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Abstract 17	
 18	
Admixture with archaic hominins has altered the landscape of genomic variation in modern 19	
human populations. Several gene regions have been previously identified as candidates of 20	
adaptive introgression (AI) that facilitated human adaptation to specific environments. However, 21	
simulation-based studies have suggested that population genetics processes other than adaptive 22	
mutations, such as heterosis from recessive deleterious variants private to populations before 23	
admixture, can also lead to patterns in genomic data that resemble adaptive introgression. The 24	
extent to which the presence of deleterious variants affect the false-positive rate and the power of 25	
current methods to detect AI has not been fully assessed. Here, we used extensive simulations to 26	
show that recessive deleterious mutations can increase the false positive rates of tests for AI 27	
compared to models without deleterious variants. We further examined candidates of AI in 28	
modern humans identified from previous studies and show that, although deleterious variants 29	
may hinder the performance of AI detection in modern humans, most signals remained robust 30	
when deleterious variants are included in the null model. While deleterious variants may have a 31	
limited impact on detecting signals of adaptive introgression in humans, we found that at least 32	
two AI candidate genes, HYAL2 and HLA, are particularly susceptible to high false positive rates 33	
due to the recessive deleterious mutations. By quantifying parameters that affect heterosis, we 34	
show that the high false positives are largely attributed to the high exon densities together with 35	
low recombination rates in the genomic regions, which can further be exaggerated by the 36	
population growth in recent human evolution. Although the combination of such parameters is 37	
rare in the human genome, caution is still warranted in other species with different genomic 38	
composition and demographic histories. 39	
 40	
 41	
Introduction 42	
 43	

Gene flow between populations can rapidly increase the genetic variation in the recipient 44	
group by introducing new variants from a different population. If some of this genetic variation 45	
increases an organism’s survival and reproduction, it can be considered adaptive. Adaptive 46	
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introgression has been found to facilitate adaptation to local environments in a wide range of 47	
taxa, from plants to animals1–4. In modern humans, introgression with archaic hominins, 48	
including Neanderthals5,6 and Denisovans7,8, has changed the genomic diversity of and supplied 49	
adaptive alleles to most populations outside of Africa. Previous studies have identified at least 30 50	
candidate genomic regions in modern humans that were putatively adaptively introgressed9–19 – 51	
among which one of the most well-known example is a Denisovan-like haplotype at the EPAS1 52	
gene that facilitated adaptation to high altitude in the Tibetan population20,21. As of today, the 53	
putative AI tracts in modern humans can be traced back to Neanderthals9,18,19,22, Denisovans13,20, 54	
unknown archaic groups23,24, or a mix of more than one population1,22.  55	

The detection of adaptive introgression mostly relies on independently looking for 56	
signatures of introgression22,24–27 and signatures of positive selection28–33. Additionally, a number 57	
of allele frequency-based summary statistics have been shown to be particularly powerful at 58	
directly inferring AI without needing to apply separate tests for introgression or selection at 59	
genomic regions. These statistics include: the number of uniquely shared alleles between donor 60	
and recipient population (U statistic), the quantile distribution of derived alleles in recipient (Q 61	
statistic), and sequence divergence ratio (RD)11. Racimo et al.11 further demonstrated the 62	
robustness of these statistics to several factors that may confound the detection of AI, including 63	
incomplete lineage sorting and ancestral population structure.  64	

While there is tremendous interest in identifying candidate regions for AI, most 65	
mutations that occur in genomes are likely either neutral or deleterious34. Deleterious mutations 66	
continue to accumulate in the distinct populations after they split from each other35. These 67	
deleterious mutations can also affect the genomic landscape in the recipient population after 68	
introgression. The genetic load (i.e. reduction in population fitness due to deleterious variants) of 69	
archaic hominins is usually higher than modern humans due to the former’s small effective 70	
population size5. Thus, most introgressed archaic ancestry is ultimately purged from the modern 71	
human gene pool36,37. Conversely, a higher frequency of archaic variants and longer introgressed 72	
tracts are the typical signatures indicating adaptive introgression. However, recent studies 73	
suggest that other population genetics processes can also generate long introgressed tracts at high 74	
frequencies in a recipient population. For example, if many deleterious mutations are recessive, 75	
and are private to one population38–40, after introgression homozygous recessive alleles (from 76	
either donor or recipient) will most likely become heterozygotes. In this situation, new 77	
haplotypes get created in the admixed population where the negative fitness effects on such 78	
variants are now reduced or eliminated. As such, an initial heterosis effect occurs (Fig. 1), since 79	
admixed individuals have higher fitness compared to unadmixed individuals due to the masking 80	
of recessive deleterious variants. The neutral markers nearby the recessive deleterious variants 81	
would also increase in frequency41,42, leading to an overall increase of introgressed ancestry in 82	
the admixed population37, resembling what is expected from adaptive introgression1,11.  83	

As an example of this, Harris and Nielsen37 simulated modern human-Neanderthal 84	
admixture, and suggested that the heterosis effect from recessive deleterious variants can 85	
increase the Neanderthal ancestry in modern humans by up to 3%. Kim et al.43 showed that low 86	
recombination rate, high exon densities, and small recipient population size can all amplify the 87	
effect of deleterious variants leading to an increase in introgressed ancestry. However, both 88	
Harris and Nielsen and Kim et al. illustrated the confounding effect of deleterious variants on 89	
adaptive introgression by directly tracking the introgressed ancestry from simulations. Although 90	
straightforward and convenient in simulation studies, introgressed ancestry is difficult to 91	
precisely measure with the empirical data. Thus, it remains unclear whether other summary 92	
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statistics aimed to detect adaptive introgression are affected by the presence of deleterious 93	
variants.  94	

 Our present work aims to systematically explore the behavior of the summary statistics 95	
for detecting adaptive introgression in the presence of deleterious, recessive variants in realistic 96	
human demographic models. By performing extensive simulations under different evolutionary 97	
parameters (demography, recombination rate, and genic structure), we show that accounting for 98	
recessive deleterious mutations in the null model leads to an increase in false positive rates in 99	
most statistics due to the heterosis effect, with some statistics being more robust than others.  100	

