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Abstract

The benefit of integrating batches of genomic data to increase statistical power in differential ex-

pression is often hindered by batch effects, or unwanted variation in data caused by differences

in technical factors across batches. It is therefore critical to effectively address batch effects

in genomic data. Many existing methods for batch effect adjustment assume continuous, bell-

shaped Gaussian distributions for data. However in RNA-Seq studies where data are skewed,

over-dispersed counts, this assumption is not appropriate and may lead to erroneous results. Neg-

ative binomial regression models have been used to better capture the properties of counts. We

developed a batch correction method, ComBat-Seq, using negative binomial regression. ComBat-

Seq retains the integer nature of count data in RNA-Seq studies, making the batch adjusted data
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compatible with common differential expression software packages that require integer counts. We

show in realistic simulations that the ComBat-Seq adjusted data result in better statistical power

and control of false positives in differential expression, compared to data adjusted by the other

available methods. We further demonstrated in a real data example where ComBat-Seq success-

fully removes batch effects and recovers the biological signal in the data.

Key words: Batch effect adjustment, RNA-Seq, Differential expression, Negative binomial

regression, Data integration

Introduction

Genomic data are often produced in batches due to logistical or practical restrictions, but technical

variation and differences across batches, often called batch effects, can cause significant hetero-

geneity across batches of data (Leek et al., 2010). Batch effects often result in discrepancies in the

statistical distributions across data from different technical processing batches, and can have unfa-

vorable impact on downstream biological analysis. The presence of batch effects often reduces the

benefits of integrating batches of data to increase the inferential power to discover relevant biology

from the combined data.

Batch effects often cannot be fully addressed by normalization methods and procedures. The

differences in the overall expression distribution of each sample across batch may be corrected

by normalization methods, such as transforming the raw counts to (logarithms of) CPM, TPM, or

RPKM/FPKM, the trimmed mean of M values (TMM, Robinson and Oshlack, 2010), or relative

log expression (RLE, Risso et al., 2014a). However, batch effects in composition, i.e. the level

of expression of genes scaled by the total expression (coverage) in each sample, cannot be fully

corrected with normalization. Leek et al. (2010) provided an example of composition batch effects

in microarray data, showing that while the overall distribution of samples may be normalized to

the same level across batches, individual genes may still be affected by batch-level bias.

Many methods have been proposed to address batch effects in RNA-Seq studies. For example,
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ComBat (Johnson et al., 2007) remains one of the most popular batch effect adjustment methods

when the effects come from known sources. For heterogeneity from unknown sources, SVASeq

(Leek, 2014) and RUVSeq (Risso et al., 2014b) are commonly used. Methods designed for spe-

cific downstream tasks have also been proposed, including our own work using reference batches

for biomarker development and training (Zhang et al., 2018). For differential expression, many

common methods or procedures (e.g. edgeR (Robinson et al., 2010) and DESeq2 (Love et al.,

2014)) suggest to include batch variables as covariates in the linear models behind these methods

to account for the impact of batch.

Despite the established progress, there are still gaps in batch adjustment methodology for RNA-

Seq data which need to be bridged. Often times, batch effect adjustment methods either do not

directly provide adjusted data with batch effects removed, or do not preserve the integer nature of

counts in the adjusted data, despite the requirement of software such as edgeR and DESeq2 that

specifically require untransformed count matrices as inputs. This results in an inconsistency in the

analysis pipeline of RNA-Seq studies, as batch corrected data cannot be used as inputs for these

differential expression software. For this practical issue, it is favorable to develop a method which

generates adjusted data and is able to preserve the count nature of data.

More importantly, many popular adjustment methods, including ComBat, assume Gaussian

distributions for the underlying distribution of the data, which is not an appropriate distributional

assumption for counts. These methods typically estimate parameters representing differences in

the statistical moments across batches (usually the mean and the variance). Then they adjust all

batches to the same overall level in these moments. Such adjustment does not preserve integers, and

may results in negative values in adjusted count matrix, which is difficult to interpret biologically.

In addition, it has been well-established that there exists a mean-variance dependence in RNA-

Seq count data (Law et al., 2014). Distributions of counts are skewed and over-dispersed, i.e.

the variance is often larger than the mean of gene expression and genes with smaller counts tend

to have larger variances. These properties cannot be reflected with Gaussian distribution, which

assumes independent mean and variance parameters. Negative binomial regression models have
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been widely used to model count data in RNA-Seq studies. The Negative binomial distribution has

the potential to describe the skewness and mean-variance relationship observed in count matrices.

