, following the 30 second standing test, however 
subsequent releases omitted this return walk. Participants could complete the four tasks, 
including the walking test, up to three times a day. Participants who self-identified as having a 
professional diagnosis of PD were asked to do the tasks (1) immediately before taking their 
medication, (2) after taking their medication (when they are feeling at their best), and (3) at 
some other time. Participants who self-identified as not having a professional diagnosis of PD 
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(the controls) could complete these tasks at any time during the day, with the app suggesting 
that participants complete each activity three times per day. 
 
The Levodopa Response Study 

The L-dopa Response Study​8,9​ was an experiment with in-clinic and at-home 
components, designed to assess whether mobile sensors could be used to track the unwanted 
side-effects of prolonged treatment with L-dopa. Specifically, these side-effects, termed motor 
fluctuations, include dyskinesia and waning effectiveness at controlling symptoms throughout 
the day. In short, a total of 31 PD patients were recruited from 2 sites, Spaulding Rehabilitation 
Hospital (Boston, MA) (n=19) and Mount Sinai Hospital (New York, NY) (n=12).  Patients 
recruited for the study came to the laboratory on Day 1 while on their usual medication schedule 
where they donned multiple sensors: a GENEActiv sensor on the wrist of the most affected arm, 
a Pebble smartwatch on the wrist of the least affected arm, and a Samsung Galaxy Mini 
smartphone in a fanny pack worn in front at the waist. They then performed section III of the 
MDS-UPDRS​22​. Thereafter, they performed a battery of motor tasks that included activities of 
daily living and items of section III of the MDS-UPDRS. This battery of tasks lasted 
approximately 20 minutes and was repeated 6-8 times at 30-minute intervals throughout the 
duration of the first day. Study subjects returned 3 days later in a practically defined 
off-medication state (medication withheld overnight for a minimum of 12 hours) and repeated 
the same battery of tasks, taking their medication following the 1st round of activities. This study 
also included data collection at home, between the two study visits, but these data were not 
used for the purposes of this challenge. 

During the completion of each motor task, clinical labels of symptom severity or 
presence were assessed by a clinician with expertise in PD for each repetition. Limb-specific 
(i.e. left arm, left leg, right arm, and right leg) tremor severity score (0-4), as well as upper-limb 
and lower-limb presence of dyskinesia (yes or no) and bradykinesia (yes or no) were assessed. 
For the purposes of this challenge, we used only the GENEActiv and Pebble sensor information 
and upper limb clinical labels for a subset of the tasks: finger-to-nose for 15s (repeated twice 
with each arm) (ftn), alternating hand movements for 15s (repeated twice with each arm) (ram), 
opening a bottle and pouring water three times (drnkg), arranging sheets of paper in a folder 
twice (orgpa), assembling nuts and bolts for 30s (ntblt), and folding a towel three times (fldng). 
Accelerometer data for both devices were segmented by task repetition prior to use in this 
challenge.  

 
 

The Parkinson’s Disease Digital Biomarker Challenge 
Using a collaborative modeling approach we ran a challenge to develop features that 

can be used to predict PD status and disease severity using data from mPower and the L-dopa 
Response Trial. The Challenge was divided up into 4 sub-challenges, based on different 
phenotypes in the 2 different data sets. Sub-challenge 1 (SC1) focused on extraction of mobile 
sensor features which distinguish between PD cases and controls using the mPower data. 
Sub-challenges 2.1, 2.2, and 2.3 (SC2.1-SC2.3) focused on extraction of features which reflect 
symptom severity for tremor, dyskinesia, and bradykinesia, respectively, using the L-dopa data. 
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In each case, participants were provided with a training set, containing mobile sensor data, 
phenotypes for the individuals represented and all available demographics and metadata for the 
data set in question. Using these data they were tasked with optimizing a set of features 
extracted from the mobile sensor data, which best predicted the phenotype in question. They 
were also provided a test set, containing only mobile sensor data, and upon challenge deadline 
were required to return a feature matrix for both the training and test sets. Participants were 
allowed a maximum of 2 submissions per sub-challenge, and could participate in any or all of 
posed sub-challenges. 