By examining the currently known AI candidate regions in modern humans, we show that 101	
at least several candidate genes previously identified as being under AI (HYAL214 and HLA gene 102	
cluster15) may alternatively be false-positives due to the presence of deleterious variants. 103	
However, we also show that most of the human AI candidate genes cannot be explained by 104	
deleterious variants, suggesting they may be genuine targets of AI. We further show that in 105	
HYAL214 and HLA, a combination of high exon density and low recombination rate is the main 106	
factor contributing to the high false positive rates in the two genes. The evolutionary history of 107	
humans, especially the recent rapid population growth, slightly increases the false positive rate as 108	
well. Despite the overall limited impact from recessive deleterious variants on AI signals in 109	
human populations, deleterious mutations remain a confounding factor for reliable AI detection 110	
in other organisms with certain combination of evolutionary parameters such as high exon 111	
density and low recombination rate. As such, effects from deleterious variants are not negligible 112	
and should be included in the null models for identifying candidate regions of AI. 113	
 114	
 115	
Results 116	
 117	
Simulations and measurements of adaptive introgression 118	

We used the program SLiM 3.2.044 to simulate different models of admixture. Each of 119	
the models consists of three populations: an ancestral population at equilibrium that splits into 120	
two sub-populations (pD for “donor population” and pO for “outgroup”), and one of the 121	
subpopulations subsequently splits again after a period of time (pO, and pR for “recipient 122	
population”). After the second split, a pulse of admixture occurred at 10% from pD uni-123	
directionally into pR, lasting for one generation. Fig. 2 shows an illustration of the two 124	
demographic models used herein: 1) Model_0 (Fig. 2a) represents a demography where the 125	
recipient population size is 10 times smaller than the donor population size throughout the 126	
simulation; and 2) Model_h (Fig. 2b) represents an estimated demography for modern humans, 127	
with a single pulse of archaic admixture introduced to the non-African population5–7,45,46.  128	

Kim et al.15reported that a long-term population contraction can greatly influence the 129	
dynamics of introgression, and that a prolonged bottleneck in the recipient population leads to a 130	
drastic increase of introgressed ancestry when the deleterious mutations are recessive. Thus, we 131	
use Model_0 as a general model to examine the robustness of the summary statistics when the 132	
heterosis effect from recessive deleterious variants is maximized. In contrast, Model_h serves as 133	
a comparison to evaluate the behavior of the summary statistics under a realistic demography for 134	
human populations. 135	

We introduced mutations in the simulations that could have one of four different effects 136	
on fitness: 1) “Neutral”: all mutations being neutral (s=0); 2) “Deleterious”: recessive deleterious 137	
mutations present in the populations, drawn from a gamma distribution of fitness effect (DFE) 138	
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with a shape parameter of 0.186 and average selection coefficient of -0.01315(see Kim et al.47), 139	
as well as a 2.31:1 ratio48 of nonsynonymous to synonymous mutations; 3) “Mild-Pos”: the 140	
Deleterious model with an adaptive mutation with milder strength of positive selection (s=0.01) 141	
introduced in pD (donor population) after the initial pD-pO split; 4) “Strong-Pos”: the 142	
Deleterious model with an adaptive mutation with stronger strength of positive selection (s=0.1) 143	
introduced in pD after the initial split. 144	

All simulated sequences have a length of 5MB, with a genic structure that includes exons, 145	
introns, and intergenic regions. Under each model described above, we simulated 1) a 5MB 146	
region with the genic structure of a window in the human genome49 that has the highest density 147	
of exons (chr11:62.3-67.3MB; referred to as “Chr11max”; Supp. Fig. 1; also see Methods); 2) 148	
5MB regions surrounding the previously identified adaptive introgression candidate regions in 149	
modern humans (Supp. Table 1), with the candidate region centered at approximately 2.5MB. To 150	
observe the effect of recombination rate (r) on the heterosis effect, we simulated recombination 151	
rate using either: 1) the realistic recombination rate map for humans50 inferred from linkage 152	
disequilibrium (LD) patterns51 and the known rates from pedigree studies52,53; or 2) an uniform 153	
low recombination rate at 1e-9 per base pair per generation. 154	

For each simulation replicate, we computed the summary statistics for detecting adaptive 155	
introgression for non-overlapping 50kb windows throughout the simulated segment using a 156	
customized Python script. A full list of the AI summary statistics used in our study can be found 157	
in Table 1. We also recorded the ancestry in the recipient population that originated from the 158	
donor population using the tree sequence file generated from SLiM, and reconstructed the 159	
information using pyslim54 and msprime55 modules in Python3, which was referred to as 160	
“introgressed ancestry” or pI43. Throughout the text, we refer to pD as the donor population, 161	
representing an archaic hominin group; and pO as the outgroup, representing an African non-162	
admixed population; and pR as recipient population, representing a non-African admixed 163	
population. 164	
 165	
Recessive deleterious variants affect the summary statistics used to detect AI  166	

We first sought to understand how the presence of recessive deleterious variants affects 167	
the distribution of the AI summary statistics listed in Table 1. To maximize the heterosis effect, 168	
here we simulated the genic structure of the “Chr11Max” genomic region with a uniformly low 169	
recombination rate (r=1e-9) under the Model_0 demography.  170	

Fig. 3 shows the distribution of one of the summary statistics, U80 in non-overlapping 171	
50kb windows. U80 captures the number of high-frequency introgressed-derived alleles in the 172	
recipient population. Under the scenario where all mutations are neutral, we expect the dynamics 173	
of introgressed-derived alleles to be influenced simply by gene flow and other subsequent neutral 174	
processes. With a small pulse of admixture, only a small fraction of the introgressed alleles is 175	
expected to drift to high frequencies, which is reflected by the low to zero U80 allele count in the 176	
distribution of U80 under the Neutral simulations (Fig. 3a). However, in the presence of 177	
recessive deleterious variants, the count of U80 alleles becomes elevated in all genomic 178	
windows. This pattern is illustrated by the substantially increased mean and variance in the 179	
distribution, in contrast to the Neutral comparison (Fig. 3a). In cases of adaptive introgression 180	
where a beneficial mutation is introduced in the donor population prior to admixture (Fig. 3c-d), 181	
a notable increase of the mean and variance of U80 is also observed. Therefore, the signatures of 182	
adaptive introgression and the heterosis effect due to deleterious mutations are similar, but AI 183	
leads to a more pronounced peak at the beneficial mutation. Additionally, an adaptive mutation 184	
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elevates the range of summary statistics in the flanking region, and the length of the region under 185	
its influence positively correlates with the strength of selection. However, when the elevation in 186	
U80 is due to recessive deleterious mutations, there is a slight but consistent upward shift across 187	
the entire region. 188	

