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Abstract

Mathematical models are often applied to describe cell migration regulated by dif-

fusible signalling molecules. A typical feature of these models is that the spatial

and temporal distribution of the signalling molecule density is reported by solving

a reaction–diffusion equation. However, the spatial and temporal distributions of

such signalling molecules are not often reported or observed experimentally. This

leads to a mismatch between the amount of experimental data available and the

complexity of the mathematical model used to simulate the experiment. To address

this mismatch, we develop a discrete model of cell migration that can be used to

describe a new suite of co–culture cell migration assays involving two interacting

subpopulations of cells. In this model, the migration of cells from one subpopula-

tion is regulated by the presence of signalling molecules that are secreted by the

other subpopulation of cells. The spatial and temporal distribution of the signalling
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molecules is governed by a discrete conservation statement that is related to a

reaction–diffusion equation. We simplify the model by invoking a steady state as-

sumption for the diffusible molecules, leading to a reduced discrete model allowing

us to describe how one subpopulation of cells stimulates the migration of the other

subpopulation of cells without explicitly dealing with the diffusible molecules. We

provide additional mathematical insight into these two stochastic models by deriv-

ing continuum limit partial differential equation descriptions of both models. To

understand the conditions under which the reduced model is a good approximation

of the full model, we apply both models to mimic a set of novel co–culture assays

and we systematically explore how well the reduced model approximates the full

model as a function of the model parameters.

Key words: Chemokinesis, Chemotaxis, Stochastic simulation, Continuum model,

Cell migration, Diffusible molecules.
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1 Introduction1

Random motility is widely recognised as the key mechanism driving in vitro2

cell migration in highly idealised homogeneous environments (Huang et al.3

2005; Treloar et al. 2014). However, in more realistic situations, cell migra-4

tion is often regulated by external signals such as diffusible molecules. Cell5

migration regulated by signalling molecules plays an important role in embry-6

onic development (Behar et al. 1996; Simpson et al. 2006), cancer metastasis7

(Kucia et al. 2004; Müller et al. 2001) and wound healing (Flegg et al. 2015;8

Pettet et al. 1996). In these situations, cell migration is often activated by sig-9

nalling molecules binding to receptors on the cell surface (Yoon et al. 2016).10

Signalling molecules can be present in the environment or secreted by other11

cells (Luster 1998; Wright et al. 2005). In Figure 1(a) we show an example of12

such a system where a signalling molecule called stromal cell–derived factor 113

(SDF-1) binds to the C-X-C motif chemokine receptor 4 (CXCR4) expressed14

on the surface of a mesenchymal stem cell (MSC). This process can regulate15

migration of MSCs (Yoon et al. 2016).16

There are two key mechanisms that give rise to cell migration regulated by17

diffusible signalling molecules: (i) chemokinesis is where undirected cell migra-18

tion is regulated by the local density of a particular signalling molecule (Liu19

and Klominek 2004; Cai et al. 2006); and (ii) chemotaxis is where the direction20

of cell migration is influenced by the spatial gradient of a signalling molecule21

(Keller and Segel 1971). The primary difference between chemokinesis and22

chemotaxis is that, at the individual level, chemokinesis influences the rate of23

undirected random cell movement without explicitly introducing a directional24

bias, whereas chemotaxis explicitly stimulates directional cell movement (Cai25

et al. 2006). Various experimental methods, such as transwell assays (Chen et26

al. 2006), microfluidic devices (Son et al. 2015), chemokinesis and chemotaxis27

assays (Richards et al. 2004; Rosoff et al. 2004), and co-culture migration as-28
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Fig. 1. Binding of signalling molecules to biological cells. (a) A schematic showing
CXCR4–SDF-1 binding on an MSC. (b) An immunofluorescence image of MSCs
demonstrating the expression of CXCR4 which SDF–1 molecules bind to. The blue
fluorescence indicates MSC nuclei. The green fluorescence indicates the expression
of CXCR4. The scale bar corresponds to 50 µm.

says (Chung et al. 2009; Frimberger et al. 2006) are used to study the role29

of chemokinesis and chemotaxis. However, these experimental approaches suf-30

fer from many important limitations. Two key limitations are: (i) signalling31

molecules are technically difficult to visualise in real time (Tokoyoda et al.32

2004), and (ii) the spatial gradient of the signalling molecules is difficult to33

quantify (Chung et al. 2009).34

Mathematical models have been widely used to mimic experimental observa-35

tions relating to chemokinesis and chemotaxis (Brumley et al. 2019; Simp-36

son et al. 2006). In the mathematical modelling literature, perhaps the most37

well–known model describing chemotaxis is the Keller–Segel partial differen-38

tial equation (PDE) model proposed in 1971 (Keller and Segel, 1971). This39

fundamental continuum model has since been generalised to describe both40

chemokinesis and chemotaxis simultaneously (Balding and McElwain 1985;41

Byrne et al. 1998; Hillen and Painter 2009; Sherratt 1994). Further extensions42

of these continuum models include: (i) incorporating multiple cell populations43

(Stinner et al. 2014); (ii) explicitly modelling receptor–molecule binding (Sher-44

ratt et al. 1993); (iii) treating aggregates of cells as multiple interacting phases45