For extracting features which predict of PD status using the mPower data, participants 
were provided with up to 30 seconds long recordings of approximately 100 Hz from an 
accelerometer and gyroscope from 39,376 walking tasks as well as the associated 30 second 
recordings of standing in place, representing 660 individuals with self-reported PD and 2,155 
control subjects, as a training set. They were also provided with self reported covariates, 
including PD diagnosis, year of diagnosis, smoking, surgical intervention, deep brain 
stimulation, and medication usage, as well as demographic data, including age, gender, race, 
education and marital status (Table 1)​7​. As a test data set, they were provided the same mobile 
sensor data from 36,664 walking/standing tasks for 614 PD patients and 1,370 controls which 
had not been publicly available previously, but were not provided any clinical or demographic 
data for these individuals. Participants were asked to develop feature extraction algorithms for 
the mobile sensor data which could be used to successfully distinguish PD patients from 
controls, and were asked to submit features for all walking/standing activities in the training and 
test sets. 

For the prediction of symptom presence or severity (sub-challenges 2.1-2.3), participants 
were provided with bilateral mobile sensor data for up to 14 repetitions of 12 separate tasks 
(drining (drnkg), organizing papers(orgpa), nut ands bolts(ntblts), foolding laundry (fldng), and 2 
bilateral repetitions of finger to nose(ftn) and rapid  hand movements(ram)) from 27 subjects 
from the L-dopa data. For 19 subjects, symptom severity (tremor) or presence (dyskinesia and 
bradykinesia) were provided to participants as a training data set for a total of 3667 
observations for tremor severity (2332, 878, 407, 38, and 12 for severity 0, 1, 2, 3, and 4, 
respectively), 1556 observations for dyskinesia presence (1236  present), and 3016 
observations for bradykinesia presence (2234 present). Participants were asked to provide 
extracted features which are predictive of each symptom for these as well as the 1500, 660, and 
1409 observations, for tremor, dyskinesia and bradykinesia, respectively, from the 8 test 
individuals for which scores were not released.  

It is important to note that for each data set, the training and test sets were split by 
individual, that is that all tasks for a given individual fell exclusively into either the training or test 
set to avoid inflation of prediction accuracy from the non-independence of repeated measures 
on the same individual ​23​. 

The challenge website (​https://www.synapse.org/DigitalBiomarkerChallenge ​) documents 
the challenge results, including links to teams’ submission write-ups and code, and links to the 
the public repositories for the mPower and L-dopa data. 
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Submission Scoring 
For SC1, feature set submissions were evaluated by fitting an ensemble machine 

learning algorithm to the training observations, and predicting on the test observations. To 
minimize undue influence from subjects who completed large numbers of walking/standing 
tests, features were first summarized using the median of each feature across all observations, 
so that each subject occured once in the training or test set. Aggregation via maximum showed 
similar results as median. For each submission, elastic net (glmnet), random forests, support 
vector machines (SVM) with linear kernel, k-nearest neighbors, and neural nets models were 
optimized using 50 bootstrap with AUROC as the optimization metric, and combined using a 
greedy ensemble in caretEnsemble in R. Age and sex were added as potential predictors in 
every submission. A subset of the provided data was used to minimize age differences between 
cases and controls as well as to minimize biases in study enrollment date, resulting in a training 
set of 48 cases and 64 controls and a testing set of 21 cases and 68 controls. Feature sets were 
ranked by the area under the receiver operator characteristic curve (AUROC) of the test 
predictions. Each team was allowed two submissions. 