We next examined the distribution of other summary statistics under the four fitness 189	
scenarios (Supp. Fig. 2), and observed similar patterns as for U80. These findings indicate that 190	
consistent with what Kim et al. observed for introgressed ancestry, deleterious variations can 191	
generate similar patterns as adaptive introgression in the absence of beneficial alleles and local 192	
adaptation. 193	

To better understand the spatial patterns of variation across the simulated region, we 194	
visualized the haplotypes56 in a 100kb window in the middle of the segment containing the 195	
adaptive mutation when applicable (Fig. 4). The haplotype left by recessive deleterious 196	
mutations (Fig. 4a) and a legitimate adaptive mutation (Fig. 4b) differ in structure. Interestingly, 197	
both scenarios lead to higher haplotype homozygosity in the recipient population. However, in 198	
the AI scenario (Fig. 4b), the haplotypes from the donor and recipient populations are more alike 199	
to each other (i.e. the number of differences between the donor haplotype and the introgressed 200	
haplotype is smaller, shown in the right panels of Fig. 4) than under the Recessive Deleterious 201	
scenario. 202	
 203	
Deleterious mutations increase the false positive rate for AI detection  204	

To quantify the extent to which deleterious mutations can give false evidence of adaptive 205	
introgression, we used the neutral distribution of summary statistics in each 50kb window across 206	
the large 5Mb segment to define the critical values for a test of adaptive introgression. We define 207	
the critical value as the most extreme 5% quantile value grouping all windows from neutral 208	
simulations together. 209	

For the recessive deleterious model, we obtain the proportion of simulations (200 210	
replicates) per window that exceeds the critical value under the neutral model, and define this 211	
proportion as the false positive rate (FPR), as no true adaptive mutations are present. Similarly, 212	
we define the true positive rate (TPR) for the mild- and strong-positive selection models as the 213	
per-window proportion of simulations exceeding the critical value, where the critical value is 214	
again defined from the neutral model. Fig. 5 shows the neutral critical value and the transformed 215	
true/false positive rates in U80 and Divergence Ratio (RD) statistics under the simulation setting 216	
described in the above section. The TPR/FPR distribution for other summary statistics can be 217	
found in Supp. Fig. 3. The neutral model simulations have FPRs around 5%, by definition. In 218	
contrast, the recessive deleterious simulations show elevated FPRs in most windows for both 219	
statistics (8.62-34.48% for RD; 3.45-22.41% for U80). The high FPRs are not negligible, as the 220	
identification of AI in empirical data relies on looking for outliers in summary statistics when the 221	
presence and location of the adaptive mutation is unknown. Deleterious variation is also more 222	
common in human genomes than adaptive variation34, which may further compound this effect. 223	

To further understand how demographic history and recombination influence the 224	
FPR/TPR of the tests for AI, we simulated the “Chr11Max” 5MB segment (see Simulations 225	
section) using the human demographic model (Model_h), and realistic estimates of 226	
recombination rate in this region (referred to as r=hg19 in Table 2). We summarized the FPRs 227	
and TPRs of a subset of statistics (pI, RD, U80, Q95) under these scenarios in Table 2 (also see 228	
Supp. Fig. 4-6). We observed that simulations with low recombination rate with higher mean 229	
FPRs using these statistics. Moreover, the standard deviation of the statistics – which is an 230	
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informative signature of adaptive introgression – increases when the realistic recombination rates 231	
are applied (average recombination rate higher than 1e-9).  232	

Altogether, recessive deleterious variants contribute to a higher false positive rate for AI 233	
detection in all summary statistics examined. Some statistics appear to be more vulnerable than 234	
others, with pI, RD, U stats and Q stats being most affected. Low recombination rates amplify 235	
the heterosis effect that mimics the AI signature, while the modern human demography 236	
(Model_h) results in fewer false positives than Model_0 in general which has a relatively long-237	
term contraction in the recipient population. 238	
 239	
Summary statistics are powerful to detect AI but not at localizing the adaptive allele 240	

 We next evaluated the power of these summary statistics at detecting true AI. The TPRs 241	
across the genomic region is not uniform (Supp. Fig. 3-5). On average, the TPRs are close to or 242	
higher than the FPRs in corresponding windows. In the focal windows containing the adaptive 243	
mutation, the TPRs are especially distinguishable from the neutral and deleterious models 244	
because the adaptive models show a distinct peak. This shows that the summary statistics have 245	
high statistical power at detecting a true AI signal, as they reject the null hypothesis more often 246	
in true positives (up to 100%; Table 2).  247	

The mean TPR is parameter-dependent like the FPR, in that it increases with selection 248	
strength and it decreases with recombination rate. However, it should be noted that under very 249	
strong positive selection (Strong-Pos model), the TPRs are high across longer flanking regions, 250	
resulting in the focal window not standing out from the background because the region affected 251	
by positive selection is larger. In the weaker positive selection (Mild-Pos) model, the focal 252	
window stands out with respect to the background windows because the background windows 253	
reject the null less often. Therefore, localizing the adaptive allele within the entire segment 254	
becomes less accurate with increasing strength of selection on the truly adaptive allele (Fig. 5, 255	
Supp. Fig. 3-5). 256	
 257	
Deleterious mutations have a limited effect on candidates for adaptive introgression in 258	
humans 259	

Next, we sought to systematically assess whether the changes in AI summary statistics 260	
caused by recessive deleterious variants could lead to false detection of AI candidate regions in 261	
humans. This is an important consideration because these regions were detected as unusual either 262	
in comparison to the rest of the genome or under demographic models that assumed all mutations 263	
were neutral. Thus, the null models did not include deleterious variation and it remains unclear 264	
whether deleterious variation could provide an alternate mechanism for the observed patterns.  265	