We propose to extend the original ComBat framework to RNA-Seq studies using negative binomial

regression.

Finally, existing methods may not be flexible enough to address all types of batch effects. In

particular, including batch variables in software for differential expression may be sufficient to ac-

count for batch effects in the mean expression. However, since both software assume a single dis-

persion parameter for all samples, variance batch effects is restricted, and completely determined

by mean batch effects, due to the properties of negative binomial modeling. Such assumption is

strong and may not always hold for real data. Therefore, we propose a more flexible approach to

address batch effects in the variance.

In this paper, we present a batch effect adjustment method, ComBat-Seq, that extends the

original ComBat adjustment framework to address the challenges in batch correction in RNA-Seq

count data. It generates adjusted data in the form of counts, thus preserving the integer nature of

data. We demonstrate that ComBat-Seq adjustment has potential benefits in differential expression

compared to the other adjustment methods, especially when there is a large variance batch effect

in the data.

Materials and methods

We propose a negative binomial regression model to estimate batch effects based on the count

matrix in RNA-Seq studies. With the estimated batch effect parameters, we calculate "batch-free"

distributions, i.e. the expected distributions if there were no batch effects in the data. We then

adjust the data by mapping the quantiles of the empirical distributions of data to the batch-free

distributions. We further describe the methods in the sections below.
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ComBat-Seq model

We define a regression model for each gene. Let the expression count value for gene g of sample

j from batch i be denoted by ygij . We assume that ygij follows a negative binomial distribution

NB(µgij, φgi), where µgij and φgi are the mean and the dispersion parameters. We propose the

gene-wise model:

log µgij = αg +Xjβg + γgi + logNj (1)

var(ygij) = µgij + φgiµ
2
gij (2)

where αg denotes the logarithm of expected counts for "negative" samples. Xjβg reflects

changes to the log of expected counts due to biological conditions, which is preserved in the data

after adjustment. In this term, Xj may be an indicator of the biological condition for sample j,

or a continuous value for a clinical covariate. βg denotes the corresponding regression coefficient.

Nj represents the library size, i.e. total counts across all genes in sample j. The mean and disper-

sion batch effect parameters are denoted by γgi and φgi, respectively, modeling the effect of batch

i on gene g. We estimate the model parameters, especially batch effect parameters γgi and φgi,

following the established methods in edgeR (Robinson et al., 2010; McCarthy et al., 2012; Chen

et al., 2014). Specifically, the mean batch effect parameters γgis are estimated with Fisher scor-

ing iteration, implemented in an optimized way to reduce the computational time. The dispersion

parameters φgi are estimated gene-wise by maximizing the Cox–Reid adjusted profile likelihood

(APL), as defined in Chen et al. (2014), and results in non-negative dispersion estimates. Note that

the estimates for mean of expression are not required to be non-negative, since they are on the log

scale. We estimated the gene-wise dispersion within each batch in ComBat-Seq.

ComBat-Seq adjustment

After the modeling, we obtain estimated batch effect parameters γ̂gi and φ̂gi, as well as the fit-

ted expectation of count µ̂gij . We then calculate parameters for "batch-free" distributions as fol-
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lows: we assume that the adjusted data y∗gj follows a "batch-free" negative binomial distribution

NB(µ∗
gj, φ

∗
g), where parameters are calculated as

log µ∗
gj = log µ̂gij − γ̂gi (3)

φ∗
g =

1

Nbatch

∑
i

φ̂gi (4)

Then, the adjusted data y∗gj is calculated by finding the closest quantile on the batch-free

distribution to the quantile of the original data ygij on the empirical distribution, estimated as

NB(µ̂gij, φ̂gi). Specifically, we find the adjusted value y∗gj such that F ∗(y∗gj) = P (y∗ ≤ y∗gj) is

closest in absolute value to F (ygij) = P (y ≤ ygij). Zero counts are mapped to zeros. We per-

form this mapping for every value in the count matrix, which completes the adjustment. Figure 1

summarizes the whole workflow of ComBat-Seq.