For SC2.1-2.3, the feature sets were evaluated using a soft-voting ensemble — which 
averages the predicted class probabilities across models — of predictive models consisting of a 
random forest, logistic regression with L2 regularization, and support vector machine (RBF 
kernel) as implemented in the scikit-learn Python package (0.20.0) ​24​. The random forest 
consisted of 500 trees each trained on a bootstrapped sample equal in size to the training set, 
the logistic regression model used 3-fold cross-validation, and the support vector machine 
trained directly on the training set with no cross-validation and outputted probability estimates, 
rather than the default behavior of class scores. Other parameters were set to the default value 
as specified in the scikit-learn v0.20 documentation. Due to imbalance of the class labels, we 
adopted the area under the precision-recall curve (AUPR) as the performance metric for the 
L-dopa sub-challenges.  Non-linear interpolation was used to compute AUPR​25​. SC2.1 (active 
limb tremor) represents a multiclass classification problem. In order to calculate a multiclass 
AUPR we transformed the multiclass problem into multiple binary classification problems using 
the “one-vs-rest” approach (where we trained a single classifier per class, with the samples of 
that class as positive cases and remaining samples as negative cases). For each of these 
binary classification problems, we computed AUPR values and combined them into a single 
metric by taking their weighted mean, weighted by the class distribution of the test set. SC2.2 
and SC2.3 are binary classification problems, and we employed the AUPR metric directly. 

For all 4 subchallenges, 1000 bootstraps of the predicted labels were used to assess the 
confidence of the score, and to compute the p-value relative to the demographic only model.  
 
Description of winning methods 

Along with their feature submissions, challenge participants provided methods 
description and computational code to reproduce their features. Below we provide brief 
descriptions of the winning models. 
 
Subchallenge 1: Team Yuanfang Guan and Marlena Duda 

The winning method by Team ‘Yuanfang Guan and Marlena Duda’ used an end-to-end 
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deep learning architecture to directly predict PD diagnosis utilizing the rotation rate records. 
Separate models were nested-trained for balance and gait data, and the predictions were 
pooled by average when both are available. RotationRate x, y and z were used as three 
channels in the network. Each record was centered and scaled by standard deviation, then 
standardized to contain 4000 time points by 0-padding. Data augmentation was key to prevent 
overfitting to training data, and was the primary difference in performance to the next deep 
learning model by ‘ethz-dreamers’. The following data augmentation techniques were included 
to address the overfitting problem: a) simulating people holding phones at different directions by 
3D random rotation of the signal in space based on the Euler rotation formula for standard rigid 
body, vertex normalized to unit=1, b) time-wise noise-injection ​(0.8-1.2) ​to simulate a person 
walks faster or slower and c) magnitude augmentation to account for tremors at higher 
frequency and the sensor discrepancies when phones were outsourced to different 
manufacturers. 

The network architecture was structured as 8 successive pairs of convolution and max 
pool layers. The last layer of prediction was provided as features for the Challenge. Parameters 
were batch size = 4, learning rate = 5x10-4, epoch = 50*(~half of sample size). This CNN was 
applied to OUTBOUND walk and REST. The networks were reseeded 10 times each. In each 
reseeding, half of the examples were used as training, the other half were used as validation set 
to call back the best mode by performance on the validation set. This resulted in multiple, highly 
correlated features for each task. 
 
Subchallenge 2.1 (Tremor): Balint Armin Pataki 

The creation of the winning features by team ‘Balint Armin Pataki’ was based on signal 
processing techniques. As the tremor of PD is a repetitive action added to the normal hand 
movements of a person, it can be described well in the frequency space via Fourier 
transformation. The main created features were the intensities of the Fourier spectrum at 
frequencies between 4 and 20 Hz. Observing high intensities at a given frequency suggests that 
there is a strong hand movement which repeats at that given frequency. Additionally, hundreds 
of features were extracted from the accelerometer tracks via the tsfresh package ​26​. Finally, 
clinical feature descriptors were created by mean-encoding and feature-binarizing the 
categorical clinical data provided via the scikit-learn package ​24​. This resulted in 20 
clinical-derived features, 99 Fourier spectrum-based features, and 2896 features derived from 
tsfresh. In order to eliminate those which were irrelevant, a Random Forest classifier was 
applied, which selected 81 features (3 clinical-derived, 6 Fourier-derived and 72 tsfresh-derived) 
from the ~3000 generated.  
 