We extracted 5MB sequences surrounding 26 previously identified AI regions9,11,13–266	
18,20,22,57–59 (Supp. Table 1) using the distribution of the recombination rates52 and genic 267	
structures49 in these regions. For each candidate region, we ran 200 simulation replicates under a 268	
more realistic human demography (Model_h), using the recombination rates and exon 269	
distribution from these regions. We simulated a recipient population representing a non-African 270	
population (pR), an outgroup population (pO) representing Africans, and an archaic donor 271	
population (pD). In addition, we simulated under two models (the Neutral and Deleterious 272	
models) to compute the FPRs on summary statistics within each 50kb window in each of the 273	
5MB regions representing the AI candidate gene-regions.   274	

To compute the false positive rate due to deleterious mutations, we use the neutral 275	
simulations to define the critical values for each test statistic. We use the simulations with 276	
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recessive deleterious mutations as the test datasets to examine the false positive distribution. As 277	
described previously, the FPR represents the proportion of simulations for a given statistic in a 278	
50kb window in a candidate gene that are as extreme or more extreme than the 5% neutral 279	
critical value.   280	

Overall, we find that most statistics do not have extremely elevated false-positive rates 281	
across most of the gene-regions in the presence of deleterious mutations (Supp. Fig. 6). The D 282	
statistic, however, is a notable exception showing a higher FPR across all candidates. This is 283	
rather unsurprising because, although the D statistic is powerful at detecting genome-wide excess 284	
of shared derived alleles between groups (a metric indicating admixture), studies have shown its 285	
limitations and reduced reliability for inferring local ancestry using small genomic regions26 286	
(50kb windows). The fD statistic, on the other hand, is powerful at detecting introgression at 287	
localized loci, and does not show unusually high FPR for all candidate regions. 288	

Notably, with the exception of two simulated regions (representing the regions of HLA 289	
and HYLA2, Fig. 6), we find that the FPR is well-controlled in the other 24 simulated AI 290	
candidate regions (Supp. Fig. 6). Here, we show the FPRs for the EPAS1 and the BNC2-like 291	
regions (Fig. 6) since these two regions have similar recombination rates, exon density and FPRs 292	
as the other AI regions considered here. Other than the D statistics discussed above, the rest of 293	
the summary statistics show an average of FPR around or less than 5%. In particular, the Q and 294	
U statistics appear to be the most robust against false positives from deleterious mutations. In 295	
contrast,  HLA-A, HLA-B, and HLA-C genes (referred to as “HLA” in this work), and a segment 296	
on chromosome 3 that contains HYAL2 gene show elevated FPRs on nearly all statistics. 297	
 298	
High exon density and low recombination rate leads to deleterious mutations mimicking AI in 299	
humans 300	

To understand why the HYAL2 and HLA genes exhibit higher false positive rates in the 301	
presence of recessive deleterious variants, we considered possible sources of false positives. 302	
Firstly, we wanted to know whether population growth in humans was a contributing factor. 303	
Secondly, since deleterious recessive mutations are much more likely to occur only in exons, we 304	
looked at the distribution of exon density in windows of 5MB across the genome to ask whether 305	
HYAL2 and HLA are outliers with respect to this distribution. In addition, we computed the 306	
recombination rate for each 5MB window across the genome to determine whether these two 307	
genes were outliers with respect to recombination rate.  308	
 We first simulated the four genes in Fig. 6 under four different scenarios of population 309	
size changes (Supp. Fig. 7). We find that the extent of population growth does not play a 310	
determining role on the FPRs in AI detection since in our simulations. Specifically, the outlier 311	
regions such as HYAL2 and HLA, continue to have higher FPRs across the different growth 312	
scenarios. Growth (eg. “Growth 2” and “Growth 4” in Supp. Fig. 7 where the population size at 313	
the end generation is more than 70-fold larger than the initial size) slightly intensifies the already 314	
high FPRs in these two genes (Supp. Fig. 8), which can be explained by an increase in the 315	
efficacy of selection when the effective population size is large60,61. The other two simulated 316	
regions (representing the BNC2 and EPAS1 regions) do not exhibit increased FPRs in the 317	
presence of population growth.  318	
 We next explored how changes in recombination rate impact the FPRs for the summary 319	
statistics. By applying a uniformly low or high recombination rate to the simulations under 320	
Model_h (Supp. Fig. 9), we observed that a high recombination rate can substantially reduce the 321	
FPRs to nominal levels (around 0.05) on all statistics in all genes. Conversely, a uniformly low 322	
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recombination rate does not necessarily increase the FPRs in most statistics when we simulate 323	
regions like BNC2 and EPAS1, except for the D statistics. 324	
 Finally, we computed the mean recombination rates at 5MB windows across the human 325	
genome (Hg19), and demonstrate that HYAL2 and HLA regions are indeed outliers in terms of 326	
both exon density and low recombination rate (Fig. 7). We therefore conclude that the high 327	
susceptibility to false detection of AI in some genomic regions, is due to a combination of high 328	
exon density and low recombination rate. This also explains why the confounding effect of 329	
heterosis is limited for the majority of the human AI candidate gene regions simulated here 330	
(Supp. Fig. 10). 331	
 332	
Null model with deleterious variation reduces the number of statistically significant AI 333	
candidates 334	

Lastly, we asked whether a null model that accounts for the recessive deleterious variants 335	
can be more informative and reliable in AI detection than a traditional null model that assumes 336	
selective neutrality. To do this, we calculated the empirical values of the summary statistics from 337	
the AI candidate genes from the 1000 Genomes Project dataset62using one of the archaic humans 338	
(Altai Neanderthal5 or Denisovan8) as the donor population, and the Yorubans (YRI) as the 339	
outgroup population. We computed their p-values using the statistical distributions from the 340	
simulations under two different (Neutral or Deleterious) null models. Given that our deleterious 341	
null model assumes all deleterious mutations are recessive (h=0), it maximizes the impact of 342	
false positives due to deleterious mutations. Thus, if the candidate genes still stand out as being 343	
statistically significant in this extreme null model, the AI signal is robust to confounding from 344	
the heterosis effect. 345	