Simulations

We evaluated the performance of ComBat-Seq with simulation experiments consisting of three

steps: 1) we simulated RNA-Seq studies with biological conditions and batch effects, 2) adjusted

the batch differences with ComBat-Seq as well as other available methods, and 3) evaluated the

performance of batch effect adjustment by the impact on differential expression using the adjusted

data.

We used the polyester R package (Frazee et al., 2015) to simulate realistic RNA-Seq studies,

which are in the form of gene-by-sample count matrices. We designed two biological conditions

and two batches of samples. The polyester package human genome reference example provides

information for 918 genes which we divided them into two groups: group 1 has higher expression

in batch 2 and lower in batch 1, while group 2 has the reversed pattern, higher in batch 1 and

lower in batch 2. This forms a batch effect in the "composition" of expression as described in the

Introduction section, which cannot be fully addressed by normalization. We assume a biological

variable with two levels, "negative (0)" and "positive (1)", which can represent "control" and "tu-
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mor" samples in a real dataset, for example. We simulated both up-regulated and down-regulated

true differentially expressed genes in both gene groups with increased expression in the positive

(up-regulated) or the negative (down-regulated) biological condition. The remaining genes are only

affected by batch, not by the condition. Differences in the average count of genes are simulated by

specifying fold changes across biological and batch sample groups using polyester. We also made

the dispersion of batch 2 a number of times larger than that of batch 1, allowing for different true

dispersion parameters across batches. Figure 2 shows the design we used for simulated data.

We repeated the simulation while varying the level of mean and dispersion batch differences.

Specifically, we changed the parameters for simulation such that mean of batch 2 is 1.5, 2, or 3

times that of batch 1. The dispersion of batch 2 was set to be 2, 3 or 4 fold of that of batch 1.

Experiments with no mean batch effect or no dispersion differences were also included. Results

were averaged over 100 repeated simulations under each parameter setting.

Our selected parameters in simulations are consistent with the degree of batch effect in real

data, as summarized in Table 1. Our observed condition signal (fold change in expression) from

real studies range from 1.65 to 3.98, and we specified a biological signal of 2 fold in simulations.

With regard to batch differences in the moments, we observed mean batch effect to be in the range

of 1.62 and 1.88 fold, and variance difference to be in 1.26 to 7.09 fold. Our selected parameters

in the simulations align with the realistic range, suggesting that the results are likely representative

for the expected effect on real data batch adjustment.

The batch effects in mean and dispersion (variance) were adjusted with ComBat-Seq, the "one-

step" approach, i.e. to include the batch variable in differential expression linear models, as well

as with SVA-Seq and RUV-Seq. We also included another commonly used method in practice,

which is to transform the count matrix to logCPM, then use the batch correction methods designed

for Gaussian distributed data, such as the original ComBat method. Aside from batch adjusted

data, we included two additional experiments for comparison: differential expression performed

on 1) data without simulated batch effects, and 2) data with simulated batch differences, but no

adjustment. We compared both the statistical power (true positive rate, TPR) and control of type-
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I errors (false positive rate, FPR) in detection using data without batch effects, data with batch

effects before and after different adjustments.

Real data application

We applied the proposed ComBat-Seq approach on an RNA-Seq data from a perturbation experi-

ment using primary breast tissue attempting to profile the activity levels of growth factor receptor

network (GFRN) pathways in relation to breast cancer progression (Rahman et al. (2017); Mc-

Querry et al. (2019)). We took a subset of experiments, which consists of 3 batches. In each batch,

the expression of a specific GFRN oncogene was induced by transfection to activate the down-

stream pathway signals (different oncogene/pathway in each batch). Controls were transfected

with a vector that expresses a green fluorescent protein (GFP), and GFP controls were present in

all batches. More specifically, batch 1 contains 5 replicates of cells overexpressing HER2, and 12

replicates for GFP controls (GEO accession GSE83083); batch 2 contains 6 replicates of each for

EGFR and its corresponding controls (GEO accession GSE59765); batch 3 consists of 9 replicates

of each for wild type KRAS and GFP controls (GEO accession GSE83083).

Note that this is a challenging study design for batch effect adjustment: the control samples

are balanced across batches, while each of the 3 kinds of treated cells, with different levels of

biological signals, is completely nested within a single batch. A favorable adjustment would pool

control samples from the three batches, while keeping all treated cells separated from the controls,

and from each other.