Subchallenge 2.2 (Dyskinesia): Jennifer Schaff  

Data was captured using GeneActive and Pebble watch devices along several axes of 
motion, including the movement to the right (Y-axis). Because either of these devices could be 
worn on the right or left wrist, an additional ‘axis’ of data was created to capture motion relative 
to movement towards or away the center of the body. This Y-axis-alt data was calculated by 
multiplying the Y-axis by -1 in patients that wore the device on the wrist for which the particular 
device (GeneActive or Pebble) occurred less frequently. In other words, if the GeneActive was 
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most frequently worn on the right wrist, Y-axis measurements for left-worn measurements were 
multiplied by -1. 

To distinguish between choreic and purpose driven movements, summary statistics of 
movement along each axis per approximate second were generated, and a selection process to 
identify features that had predictive potential for dyskinesia was applied. For each separately 
recorded task (set of patient, visit, session, and task), the absolute value of the lagged data 
point for each axis was calculated, and the standard deviation, variance, minimum value, 
maximum value, median, and sum were recorded for all variables over each approximate rolling 
second (51 data points). Additional features were derived by log transformation of the previously 
generated individual-second features. To summarize across the 51 individual-second values for 
a given task, the individual-second features were aggregated using the mean, median, sum, 
standard deviation, the median absolute deviation, the max, as well as each statistic taken over 
the absolute value of each observation for each variable (both original and calculated), resulting 
in approximately 1966 variables as potential features. 

Random Forest model selection, as implemented Boruta package ​27​ in R, was used to 
reduce the number of features while still retaining any variable the algorithm found to have 
predictive value. Any feature that was chosen by Boruta in more than 10 of 25 Boruta iterations 
was selected for submission, resulting in 389 variables. ‘Site’, ‘visit’, ‘session’, ‘device’, and 
‘deviceSide’ as well as an indicator of medication usage were including bringing the number of 
variables to 395. Features were calculated and selected for each device separately (to reduce 
dependency on computational resources). 

 
Subchallenge 2.3 (Bradykinesia): Team Vision 

The method by team ‘Vision’  ​derived features using spectral decomposition for time series 
and applied a hybrid logistic regression model to adjust for the imbalance in number of repetitions across 
different tasks. Spectral analysis was chosen for its ability to decompose each time series into periodic 
components  and generate the spectral density of each frequency band, and determine those frequencies 
that appear particularly strong or important. Intuitively, the composition of frequencies of periodic 
components should shed light on the existence of Bradykinesia, if certain range of frequencies stand out 
from the frequency of noise. Spectral decomposition was applied to the acceleration data on three axes X 
(forward/backward), Y (side-to-side), Z (up/down). Each time series was first detrended using smoothing 
spline with a fixed tuning parameter. The tuning parameter was set to be relatively large to ensure a 
smooth fitted trend, so that the detrended data keep only important fluctuations. Specifically, the ‘spar’ 
parameter was set to 0.5 in smooth.spline function. It was selected by cross validation, and the error was 
not sensitive with spar bigger than 0.5.  The tuning parameter was set the same across the tasks and 
selected by cross-validation. The detrended time series were verified to be consistent with an 
autoregressive-moving-average (ARMA) model to ensure process stationarity. Following spectral 
decomposition, the generated features were summarized as the maximum, mean and area of estimated 
spectral density within five intervals of frequency bands [0, 0.05), [0.05, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), 
[0.4, 0.5]. These intervals cover the full range of the spectral density. Because the importance of each 
feature is different for each task, features were normalized by  the estimated coefficient derived by fitting 
separate multivariate logistic regression models for each task. Class prediction was then made based on 
the normalized features using logistic regression.  
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Analysis of methods used by participants 
We surveyed participants regarding approaches used. Questions in the survey pertained 

to the activities used (e.g. walking outbound, inbound or rest for the mPower data), the sensor 
data used (e.g. device motion, user acceleration, gyroscope, pedometer, etc), and the methods 
for extracting features from the selected data types, including pre-processing, feature 
generation and post-processing steps. A one-way ANOVA was conducted to determine if any 
the use of a particular sensor, activity or approach was associated with better performance in 
the challenge. Significance thresholds were adjusted for multiple test correction using a 
Bonferroni correction factor of 4, and no significant associations were found in any subchallenge 
(​p​-value > 0.05 for all comparisons). We further clustered teams based on overall approach 
incorporating all of the dimensions surveyed. Hierarchical clustering was performed in R using 
the ward.d2 method and Manhattan distance. Four and three clusters were identified in SC1 
and SC2, respectively. One-way ANOVA was then used to determine whether any cluster 
groups showed significantly different performance. No significant difference in mean scores 
across clusters was identified (​p​-value > 0.05 for all tests).  
 