We calculated the critical values for all summary statistics using the most extreme 5% tail 346	
values under the two null models, and computed the p-values of the empirical data points for the 347	
statistics. Among the four genes we use as examples (Supp. Fig. 11), the “outlier” genes (HLA 348	
region and HYAL2) on average have higher p-values under the deleterious null models than 349	
under the neutral null model.  This trend is reflected by the points falling mostly above the 350	
diagonal in Supp. Fig. 11. Since higher p-value implies that we cannot reject the null model, this 351	
change in the p-values indicates that the deleterious null models are more conservative at AI 352	
inference. Note, that for the two “typical” AI genes, the p-values fall along the diagonal (Supp. 353	
Fig. 11), suggesting that a null model with and without deleterious mutations yield similar 354	
results. 355	

We also examined the number of 50kb-windows that fell in the extreme 5% tail of the 356	
neutral distributions, as well as that number from the deleterious distributions. The difference 357	
between the two numbers equals the number of window hits that are significant in the neutral 358	
null models but failed to reach significance in the deleterious null models (Fig. 8, Supp. Fig. 12). 359	
The positive values, highlighted in the gray-shaded area in the corresponding figures and colored 360	
by population, imply the deleterious null model is more conservative for a given statistic. If an 361	
AI candidate region shows points above zero for most of the summary statistics, such candidate 362	
region is likely prone to false positives due to the heterosis effect, and the validity of adaptive 363	
introgression on this region requires further investigation. 364	

Promisingly, we find that most of the candidate regions (24/26) show similar p-values on 365	
most, if not all, of the statistics regardless of whether a null model with deleterious mutations or 366	
neutral mutations is used. This observation further confirms the conclusion from the previous 367	
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section, that the distribution of recessive deleterious variants has a limited impact on the 368	
detection of adaptive introgression in modern humans.  369	

As shown in our analysis, a combination of high exon density and low recombination rate 370	
contribute to the high FPRs in the HLA and HYAL2 genes, with both showing a reduced 371	
signature of adaptive introgression under a deleterious null model. This suggests that these 372	
regions potentially may not be adaptively introgressed, in contrast to previous findings9,11,14,22.  373	
The HLA cluster on Chromosome 6 (HLA-A, HLA-B, HLA-C) is one of the most crucial immune-374	
response genes, and is known for its high level of genetic variation and variability across 375	
populations15,63,64. Because of the complexity of population genetics processes (e.g. balancing 376	
selection) that act on HLA, further work is required to understand whether deleterious mutations 377	
or other types of selection can lead to the behavior of summaries of genetic variation at this 378	
region. For example, the high FPRs assume a null deleterious model which does not explain the 379	
high levels of heterozygosity (Supp. Fig. 13) at this locus, so the evolutionary processes acting 380	
for this region are more complex than the null model assumed. However, in general integrating 381	
recessive deleterious mutations into the modeling framework will improve the robustness of 382	
adaptive introgression signals.  383	
 384	
 385	
Discussion 386	
 387	

This work represents one of the first comprehensive efforts to consider the influence of 388	
negative selection in the detection of adaptive introgression. Specifically, we systematically 389	
examined whether deleterious recessive variants carried by populations prior to admixture can 390	
affect the robustness of signals in summary statistics that have been shown to be informative 391	
about adaptive introgression.  392	

Our work demonstrates through extensive simulations that a heterosis effect caused by 393	
recessive deleterious variants private to source populations can resemble the signal of adaptive 394	
introgression, which leads to a higher number of false positives. We found that the presence of 395	
recessive deleterious mutations alone is sufficient to significantly increase the mean and variance 396	
of AI summary statistics in at least some genomic regions. These shifts in the distribution of 397	
statistics (Fig. 2) lead to a higher false positive rate for detection of adaptive introgression when 398	
we use the neutral model to define AI statistic critical values. Moreover, by examining 399	
population genomics data, we show that such effect from recessive deleterious variants are 400	
relevant for detecting AI in modern humans, and may explain a potentially spurious signal of AI 401	
in at least two AI candidate genes (HLA and HYAL2). However, the statistical signals in other 402	
candidate genes in modern humans remain strong even when accounting for recessive deleterious 403	
mutations, indicating that these candidates are unlikely to be false positives. 404	

By testing individual evolutionary parameters in genes that show a higher magnitude of 405	
false positives than others, we attributed the stronger heterosis effect to two factors that need to 406	
present at the same time: high exon density, and low recombination rate (like in HLA and 407	
HYAL2). High exon density implies more deleterious mutations occur in a given genomic region. 408	
In most cases, the deleterious fitness effect from linked recessive variants can be disassociated 409	
from crossing over with other haplotypes within the same population. However, for certain 410	
regions where the recombination rate is unusually low, the deleterious variants will remain 411	
linked on a given haplotype. Admixture with a distantly related population will bring in 412	
haplotypes carrying non-deleterious alleles at these positions. Therefore, the introgressed 413	
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ancestry at these regions will increase in the recipient population despite carrying a different set 414	
of deleterious variants, leading to the elevation of FPRs in the adaptive introgression summary 415	
statistics. This process acts in a similar manner as balancing selection, except that no beneficial 416	
mutations are involved.  417	

We also show that the demographic history of human populations, including a change in 418	
the recipient population size, does not play a major role in affecting the false-positive rate of 419	
tests for AI. However, the nearly-exponential population growth in the recent history of modern 420	
humans may have increased the FPR in genes that are already susceptible to false-positive results 421	
due to deleterious mutations. This is likely due to the fact that a large effective population size 422	
restricts the extent of genetic drift, leading to a more prominent effect of natural selection, 423	
including the complementation of deleterious alleles via the heterosis effect. Depending on the 424	
dynamics among different types of selection, a recovery of population size after a bottleneck in 425	
the recipient population can exaggerate the heterosis effect, as demonstrated in Kim et al43.  426	

Though the signals in most human AI candidate genes are unaffected by deleterious 427	
variation, the impact of deleterious variants on AI detection in general should not be omitted, and 428	
a null model that considers the influence from recessive deleterious mutations is still necessary. 429	
This is mainly because of two reasons: 1) the combination of evolutionary parameters that leads 430	
to an elevation of false-positives may occur much more commonly in other study systems. 2) 431	
Even for modern humans, the demography used in simulations is an approximation of the 432	
modern Eurasian population history, which may not represent the true evolutionary history of all 433	
non-African populations. In situations where the archaic introgression occurred in multiple 434	
pulses (e.g., Denisovan introgression in Asia22,65), and when the ancestral modern human 435	
populations were small, the heterosis effect from deleterious variants could have a different 436	
impact than expected from a parsimonious demography.  437	