We combined the three batches and performed batch correction. Among the batch correction

methods considered, only RUV-Seq, the original ComBat used on logged and normalized data,

and ComBat-Seq output adjusted data. We apply these methods to address the batch effects in

the pathway signature dataset. We compared ComBat-Seq with the other methods, both qualita-

tively through principal component analysis (PCA), and quantitatively with explained variations

by condition and batch.
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Results

We developed and implemented ComBat-Seq as described above, and applied the method to the

simulated and real data examples. In the sections below, we justify the necessity of using negative

binomial distribution instead of Gaussian distribution for count data. We then summarize our

observations in simulations and a real data application example, showing the potential benefits of

ComBat-Seq adjustment.

Using appropriate model assumptions for count data

An example demonstrating the weakness of Gaussian-based models is given in Figure 3. In this

example, we simulated a count matrix using polyester (Frazee et al., 2015) with balanced case-

control design and 2 batches. Figure 3 shows the counts in a gene. The control samples in both

batches have low expression, while there is a case sample in batch 2 with a relatively large count

over 30. When estimating the differences in mean across batch, due to the sample with the large

count in the second batch, the mean of the second batch is estimated to be larger than that of batch

1. If we apply Gaussian-based batch adjustment which brings the mean to the same level, control

samples in the second batch will be adjusted to negative values, while counts in the first batch will

be increased. This results in a significant artificial difference between control samples from the

two batch after correction (P = 0.0033). These observations demonstrate the potential issue of

applying batch correction method using Gaussian distribution on count data. A more appropriate

model for integer counts would avoid such limitations.

We then applied the ComBat-Seq method, which assumes negative binomial distributions for

the underlying data. As shown in Figure 3, the adjusted data do not contain negative values or

the false significant result between the control samples of the two batches. This suggest that the

negative binomial assumption indeed addresses the limitations mentioned above.
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Simulations

We evaluated ComBat-Seq and compared its performance with other available approaches in our

simulation studies as described in the Method section. Results comparing all batch adjustment

methods under different settings of degree of batch effects are summarized in Figure 4.

Having batch effects in the data causes decrease in both true and false positive rates, compared

to data without batch effects (FPR: 0.048, TPR: 0.96). For example, having only batch effects

in the mean of at 1.5 fold but no dispersion differences reduces FPR to 0.028, and TPR to 0.94.

Having only a 2 fold dispersion batch effect results in a 0.046 FPR and a 0.88 TPR. A larger

difference in the mean or dispersion leads to a larger decrease in the power of detection in the

unadjusted data. For instance, data with only mean batch effect but at a 3-fold difference have

a 0.64 TPR, and data with no mean batch effect but a 4-fold dispersion effect have a 0.66 TPR

(Figure 4). All batch correction methods are able to improve power for detection after adjusting

the data with batch effects with increasing benefit as the degree of batch differences becomes more

severe. ComBat-Seq achieves the highest true positive rate in general compared to the other batch

correction methods. In a realistic range of a 1.5-fold mean batch effect, and a 2-fold dispersion

batch effect, we observed a 0.89 TPR from ComBat-Seq, which is higher than the other methods

(including batch as a covariate: 0.87, original ComBat on logCPM: 0.85, RUV-Seq: 0.83, SVA-

Seq: 0.87).

In addition, when there are large dispersion differences across batch, ComBat-Seq is able to

better control false positive rates. When applied on data with no mean batch effect and a 3-fold

dispersion differences, ComBat-Seq generates the smallest FPR of 0.039, compared to the other

methods (including batch as a covariate: 0.043, original ComBat on logCPM: 0.046, RUV-Seq:

0.044, SVA-Seq: 0.049). The false positive rates using data adjusted by ComBat-Seq further

decrease as the level of dispersion difference increases (0.031 at the 4-fold dispersion difference,

compared to the 0.039 FPR at the 3-fold difference). This suggests that ComBat-Seq is better at

handling dispersion / variance batch effect in the data compared to the other available methods.

When there is no dispersion difference across batch, ComBat-Seq yields higher false positive
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rates with no further gain in detection power. For example, when data contain no dispersion batch

effect, only a 2-fold mean batch effect, ComBat-Seq, SVA-Seq, and including batch as a covariate

in the differential expression model all achieve 0.97 TPR, while ComBat-Seq has the highest FPR

of 0.059 (0.047 for both the other two methods). This is consistent with the intuition for batch

correction. Existing methods, such as including batch as a covariate in the differential expression

methods, may be sufficient in addressing batch effect in the mean. In this case, ComBat-Seq which

assumes separate dispersion across batch may be redundant and lead to higher false positives. Only

when there exists dispersion / variance differences in the data are methods which specify separate

dispersion parameters necessary.