 
Saliency mapping of ‘Yuanfang Guan and Marlena Duda’ model 
We applied saliency mapping ​28​, a simple approach for characterization of patterns learned by 
convolutional neural network (CNN) models which provides interpretability to these otherwise 
“black box” models, to the winning CNN model for SC1 for all data samples in both the training 
and testing sets of both the outbound and rest tasks in order to understand which aspects of the 
walking and rest data were most informative in the prediction of PD status. The salience values 
were computed as the gradient of the model output with respect to the model input, and “high 
saliency” regions were identified by applying windowed maximum thresholding using a window 
size of 30, a step size of 30 and a threshold of 0.1 to define highly salient regions. These 
represent the time windows for each task for which a small change in the input value results in a 
large change in the model output.  

 
 

Univariate analysis of submitted features 
A univariate analysis of all submitted features was performed by, on a feature-by-feature 

basis, fitting a generalized linear model (GLM), either logistic for SC1, SC2.2 and SC2.3 or 
multi-class logistic model for SC2.1, using the training samples, and predicting in the test 
samples. AUROC was used to measure accuracy in SC1 whereas AUPR was used in 
SC2.1-2.3. For SC2.1-2.3 only features from the top 10 teams were assessed. Features 
occurring in multiple submissions (e.g. present in both submissions from the same team) were 
evaluated only once to avoid double counting. 

 
 

Identification of optimal feature sets 
In total, thousands of features were submitted for each challenge. To determine if an 

optimal subset of features (as defined by having a better AUPR than that achieved by individual 
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teams) could be derived from the set of all submitted features, two different feature selection 
approaches were taken to identify whether choosing from all the submitted features could result 
in better predictive performance. These feature selection approaches were applied using only 
the training data to optimize the selection, and were evaluated in the test set according to the 
Challenge methods. 

First, the Boruta random forest algorithm ​27​ was tested on the entire set of submitted 
features for SC2.2 (2,865), and 334 all-relevant features were selected in at least ten of 25 
iterations. Recursive Feature Elimination (RFE) (i.e. simple backward selection) using accuracy 
as the selection criteria as implemented in the caret package ​29​ of R was then applied to the 
downsized feature set and selected four of the 334 features as a minimal set of features. The 
feature sets were then scored in the testing set per the Challenge scoring algorithms, achieving 
AUPR of 0.38 and 0.35 for the larger and smaller sets, respectively, placing behind the top eight 
and twelve individual submissions for SC2.2. 

A second approach applied PCA (Principal Component Analysis) to the entire sets of 
features submitted for sub-challenges 2.1, 2.2, and 2.3 separately. Non-varying features were 
removed prior to application of PCA. Each PC imparted only an incremental value towards the 
cumulative proportion of variance (CPV) explained ([maximum, 2nd, 3rd,..., median] value [14%, 
7%, 4%,..., 0.0027%], [15%, 13%, 5%,..., 0.0014%] and [15%, 7%, 6%,..., 0.00039%] for SC2.1, 
SC2.2 and SC2.3, respectively), suggesting wide variability in the feature space, and the top 20 
PCs from each sub-challenge explained 49%, 66% and 61% of the cumulative variance for 
SC2.1, SC2.2 and SC2.3, respectively. Then used the top number of PCs explaining 
approximately ⅔ of the variation PCs as meta-features in each subchallenge (50, 20 and 30 for 
SC2.1, SC2.2 and SC2.3, respectively), scoring against the Challenge test set. These achieved 
an AUPR of 0.674 for SC2.1 (below the top five submission scores of 0.730-0.750), an AUPR of 
0.504 AUPR for SC2.2 (above the top 5 feature submissions of 0.402-0.477) and an AUPR of 
0.907 for SC2.3 (within the range of the top 5 feature submissions of 0.903-0.950). 