Here, we considered only the extreme case where deleterious variants are completely 438	
recessive (h=0). The reason for this is that we set out to determine whether deleterious variants 439	
are a concern for AI signals when this effect is maximized. Kim et al. already studied the effect 440	
from additive variants and observed little effect on introgressed ancestry, where the confounding 441	
effects from heterosis persisted when deleterious variants were complete or partial recessive (hs 442	
relationship35). In empirical genomic data, the distribution of dominance should be in between 443	
the two extremes. A current challenge is that the empirical values of dominance coefficients for 444	
deleterious mutations in humans remain unknown.  445	

It is promising that the signature of AI in the vast majority of human AI candidate regions 446	
still persists even when the heterosis effect acts in its most extreme manner by assuming h=0. 447	
Other values of h would be unlikely to affect the conclusion that 24/26 candidates are robust to 448	
confounding by deleterious mutations. The HLA and HYAL2 genes are outliers in terms of their 449	
exon density and recombination rate which accentuates the effect of heterosis, and further 450	
increases the probability of observing extreme summary statistics in a model with recessive 451	
deleterious mutations. In general, our present study shows that if deleterious mutations are 452	
completely recessive, they can account for most of the AI signatures in these two genes. 453	
However, if deleterious mutations are only partially recessive, then it is possible that, by 454	
themselves, deleterious mutations cannot account for these putative signals of adaptive 455	
introgression. In such a scenario, true AI would be required to explain the data. It is also worth 456	
mentioning that HLA gene exhibits complex patterns of genetic variation. We find that even a 457	
conservative deleterious recessive model cannot generate the levels of heterozygosity observed 458	
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for HLA (Supp. Fig. 13), and more work is warranted to determined what actual evolutionary 459	
processes are acting in this region. 460	

Our study demonstrates from multiple angles that the presence of recessive deleterious 461	
variants in populations can sometimes generate similar statistical signals as adaptive 462	
introgression in the absence of any beneficial alleles. Although more conservative, it results in 463	
inferences that are more robust compared to a neutral null model. We should bear in mind that 464	
the overall robustness of the AI signals in modern humans may be attributed to many factors 465	
including the unique genic structure, and the difference in AI signature contributed by the 466	
distribution of recessive deleterious variants is still not negligible. We therefore strongly 467	
encourage future AI studies to use a null model that incorporates a realistic distribution of fitness 468	
effect for deleterious variants, recessive or partially recessive, to minimize false positives. This 469	
approach is particularly relevant for studying organisms that have more compact genomic 470	
structures, and/or different demographic histories that may accelerate the dynamics of the 471	
heterosis effect after introgression. 472	
 473	
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 484	
Methods  485	
 486	
Forward Simulations 487	

We used the software SLiM (version 3.2.0)44 throughout this work for the simulations. 488	
All mutations that became fixed in all population by the end of the simulations were disregarded 489	
from downstream calculation of summary statistics. We chose to use the default calculation of 490	
the fitness effect for recessive deleterious mutations (h=0).  491	

We considered three types of simulations, distinguished by the types of mutations they 492	
carry: 1) neutral simulations (“Neutral”): only neutral mutations are introduced (s=0); 2) 493	
deleterious simulations (“Deleterious”): in addition to the neutral mutations, we introduced 494	
deleterious mutations that are recessive (h=0), with a distribution of fitness effect drawn from a 495	
gamma distribution previously estimated (shape parameter = 0.186; mean selection coefficient = 496	
-0.01314). The deleterious mutations can only accumulate at exon regions, with a ratio of 497	
nonsynonymous to synonymous mutations at 2.31:1; 3) positive selection simulations: this type 498	
of simulation is subdivided into two types depending on the selection strength of the beneficial 499	
mutation introduced (“Mild-pos”, s=0.01; “Strong-pos”, s=0.1). This simulation type carries the 500	
same distribution of neutral and deleterious mutations as in group 2, while we also introduced a 501	
nonsynonymous beneficial mutation in an exon approximately in the middle of the 5MB segment 502	
in all haplotypes from the donor population after the initial split between the donor and outgroup 503	
populations. Therefore, after the single pulse of admixture from the donor to the recipient 504	
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populations, at least one haplotype from the recipient population should carry the beneficial 505	
mutation that arose from the donor population. Simulation replicates where the beneficial 506	
mutation was lost from the recipient population before the end of the simulation were discarded. 507	
We obtained 200 replicates for each unique combination of simulation type and genomic 508	
structure. 509	

We also scaled the simulation parameters by a scaling factor of c (c=5) to increase 510	
computational efficiency. The population size thus was rescaled to N/c, all generation times to 511	
t/c, selection coefficient to s*c, mutation rate to µ*c, and the recombination rate also at r*c 512	
(approximation from 0.5(1-(1-2r)c) for small r and small c). Other evolutionary parameters 513	
remain the same before and after rescaling. 514	
 515	
Simulations with modern human genomic structure 516	

Unless specified separately, all simulations in SLiM from this study use genic structure 517	
from modern human genome build GRCh37/hg19. We fix the simulation segment length at 518	
5MB, and used the exon ranges defined by the GENCODE v.14 annotations49 and the sex-519	
averaged recombination map by Kong et al.52 averaged over a 10kb scale. The per base pair 520	
mutation rate was fixed at 1.5*10-8. For comparison purposes, we also applied a uniform 521	
recombination rates at 1.0*10-8 and 1.0*10-9 as specified in the main text.  522	

For simulations mimicking specific adaptive introgression candidate genes, we identified 523	
the genomic coordinates using the original studies that identified the AI candidate genes (Supp. 524	
Table 1), and extracted their flanking regions upstream and downstream of the gene region to a 525	
total length of 5MB, with the gene region positioned in the center. We then used the 526	
recombination map and the distribution of genomic segments mentioned above in the 527	
simulations.  528	
 529	
Computing the exon density across the human genome 530	

