






 

 

 

Figure 6. Integration of protein activity information with LVs can identify candidate drug targets for 
different NF1 tumor types. (A) A heatmap of correlation scores of known proteins with regulatory 
networks (or regulons) that are represented in the characterized and uncharacterized LVs selected 
above. The green bar across the top depicts how many protein activity scores have a Spearman 
correlation greater than 0.65. (B) Clustering of the LV-correlated VIPER proteins highlights 5 clusters of 
latent variables with similar VIPER protein predictions, suggesting that these 5 clusters may have 
functional overlap. (C) Mean LV expression within the clusters highlights differential expression within the 
clusters across tumor types. (D) Drug set enrichment analysis of the average VIPER protein correlation of 
cluster 2 identifies some drugs and preclinical molecules that are enriched with targets in this cluster. 

 

As seen in previous work [43], we observed that multiple latent variables exhibit similar correlation 
patterns with active proteins (Figure 6A). We clustered the correlation scores to see if we could 
group the latent variables with similar protein activity predictions (Figure 6B). In clustering the latent 
variable-protein activity scores, we observed 5 distinct clusters of latent variables with similar 
predicted protein activities (Figure 6B). Aggregation of each cluster of latent variables (mean 
expression within each cluster) demonstrated that these functional clusters were differentially 
expressed in the different NF1 tumor types (Figure 6C). 
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We then assessed the druggability of each of these 5 clusters by taking the average correlation of 
each protein within the cluster and performing gene set enrichment analysis against a database of 
small molecules with known biological targets [49]. This enabled the identification of drugs and 
drug-like compounds that are significantly enriched for targets in each cluster (Table S7). For 
example, cluster 2, which is expressed in pNF, NF, and MPNST more than it is expressed in cNF, 
has correlated VIPER proteins that are enriched for both clinically approved drugs (dovitinib) and 
druglike small molecules (Figure 6D). Furthermore, we found that cluster 3 was enriched for 
compounds that affect cell cycle progression (e.g. dinaciclib, abemaciclib), while clusters 1 and 5 
were enriched for molecules that inhibit histone deacetylases like CUDC-101 and analogs (Figure 
S4).  

4. Discussion 

NF1 is the most common of all neurofibromatosis syndromes and is caused by the loss of 
function of NF1 gene (a known tumor suppressor) due to mutation or deletion. However, NF1 patients 
show a great deal of phenotypic heterogeneity [1]. Identification of candidate cellular signaling 
pathways that differentiate between various tumor types is key for understanding the biology 
underlying such phenotypic diversity as well as predicting progression of tumor types towards 
malignancy. In this study we have integrated various in silico resources and analytical techniques to 
identify candidate genes or pathways unique to different tumor types in an attempt to generate 
testable hypotheses. By capturing complex gene expression patterns using latent variables (LVs), we 
identified combinations of LVs that were important to classify tumor types. An ensemble of random 
forests was then used to select 98 latent variables that were important and sufficient for identifying 
and classifying the various tumor types with reasonably high accuracy (Figure 2). The selected LVs 
were then subjected to downstream analyses using different data modalities to gain insight into the 
composition and relevance of the LVs in the context of NF1 (Figure 3-6). The selected latent variables 
that correlated with known pathways using tumor deconvolution methods confirmed the presence of 
previously described tumor microenvironment components. Investigation into previously 
uncharacterized LVs in the context of NF1 suggested the presence of (a) candidate genes for targeted 
experiments, (b) previously known as well as unknown tumor microenvironment components, (c) 
candidate tissue-specific protein regulatory networks for future drug screening experiments.  