 
 
Clustering of features 

We performed a clustering analysis of all the features from SC1 using k-means and 
bisecting k-means with random initialization to understand the landscape of features. To map 
the input feature space to two dimensions for visualization while preserving the local distances, 
we employed two manifold projection techniques: metric Multi-Dimensional Scaling (MDS) ​30 
and t-Distributed Stochastic Neighbor Embedding (t-SNE) ​31​ with various settings for perplexity, 
PCA dimensions, and feature standardization. The outcomes of these projections were then 
clustered with k-means and bisecting k-means with k = 2, 5, 10, and 20, using silhouette width ​32 
as a cluster validity index to select the optimal number of clusters. A Kruskal-Wallis rank sum 
test was used to associate cluster membership with a feature’s submission score taken as the 
performance of it’s associated feature set, however individual feature scores were also 
examined. Hot-spots were identified by binning the projected plane and smoothing the 
performance by a simple mean. The significance of association between the team associated 
with a feature (as well as the predictive performance) with the cluster membership tends to 
generally increases with the number of clusters used. Clustering without PCA gives more 
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compact and well separated clusters and the optimal k tested by the silhouette validity index is 
estimated to be around 10. The clusters visualized as interactive charts are available online at 
https://ada.parkinson.lu/pdChallenge/clusters​ and the correlation networks at 
https://ada.parkinson.lu/pdChallenge/correlations​. 

Visualizations of feature clusters and aggregated correlations were carried out by Ada 
Discovery Analytics (​https://ada-discovery.github.io ​), a performant and highly customizable data 
integration and analysis platform.  

 
 

Topological Data Analysis of mPower features  
To construct the topological representation, we leveraged the open source R 

implementation of the mapper algorithm​11​ (https:// github.com/paultpearson/TDAmapper). As a 
preprocessing step, we considered only the features (median value per subject) from the six top 
performing submissions in SC1, and centered and scaled each feature to obtain a z-score.  We 
then reduced the space to two dimensions using multi-dimensional scaling (MDS) and binned 
the space into 100 (10x10) equally sized two-dimensional regions. The size of the bins was 
selected so that they have 15% overlap in each axis. A pairwise dissimilarity matrix based on 
Pearson correlation was calculated as 1-​r​ from the original multi-dimensional space, and used 
to cluster the samples in each bin individually (using hierarchical single-linkage clustering). A 
network was generated considering each cluster as a node while forming edges between nodes 
that share at least one sample. Finally, we pruned the network by removing duplicate nodes and 
terminal nodes which only contain samples that are already accounted for (not more than once) 
in a paired node.  We used the igraph R package (​http://igraph.org/r/​) to store the network data 
structure and Plotly's R graphing library (​https://plot.ly/r/​) to render the network visualization. 
 

 
Medication effects in mPower 

For each submitted model to SC1, PD status was predicted for all individual walking 
tests in the mPower Study, regardless of reported medication status. We tested whether 
predicted PD status differed between Parkinson’s patients on medication (self reported status: 
“Just after Parkinson medication (at your best)") or off medication (self reported status: 
"Immediately before Parkinson medication" or "I don't take Parkinson medications") using a 
linear mixed model with healthCode (individual) as a random effect to account for repeated 
measures. We also obtained a list of individuals for whom medication status could reliably be 
predicted (at 5% and 10% FDR)​13​, and repeated the analysis in this subset of individuals. 
Results were not significant using the full set, as well as the two subsets, for any of the top 10 
models, which implies that the models optimized to predict PD status could not be immediately 
extrapolated to predict medication status. 
 
Demographic subgroup analysis in mPower 

For each feature set, the predicted class probabilities generated by the scoring algorithm 
(see ‘Submission Scoring’) were used to compute AUROC within demographic subgroups by 
subject age group (57-60, 60-65, 65-70, and 75+) and gender (Female and Male). The same 
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approach was used to assess the Demographic model against which the feature sets were 
compared. For the purposes of this analysis, we only considered submissions which 
outperformed the Demographic model.  
 