To tabulate exon density across the genome, we scanned the 22 autosomes of human 531	
genome using a sliding window of 5MB with step size of 1kb, and counted the number of exons 532	
per 5MB window. We defined “exon density” as the total number of exons/window. We 533	
extracted the coordinates of the window that has the highest exon density, and designated it as 534	
the “Chr11max” region (hg19 Chr11:62.3-67.3MB). 535	
 536	
Summary statistics for the detection of adaptive introgression 537	

We directly tracked the introgression-derived ancestry (pI) in the recipient population 538	
from SLiM program by tracking the tree sequences across the simulated segments. Therefore, the 539	
introgressed ancestry calculated from this study is the true proportion of ancestry. The amount of 540	
pI was recovered from the tree sequence file generated from SLiM using a custom python script 541	
using pyslim module54.  542	

For the other summary statistics that capture the signature of adaptive introgression (Table 543	
1), we used a custom Python script to extract the sampled haplotype matrices that are in ms 544	
format from the SLiM output (100 haplotype samples per population), and filled in the non-545	
segregating ancestral alleles to match the size of the haplotype matrices from the donor, 546	
recipient, and outgroup populations respectively. We calculated the summary statistics at non-547	
overlapping 50kb windows using the same python script pipeline for each simulation replicate. 548	
 549	
Summary statistics for non-African modern human populations 550	
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We calculated a variety of AI summary statistics using modern human genome variation 551	
data from the 1000 Genomes Project (Phase 3)62. To illustrate the signals of AI captured by the 552	
summary statistics from previous studies, we used all individuals from seven representative 553	
populations from Eurasia and the Americas as recipient populations (for archaic introgression). 554	
Specifically, we used Western Europeans (CEU), British (GBR), Finnish (FIN), Italians (TSI), 555	
Han Chinese (CHB), Indians (GIH), and Peruvians (PEL). We also used Yorubans (YRI) as 556	
unadmixed outgroup. For the donor population, we used the unphased, high-quality whole 557	
genome sequences from the Altai Neanderthal5 and/or the Altai Denisovan8, depending on which 558	
archaic group was identified as the AI source (Column 4 in Supp. Table 1). We referred to the 559	
coordinates of AI candidate genes listed in Supp Table 1 to identify each 5MB region centered 560	
on the candidate gene, and extracted the corresponding genomic sequences from the modern 561	
populations and their respective donor populations. We additionally removed sites in the archaic 562	
genomes that have potential quality issues (quality score < 40 and/or mapping quality < 30). If a 563	
previously identified AI gene was found to be associated with more than one archaic groups, we 564	
used only the Altai Neanderthal sequence for these cases. As we did on the simulations, the 565	
summary statistics were calculated at non-overlapping 50kb windows in the empirical data. 566	
 567	
Haplotype structure comparison using Haplostrips 568	

We used the software Haplostrips56 to plot the haplotypes from the Chr11Max region 569	
from the simulations. The haplotype input matrix for the software was generated from SLiM by 570	
the end of one replicate of simulation, and was further truncated to include only the center 100kb 571	
region surrounding the exon where the beneficial mutation arises when applicable. We sampled 572	
100 chromosomes from the donor and recipient populations respectively, and 2 chromosomes 573	
from the outgroup population. The software output displayed each variant within the region as a 574	
column, and each row represents a haplotype (phased from the simulation). Each population was 575	
assigned a unique color corresponding to the haplotypes from the respective population. The 576	
haplotypes were hierarchical clustered by a decrease in similarity to the sampled haplotypes from 577	
the donor population. The panels on the right-hand side representing the distribution of 578	
haplotypes in terms of the genetic distance to the donor haplotypes. 579	
	580	
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Tables and Figures 735	
 736	
Table 1: Summary statistics informative about AI examined in this study 737	
 738	

Statistic Definition Reference 
pI Ancestry in the recipient population introgressed from the 

donor population. This measurement is directly tracked in 
simulations using tree sequences. 

Kim et al. 2018; 
Kelleher et al. 

2016 
RD Average ratio of sequence divergence between an individual 

from the recipient and an individual from the donor 
population, and the divergence between an individual from the 

outgroup and an individual from the donor population 

Racimo et al. 
2017 

D Patterson’s D statistic, which measures the excess allele 
sharing between the recipient and donor population than 
between the recipient and an outgroup population that is 

unadmixed. 

Green et al. 
2010 

fD A statistic that measures the excess allele sharing while 
controlling for local variation in the recipient population 

Martin et al. 
2015 

U20/U50/U80 Number of uniquely shared alleles between the recipient and 
donor population that are of frequency < 1% in the outgroup, 
100% in the donor, and more than 20/50/80% in the recipient 

population 

Racimo et al. 
2017 

Q90/Q95 90/95% quantile of the distribution of derived allele 
frequencies in the recipient population, that are of frequency 
below 1% in the outgroup and 100% in the donor population. 

Racimo et al. 
2017 

Heterozygosity Expected heterozygosity in the recipient population measured 
by the mean of 2*p*(1-p), with p being the frequency of any 

given allele in the recipient population 

Crow et al. 
1970 

 739	
 740	
 741	
 742	
 743	
 744	
 745	
 746	
 747	
 748	
 749	
 750	
 751	
 752	
 753	
 754	
 755	
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Table 2: Summary of the TPR/FPR under different models 756	
 757	

Simulation 
Scenario Statistics 

Mean of FPR 
in Deleterious 

Model 

SD of FPR in 
Deleterious 

Model 

Focal Window 
TPR in Mild-

Pos Model 

Focal Window 
TPR in Strong-

Pos Model 

Model_0; 
Chr11Max;  

r=1e-9 

pI 0.354 0.047 0.900 1.000 
RD 0.204 0.048 0.521 0.569 
U80 0.117 0.038 0.375 0.431 
Q95 0.437 0.051 0.875 1.000 

Model 0, 
Chr11Max; 

r=hg19 

pI 0.229 0.086 0.885 1.000 
RD 0.134 0.061 0.577 0.648 
U80 0.090 0.045 0.442 0.5 
Q95 0.121 0.034 0.637 0.752 

Model_h; 
Chr11Max;  

r= hg19 

pI 0.087 0.108 0.967 1.000 
RD 0.098 0.117 1.000 0.654 
U80 0.022 0.049 0.667 0.500 
Q95 0.099 0.120 1.000 0.933 

For the deleterious model, we computed the false positive rates (FPRs) in 50kb non-overlapping 758	
windows using the most-extreme 5% value from the neutral distribution as critical value, and 759	
show the mean FPR in the third column. For the adaptive introgression models (Mild-Pos and 760	
Strong Pos), we computed the true positive rates (TPRs) using the same neutral cutoff value in 761	
all windows, and show the true positive rate in the window that contains the adaptive mutation 762	
(“Focal TPR”). Note that a properly calibrated null model should have a FPR of 0.05. 763	
 764	
 765	
 766	
 767	
 768	
 769	
 770	
 771	
 772	
 773	
 774	
 775	
 776	
 777	
 778	
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Figure 1: Heterosis effect from an increase in heterozygosity due to admixture 785	
 786	