 
To interpret the results of these analyses we first evaluated the gene loadings of the latent 

variables that were associated with one or more tumor types. We found that two of the top LVs with 
lower expression in cNF but higher expression in other tumor types, LV 384 and LV 624 (Figure 3C, 
Figure 6), had ties to known Schwann cells and NF1 tumor biology. Specifically, EGR2, one of the 
major components of LV 384, has been implicated in diseases associated with the myelin sheath like 
Charcot-Marie Tooth Disease (another disease of the Schwann cell) and is thought to play a role in 
pathways associated with myelination [53,54]. Indeed, clinical case studies of patients with concurrent 
NF1-induced tumors and Charcot-Marie Tooth disease have been reported in the literature 
suggesting a possible overlap in underlying biology [55–57]. While the role of EGR2 in Schwann cell 
differentiation is still under active investigation [58], EGR2-driven pathways have been found to be 
significantly downregulated in Lats1/2 deficient Schwann cell based MPNST models [59]. 
Furthermore, EGR2 expression in immune cells has been shown to be important for activation of 
M1/M2 macrophages [60] as well as regulation of CD4+ T cells [61]. Our downstream analysis, using 
all the selected LVs and tumor deconvolution techniques, identifies the enrichment of M2 macrophage 
and CD4+ T cell markers as tumor microenvironment components in our samples (Figure 5A). 
Similarly, RUNX2 (a major component of LV 624), has been shown to drive neurofibromagenesis by 
repression of Pmp22 (a Schwann cell component) [62]. 

 
Alternatively, we also evaluated LVs that uniquely associated with specific tumor types. For 

example, LV 24 was found to be an important feature for classifying MPNST tumor samples but not 
the other benign tumor samples (Figure 3Biii). LV 24 significantly associated with the ΔNp63 pathway 
(FDR < 0.05), a pathway with implications in determining malignancy and poor survival in various 
subtypes of pancreatic and squamous cell carcinomas [63]. ΔNp63 signaling in the central nervous 
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system is believed to play a role in neural precursor cell survival and neural stem cell dynamics 
[64,65], but its role in formation or maintenance of malignant NF1 tumors like MPNSTs is relatively 
unexplored. Overall, the evidence surrounding EGR2, RUNX2 and ΔNp63 pathway suggest that LV 
384, LV 624, and LV 24 may be promising candidates for experimental follow up.  

 
Beyond looking at individual genes that comprise the latent variables, we employed orthogonal 

algorithms that measured tumor immune activity and regulatory protein activity to identify specific 
signatures represented by the latent variables. Tumor deconvolution methods (CIBERSORT, MCP-
counter) confirmed previously described observations like the presence of mast cells in NF1 model 
systems and patient tumors [66–72]. They also suggested the presence of T cells in human tumor 
samples. This has previously been described in mouse models of NF1 tumors [73]. In humans, 
systemic T-cell burden has been found to correlate with NF1 nerve sheath tumor progression; T-cell 
presence has also been observed in NF1 gliomas [10,74].  

 
Through the metaVIPER protein regulatory activity predictions, we were able to identify putative 

therapeutic candidates for further evaluation. Specifically, we found two clusters of latent variables 
expressed in NF, pNF, and MPNST that had regulatory proteins enriched in targets of dovitinib and 
drug-like small molecules that inhibit receptor tyrosine kinases, as well as cyclin-dependent kinase 
(CDK) inhibitors such as abemaciclib or dinaciclib. These findings are consistent with previous studies 
that identify CDK inhibitors as useful in models of NF1-deficient or RAS-dysregulated tumors [75–78]. 
Since latent variables that are correlated with HDACs were found to be expressed most highly in 
cNFs (Cluster 5, Figure 6C, Figure S4C) and MPNSTs (cluster 1, Figure 6C, Figure 4A), compounds 
like CUDC-101 and analogs could be potential candidates for treating cNF and MPNST. Indeed, 
HDAC inhibitors were previously found to be efficacious in in vitro and in vivo models of MPNSTs 
[75,79]. Thus, our results further suggest that this therapeutic approach might be feasible in both 
MPNSTs and cNFs. Drugs found in other clusters such as dovitinib and lestaurinib in cluster 2, which 
is expressed most in MPNSTs, pNFs, and NFs (Figure 6C, 6D), may also merit further study. 