 
Medication effects in L-dopa  

Medication effect on prediction accuracy in L-dopa data (Supplementary Figure 8) was 
evaluated by investigating how prediction accuracy changed as medication took effect or wore 
off over sessions during the two visits. For each task repetition, average prediction accuracy 
was defined as the average of absolute differences between known and predicted scores over 
submissions that outperformed demographic baseline model. In SC2.2-2.3, the symptom 
probabilities generated by the challenge scoring model (see ‘Scoring’ on the Online Methods) 
were used as predicted scores, whereas in SC2.1, the predicted score was calculated as the 
expectation. 
 
Analysis of study tasks in L-dopa 

For SC2.1-SC2.3, each feature set was re-fit and rescored within task. 1000 bootstrap 
iterations were performed to assess the variability of each task score for each submission. On 
each iteration, expected AUPR was computed based on the class distributions of the bootstrap 
sample. For comparison of 2 tasks for a given submission, a bootstrap p-value was computed 
as the proportion of bootstrap iterations in which AUPR(task1)-E[AUPR(task1)] > 
AUPR(task2)-E[AUPR(task2)], and the overall significance of the comparison between task1 
and task2 was assessed via one-sided Kolmogorov-Smirnov test of the distribution, across 
submissions, of the p-values vs a U[0,1] distribution.   
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(6 display items) 
Figure Legends 
  
Tables 
  
Table 1: mPower data demographics 

   Training Test 

PD Control PD Control 

Age 60.6 +/- 10.7 34.7 +/- 14.2 60.4 +/- 11.9 34.9 +/- 14.4 

Sex Male 439 (66.5%) 1755 (81.4%) 377 (61.4%) 1071 (78.2%) 

Female 219 (33.2%) 397 (18.4%) 226 (36.8%) 285 (20.8%) 

Unspecified 2 (0.3%) 3 (0.1%) 11 (1.8%) 14 (1.0%) 

Race Caucasian 586 (88.8%) 1521 (70.6%) 533 (86.8%) 870 (63.5%) 

Other or Mixed 74 (11.2%) 634 (29.4%) 81 (13.2%) 500 (36.5%) 

Marital Status Single 30 (4.5%) 993 (46.1%) 17 (2.8%) 628 (45.8%) 

Married/Domestic Partnership 534 (80.9%) 1022 (47.4%) 271 (44.1%) 571 (41.7%) 

Divorced/Separated/Widowed 87 (13.2%) 112 (5.2%) 41 (6.7%) 68 (5.0%) 

Other/Unreported 9 (1.4%) 28 (1.3%) 285 (46.4%) 103 (7.5%) 

Education High School or less 45 (6.8%) 278 (12.9%) 44 (7.1%) 224 (16.4%) 

College or college degree 281 (42.6%) 1227 (56.9%) 270 (44.0%) 727 (53.1%) 

Graduate school or degree 334 (50.6%) 650 (30.1%) 300 (48.9%) 419 (30.6%) 
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Figures 
 

 
Figure 1: For each subchallenge, data were split into training and test portions. Participants 
were provided with the mobile sensor data for both the training and test portions, along with the 
demographic and meta-data, and diagnosis or severity labels for the training portion of the data 
only. Participants were asked to derive features from the mobile sensor data for both the 
training and test portions of the data. These features were then used to train a classifier, using a 
standard suite of algorithms, to predict disease status or symptom severity, and predict labels in 
the testing portion of the data. Submissions were scored based on the accuracy of the resulting 
predictions. 
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Figure 2: Bootstraps of the submissions for (A) SC1, (B) SC2.1, (C) SC2.2, and (D) SC2.3 
ordered by submission rank. For each subchallenge, a model using only demographic and 
meta-data is displayed in red as a benchmark. 
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Supplementary Material 
 
Supplementary Table 1: Tremor subtask p-values (bonferroni corrected) 

 fldng drnkg ntblt ram ftn 

orgpa 1.90E-09 1.30E-17 8.46E-26 9.17E-28 8.01E-28 

fldng  5.34E-3 7.10E-12 2.39E-20 8.08E-24 

drnkg   1.39E-09 7.38E-19 2.87E-21 

ntblt    4.00E-3 5.30E-06 

ram     1 

 
 
 
Supplementary Table 2: Bradykinesia subtask p-values (bonferroni corrected) 

Task1 ftn ram fldng drnkg 

orgpa 1.34E-3 8.69E-10 3.67E-10 1.07E-11 

ftn  1.40E-10 1.89E-09 7.50E-11 

ram   0.605 1.16E-4 

fldng    0.152 
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Supplementary Figure 1: Clustering of methodological approach for (A) SC1 and (B) SC2.1-2.3 
shows no association with submission performance. 
 