Application to the GFRN signature dataset

We applied our ComBat-Seq approach to address batch effects in a real RNA-Seq dataset designed

to develop pathway signatures for breast cancer progression and treatment response (Rahman et al.,

2017) as described in the Methods section. Figure 5 shows the scatter plot of samples projected on

the first two principle components in unadjusted data, and in data adjusted by RUV-Seq, ComBat-

Seq, and using the original ComBat on logCPM. We observed a strong batch effect in the unad-

justed data, which was not fully addressed by RUV-Seq. In the PCA of ComBat-Seq adjusted data,

we observe the expected pattern of data if there were no batch effects, in which the control samples

are clustered together, while the treated samples from three conditions are scattered at different lo-

cations. The effective adjustment of ComBat-Seq is further shown in the boxplot of proportion

of explained variation by condition and batch across genes. In ComBat-Seq adjusted data, varia-

tion explained by batch is greatly reduced compared to that in the unadjusted data. These results

suggest a successful adjustment of batch effect from ComBat-Seq.

Finally, though ComBat-Seq does not show clearly improved results compared to using Com-

Bat on logCPM in this application example, we re-emphasize that as shown in the simulations,

using ComBat-Seq which preserves integer counts instead of log-transforming the data results in

better statistical power in differential expression.
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Discussion and conclusions

We developed ComBat-Seq to adjust batch effects from known sources in count data from RNA-

Seq studies. ComBat-Seq is able to preserve the integer nature of count data, making the analysis

pipeline more compatible for RNA-Seq studies. We showed in simulations that ComBat-Seq gen-

erally out-performs other methods in terms of the impact on downstream differential expression.

When variance batch effect is present in the data, ComBat-Seq is able to achieve better statistical

power, while controlling false positive rates, compared to the other available methods. We further

demonstrated the utility of ComBat-Seq in addressing batch effect in the GFRN signature dataset,

showing its potential to recover biological signals from data affected by batch.

In simulations, we observed that when there is no true difference in dispersion across batch,

applying ComBat-Seq, which specifies different dispersion parameters for batches, results in in-

creased false positive rates compared to the other methods without further increasing the detection

power. ComBat-Seq controls false positives and shows benefits in increased true positive rates

only when a true dispersion batch effect is present in the data. This is consistent with the intuition

of batch effect adjustment, that modifying the data in any way comes with a risk of jeopardiz-

ing biological signals in the data. Therefore, batch effects should only be adjusted when they are

present and result in unfavorable impact on downstream analysis. Such observations emphasize

the importance for careful diagnosis of batch effect before applying any transformation to the data.

In the simulation studies, we also compared ComBat-Seq with the commonly applied approach

to transform the count matrix to logCPM, and then apply batch correction methods based on Gaus-

sian distributions. This method essentially assumes a log-normal distribution for the data. In

simulations, we observed that ComBat-Seq generally out-performs log transforming the data in

terms of power and control of false positives. These results provide evidence that using appropri-

ate probabilistic models for count data may be more beneficial than arbitrarily transforming the

data.

Our study has several limitations. We used an idealistic data model in simulations, and charac-

terized biological signals and batch effects in the form of fold changes in the average value across
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batch. Though there may be other methods to model count data with both condition and batch

effects, our model is a valid and convenient assumption for the data, which is easy to implement

with the polyster package. We focused primarily on addressing the unwanted impact of batch

effect on downstream differential expression. It is known that batch effects may also negatively

impact other biological tasks, such as developing predictive models for genomic data. Performance

of batch correction in these tasks requires further evaluation, but is beyond the scope of this pa-

per. Our ComBat-Seq method is based on a gene-wise negative binomial regression model, which,

similar to other (generalized) linear models, may not work well on data with severely or even com-

pletely confounded study designs. However, batch correction in confounded designs is challenging

for most if not all the state-of-the-art batch adjustment methods, and careful experimental design

has been widely advised to mitigate the unfavorable impact of batch effects.

Reproducibility

ComBat-Seq software is available at https://github.com/zhangyuqing/sva-devel.