 
While the present in silico study brings forth various candidate genes and pathways for further 

follow up, it also presents a few limitations that could be mitigated with future studies, particularly for 
tumor types with limited samples such as MPNSTs and neurofibromas. Most notably, analyzing 
genetic variants across tumor types failed to identify relevant variant signatures (Figure 4). This 
highlights the challenges in variant analyses using samples with limited class representation and 
motivates our focus on transcriptional signatures. Additional genomic and transcriptomic data from 
the same biobanks or additional tumor datasets will improve our ability to identify recurrent genetic 
markers of tumor type. Furthermore, additional data from tumor-adjacent normal tissue would greatly 
add value to additional analyses based on differential gene expression. Such differential expression 
analyses were not possible within the scope of this work since these data are not currently available. 
Additionally, future studies comparing genomic signatures identified here to other publicly-available 
tumor expression and variant data (e.g. the Cancer Genome Atlas or the International Cancer 
Genome Consortium [19]) may identify genomic similarities between peripheral nerve sheath tumors 
and other tumors. 

 
In conclusion, this work proposes a short list of testable hypotheses involving specific biological 
signatures for NF1 deficient nerve sheath tumors. Verification of these mechanisms in in vitro and in 
vivo models of nerve sheath tumors as well as human NF1 nerve sheath tumor tissue needs active 
and extensive experimental work. While we have analyzed tumor datasets from four different studies, 
the addition of other neurofibromatosis-driven tumor datasets will greatly aid identification of 
commonalities or critical differences to inform therapeutic decisions across the family of 
neurofibromatoses. This study, together with future work, will guide the repositioning of clinically 
approved drugs in the context of NF1.  

Supplementary Materials: 
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Figure S1: (a) A density plot indicating the pairwise Pearson correlation of LVs (not including self-self pairs). A 
threshold of 0.5 was selected to eliminate non-orthogonal latent variables 

Figure S2: Schematic showing the generation of the ensemble of random forests. (A) Stratified split of original 
dataset into “model” set and “independent test” set. (B) Generation of first ensemble of random forests using 
training set and test set generated from the “model” set for all 962 latent variables. (i) example density plot 
showing distribution of model accuracy (F1) scores for each class. (ii) example plot showing distribution of 
feature importance scores from the 500 random forests. (C) Generation of the second ensemble of random 
forests using restricted feature set of only 98 latent variables. The newly generated models were tested on the 
“independent test” set. (i) example plot showing the distribution of model accuracy scores from the second 
ensemble of random forests. 

Figure S3: A boxplot representing the decrease in pairwise distances between all tumor samples of the same 
tumor type from Figure 1A (green, based on gene clustering) to 1C (orange, based on LV clustering). 

Figure S4: Small molecule-target networks show enrichment of LV-dependent target classes. (A) Cluster 1 of 
LV-correlated VIPER proteins is enriched for HDAC inhibitors. (B) Cluster 3 of LV-correlated VIPER proteins is 
enriched for kinase inhibitors, particularly inhibitors of kinases responsible for cell cycle progression (CDKs). 
(C) Cluster 5 of LV-correlated VIPER proteins is enriched for HDAC inhibitors. 

Table S1: Pan-NF1 MultiPLIER results across RNA-seq data for 77 nerve sheath tumors. 

Table S2: Significance of latent variable status being correlated with gene mutation status. 

Table S3: Summary of latent variables selected by random forest model and their correlated genes and 
signatures. 

Table S4: Tumor deconvolution scores across NF1 patient samples 

Table S5: metaVIPER protein scores across all NF1 patient samples 

Table S6: Spearman correlation scores of RF-selected latent variables with metaVIPER scores. 

Table S7: Drug set enrichment analysis of latent variables. 
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