 787	
A red or yellow star represents a mutation that is deleterious and recessive (h=0). In this figure, 788	
each individual in the pre-admixed populations is homozygous for recessive deleterious variants 789	
at 2 distinct sites. In the F1 population, if the two populations admix in equally, all mutations 790	
that were private to the original populations and were previously homozygous are now 791	
heterozygous in the F1 population. 792	
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Figure 2: Simulated demographic models 815	
 816	

 817	
Going forwards in time, after a burn-in period of 10*N generations (100k generations for 818	
Model_0 and 73k for Model_h), the ancestral population diverged into two subpopulations, pD 819	
and the ancestral population of pO and pR. The second population split results in pR and pO. 820	
Some time after the split of pO and pR, a single pulse of admixture occurred such that 10% of the 821	
ancestry of the recipient population (pR) came from the donor population (pD). In the presence 822	
of positive selection, a mutation was introduced at a single site in an exon for all genomes in the 823	
donor population (selection coefficient at 0.01 or 0.1). In the neutral and deleterious 824	
simulations, the selection coefficient of this particular mutation is set to 0. Except for the Neutral 825	
simulations, all other simulations contain deleterious mutations drawn from a gamma 826	
distribution of selective effects with shape parameter of 0.186 and average selection coefficient 827	
at -0.01315. 828	
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Figure 3: U80 statistics range under Model_0  846	

 847	
Panels a-d respectively show the distributions of U80 statistics in 50kb windows across the 5MB 848	
region in Chr11 when mutations are neutral (panel a), recessive and deleterious (panel b), mildly 849	
beneficial (panel c), and highly beneficial (panel d). Recombination was simulated at a uniform 850	
rate of 1e-9. The adaptive mutations in the latter two models are introduced in a window in the 851	
middle of the region (2.5MB), indicated by the green solid line. Panel b, c and d also carry 852	
deleterious mutations drawn from a gamma DFE distribution. The plot shows the interquartile 853	
distributions of U80 in boxes, with whiskers extending to all data points.  854	
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Figure 4: Haplotype patterns at 100kb window surrounding the adaptive allele 873	

 874	
For each type of simulation, we sampled 100 haplotypes (rows in the heatmap) in the middle 875	
100kb region of the Chr11Max segment each from the donor and recipient populations, and 2 876	
haplotypes from the outgroup population (Model_0 simulations, with uniform recombination 877	
rate at 1e-9). We order the haplotypes the clusters by decreasing similarities to the donor 878	
population haplotypes (See Methods). The panels next to the heatmaps label the donors (pD, in 879	
black), recipients (pR, in red) and individuals from the outgroup population (pO, in blue). The 880	
right-hand side of panels a and b are the number of differences between the donor haplotypes 881	
and the individuals in the recipient population sorted by decreasing similarity. 882	
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Figure 5: Distributions and True/False Positive Rates of U80 and RD Statistics  890	

 891	
This figure shows the critical value (dotted line) used to compute the False/True Positive Rates 892	
for two summaries of the data: U80 and RD (left hand side of panels a and b). The right-hand 893	
side of panels a and b show the False Positive Rates (under the neutral and deleterious models) 894	
and the True Positive Rates (under the models with positive selection) for each 50kb window in a 895	
region of 5MB. For the simulations, red, orange, blue and black represent Strong-Pos, Mild-Pos, 896	
Neutral, and Deleterious respectively. The light blue lines in the mid-panels illustrate the exons 897	
where new mutations can arise, and the green solid line represents the window where the 898	
adaptive mutation occurred. The simulations ran under Model_0 using the genic structure of the 899	
Chr11Max region, using a uniform low recombination rate of 1e-9. 900	
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Figure 6: False Positive Rates for summary statistics from human AI candidate regions 916	

 917	
The summary statistics are obtained from simulations under Neutral and Deleterious mutation 918	
models using human demography, Model_h. The recombination rates and exon density reflect 919	
the four regions in the human genome harboring BNC2, EPAS1, HLA and HYAL2. The FPR (y-920	
axis) is computed assuming a neutral null model and represents the proportion of simulations 921	
replicates under the Deleterious model that are called significant for adaptive introgression. The 922	
HLA and HYLA2-like regions result in the highest FPRs, while the EPAS1 and BNC2-like 923	
regions have similar FPRs as the other regions simulated. 924	
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Figure 7: Human whole-genome exon density and mean recombination rate 943	

 944	
This figure shows the relationship between the exon density and mean recombination rate in 945	
non-overlapping 5MB windows across the human genome (hg19). The blue points highlight the 946	
regions of AI candidate genes mentioned in the main text, including the outliers (HYAL2, HLA), 947	
and the typical ones (EPAS1, OAS cluster, BNC2). The red point represents the “Chr11max” 948	
region mentioned in earlier sections. 949	
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Figure 8. Significant hits number change in candidate genes between different null models 969	

 970	
We compared the difference in the number of significant hits (windows with p-value <0.05) 971	
predicted by neutral and deleterious null models. Each point represents that difference in 972	
number (y-axis, Neutral significance number – Deleterious significance number) in its 973	
corresponding statistics (x-axis). The genes with multiple points above y-axis value 0 are 974	
highlighted in the gray-shaded area, indicating the deleterious null models predict fewer window 975	
hits being significant for given statistics, which implies potential false positives from neutral null 976	
models. The OAS gene cluster (“OAS123”) - is shown here instead of EPAS1 because the AI 977	
signal in EPAS1 is not shown in any of the 1000 Genomes populations.  978	
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