 
 

 
Supplementary Figure 2: AUROC score of the top 100 single features in SC1 sorted by rank. 
Dots are colored by method (A) and by team (B). 
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Supplementary Figure 3: Two-dimensional t-SNE projections of mPower features grouped to (A) 
10 clusters produced by k-means clustering algorithm for the 35 top submissions. In (B) the 
same projection is displayed with points colored by associated team, and in (C) a 20-by-20 
mean-aggregated performance (AUROC) heatmap shows a visible hot-spot in the top-right 
corner. 
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Supplementary Figure 4: AUPR score of the top 100 single features in SC2.1 (A-B), SC2.2 
(C-D) and SC2.3 (E-F) sorted by rank. Dots are colored by method (A,C,E) and by team (B,D,F). 
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Supplementary Figure 5:  Topological representation of the features space from the top six SC1 
submissions labeled by professional diagnosis. Each node corresponds to a group of subjects 
with similar feature space and edges connect nodes that share at least one subject. Nodes are 
colored by the professional diagnosis ratio in each node, where blue represents controls and 
red are PD subjects. Node size represents the number of samples within each node.  
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Supplementary Figure 6: Topological representation of the features space from the top six SC1 
submissions labeled by professional diagnosis split into two sets: (a) the on-meds set which 
includes sessions in which the subjects have just taken their medicine and (b) off-meds set as 
defined by sessions in which the subjects were tested right before taking medication or not 
taking medication at all. Given that three of the top six submissions (Yuanfang Guan and 
Marlena Duda 1, Yuanfang Guan and Marlena Duda 2 and wangsijia1990) have the same 
values for the features on both sets, and therefore are a confounding factor when looking for 
differences between the two sets, we only considered the remaining 3 (ethz-dreamers 1, 
ethz-dreamers 2 and vmorozov). Both sets included the same control population. Nodes are 
colored by the professional diagnosis ratio in each node, where blue represents controls and 
red are PD subjects. Node size represents the number of samples within each node. There are 
no apparent medication effects.  
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.13.904722doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.904722
http://creativecommons.org/licenses/by-nd/4.0/


 

 
Supplementary Figure 7: Performance of top models (those outperforming the 
demographics-only model) in demographic subgroups by age and gender. The red circle 
indicates the performance of the top-performing model by team Yuanfang Guan and Marlenda 
Duda, and the red star indicates the score in the Demographic-only model. These top models 
perform best, relative to the Demographic model, in younger age groups and in Male subjects. 
The winning model performs well in well-represented subgroups, but performs especially poorly 
in oldest subgroups, which have the fewest samples. 
 
 
 
 

 
Supplementary Figure 8: Improvement over null expectation as a fraction of maximum possible 
increase (i.e. (AUPR-E[AUPR])/(1-E[AUPR])) by subtask for all submissions for (A) SC2.1, (B) 
SC2.2 and (C) SC2.3 for tasks: pouring water and drinking (drnkg), folding laundry (fldng), 
finger-to-nose (ftn), assembling nuts and bolts (ntblt), organizing papers (orgpa), and alternating 
hand movements (ram). The red star indicates the model containing only demographic and 
meta-data. For prediction of tremor severity, practical tasks like assembling folding laundry and 
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pouring water were more predictive than contrived tasks like finger-to-nose and alternating hand 
movements. For Bradykinesia, finger-to-nose and organizing paper showed the best 
improvement over expectation as well as over the demographic model. For dyskinesia, in which 
the resting hand was used to classify symptom presence, both tasks performed equally well. 
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