Code to reproduce the results in this paper are available at https://github.com/zhangyuqing/

ComBat-seq.
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Dataset Condition Batch Mean Batch Dispersion References

GFRN 1.65 1.88 2.78 Rahman et al. (2017)
CHD8 2.92 1.68 7.09 Sugathan et al. (2014)

TB 3.98 1.62 1.26 Zak et al. (2016); Suliman et al. (2018)

Table 1: Levels of biological and batch effects in real datasets. For the condition effect, we used
edgeR to perform differential expression within one of the batches in the studies, and identified the
top-50 up-regulated, and top-50 down-regulated genes, ranked by FDR corrected P values. We took
the median of fold changes across conditions among the top-50 up-regulated genes, and the median
of those among the down-regulated genes. We reported the maximum of two medians in the table.
For mean batch effects, we calculated the gene-wise average expression within each batch, and
each biological condition. We took the median of mean expression across genes, then compared
the medians across batch, and report the maximum fold change. For dispersion differences, we
report the maximum fold change in the median gene-wise dispersion across batch. Gene-wise
dispersion are estimated with edgeR.
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Decompose scaled 
counts into 3 
components

Average level for gene g (in “negative” samples)

Biological condition of sample j

Mean batch effect

Dispersion batch effect

Gene-wise model: for a certain gene g, count in sample j from batch i

Negative binomial regression models

Estimate batch effect parameters

Calculate “batch-free” distributions

We assume the adjusted data also follow a negative binomial distribution:

Estimate parameters using established methods in edgeR

S 1 S 2
G 1 14 12
G 2 0 0
G 3 112 11
…

12 8

Empirical distribution 
of original counts:

S 1 S 2
G 1 9 8
G 2 0 0
G 3 60 47
…

Adjusted count matrixOriginal count matrix

Adjust the data

Mapping the data from the estimated empirical distributions to ”batch-free” distributions

Batch-free distribution 
for adjusted counts:

Figure 1: A diagram for the ComBat-Seq modeling and adjustment workflow.
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Figure 2: Study design of the simulation experiments. The data are in the form of gene by
sample matrices. We simulated 2 biological conditions: negative (0) and positive (1), as well as
2 batches. We also simulated 2 groups of genes. Group 1 has higher expression in batch 2 and
lower in batch 1, while group 2 has the reversed pattern, higher in batch 1 and lower in batch
2. The figure shows high expression in yellow, and low expression in blue. We also simulated
differentially expressed genes in both groups. A deeper color represents increased expression due
to biological condition.

Figure 3: Problematic results caused by applying Gaussian-based batch adjustment approach
on count data. We simulated count matrix with a balanced case-control design and 2 batches. The
figure shows counts in a gene which is lowly expressed in almost all control samples. However, one
case sample in the second batch contains a high count. Adjustment based on Gaussian distribution
brings the mean of two batches to the same level, causing artificially induced differences across
control samples from the two batches. When applying ComBat-Seq which is based on negative
binomial distribution, the adjusted data no longer contain the negative values or the erroneous
significant difference between control samples from the two batches.
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Figure 4: Simulation results under increasing level of differences across batch in the mean
and variance of expression. Batch effects in the mean or the variance will cause a loss of power
for differential expression detection. While all methods are able to increase the power for analysis,
ComBat-Seq generally achieves the best power. Also, when there is a sufficient level of disper-
sion differences across batch, ComBat-Seq is able to better control false positives than the other
methods.
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Figure 5: Application of ComBat-Seq for removing batch effects in a pathway activation
dataset. The unadjusted data contains a strong batch effect, as samples clearly separated by batch
in the principal components (top left panel, "Unadjusted"). An effective adjustment is expected to
bring control samples from the 3 batches to the same level, while maintaining biological signals
from the different treated samples, each of which is only present in a single batch. We observed
that in the PCA plots, ComBat-Seq is able to recover the expected biological pattern, while RUV-
Seq was not able to fully address the batch effect. This is further shown in the analysis of explained
variation in unadjusted data, and in data adjusted by ComBat-Seq and RUV-Seq. In the ComBat-
Seq adjusted data, variation explained by batch is greatly reduced compared to that in unadjusted
data. Though ComBat-Seq does not show improved results in this example than the current model
used on logCPM, we emphasize its benefits in increased statistical power in differential expression
than the current ComBat, as we have shown in the simulation studies.
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