(Byrne and Owen 2004); and (iv) modelling responses with multiple signalling46
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molecules (Painter et al. 2000). Apart from applying continuum PDEs to study47

cell migration stimulated by signalling molecules, discrete stochastic models48

have also been employed (Khain and Sander 2014; Pillay et al. 2018). Com-49

pared to continuum models, discrete models can be used to describe individual50

cell–level behaviour, and to specify how individual cells respond to signalling51

molecules. Using discrete models can be advantageous when comparing model52

predictions with experimental images that focus on individual cell level be-53

haviour.54

A key limitation of standard modelling frameworks is that typical models of55

chemokinesis and chemotaxis explicitly describe spatial and temporal distri-56

butions of the signalling molecules, often using a reaction–diffusion equation57

(Painter et al. 2000; Stinner et al. 2014). This is an important limitation be-58

cause information about the spatial and temporal distributions of signalling59

molecules is rarely available from experiments (Chung et al. 2009; Tokoyoda et60

al. 2004). For example, we show an immunofluorescence image in Figure 1(b),61

with the green fluorescence indicating the expression of CXCR4. However, it62

is impossible to quantify the number of receptors or the spatial variability of63

the density of signalling molecules in this kind of standard experimental im-64

age. Therefore, it is unclear whether it is useful to mimic such an experiment65

with a mathematical model that explicitly describes the spatial and temporal66

variations in signalling molecule density. If one was to use a classical mod-67

elling approach, such as the Keller–Segel model, we would have no way of68

testing whether the spatial and temporal distributions of signalling molecules69

is accurate since these details are not available from standard experiments.70

Motivated by new co–culture migration assays that we report in Section 2, the71

aim of this work is to develop an agent–based modelling framework that can72

be used to describe the dynamics of two interacting subpopulations of cells73

in a co–culture assay. In this model the movement of one type of agents is74

stimulated by the presence of signalling molecules that are produced by the75
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other type of agents. The spatial and temporal distribution of the signalling76

molecules is governed by discrete conservation statement that is related to77

a reaction–diffusion PDE. We refer to this new model as the full discrete78

model since we explicitly describe the spatial and temporal distributions of79

agents and signalling molecules. To make the full discrete model more com-80

patible with experimental data, we simplify the model by assuming that the81

dynamics of the signalling molecules is much faster than the time scale of cell82

migration. This simplification enables us to explore how the spatial distribu-83

tion of signalling molecules affects cell movement without having to solve the84

underlying conservation equation for the signalling molecules. We refer to this85

simplified model as the reduced discrete model. The reduced model is both86

simpler to apply than the full discrete model since there are less parameters87

to estimate, as well as being more consistent with experimental observations88

in which the details of the signalling molecules are not reported. To provide89

additional mathematical insight into these two different stochastic models we90

also explore the continuum limit descriptions of both the full and reduced dis-91

crete models are derived through mean field analysis. This leads to new PDE92

models of signalling molecule–stimulated cell migration.93

2 Co-culture experimental motivation94

To motivate our modelling work we perform and report typical data from a95

series of in vitro co–culture ring barrier migration assays (Das et al. 2015).96

The full experimental protocol is documented in the Supplementary Material.97

Briefly, this type of co-culture assay involves uniformly seeding one type of98

cells inside a circular ring barrier and uniformly seeding another type of cells99

uniformly outside of the ring barrier (Das et al. 2015). Interactions between100

the two cell types can give rise to either a chemokinetic or chemotactic effect,101

depending upon the particular cell lines used in the experiment. In our exper-102
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iments, hepatocytes are seeded inside the ring barrier and MSCs are seeded103

outside the ring barrier in each experimental well in a 12–well tissue culture104

plate (Figure 2(a)–(b)). After seeding, the tissue culture plate is placed in an105

incubator overnight to allow cells to attach to the substrate. After attachment,106

the ring barrier is removed, leaving a vacant annulus of width approximately107

1 mm (Figure 2(c)). Observations of the resulting cell migration are recorded108

by taking images of a small field–of–view over a 24 h period and recording the109

coordinates of particular cell trajectories over this period. Results in Figure110

2(f)–(g) compare the endpoints of 20 typical MSC trajectories in two different111

experiments. The trajectories in Figure 2(f) are taken from a control experi-112

ment in which hepatocytes are omitted and we see that the MSCs appear to113

migrate randomly, with no obvious preferred direction. In contrast, the trajec-114

tories in Figure 2(g) are taken from an experiment that includes hepatocytes115

and we see clear evidence that the MSC migration is directed towards the loca-116

tion of the hepatocytes. Typical experimental results, such as those in Figure117

2, do not provide any information about the temporal or spatial distribution118

of signalling molecules.119
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Fig. 2. Ring barrier co-culture assays. (a) Live cell imaging microscope showing the incubator and confocal microscope apparatus. (b)
An image of a 12-well plate. Each well has a diameter of 22 mm. (c) Schematic of a ring barrier migration assay. Initially hepatocytes
(green dots) are placed uniformly inside the ring barrier and MSCs (yellow dots) are placed uniformly outside the ring barrier, leaving a
vacant annulus highlighted in grey. The red rectangle indicates the field of view. The orange rectangle indicates the simulation domain.
(d)–(e) Experimental image at t = 0 and 24h, respectively. The white scale bar corresponds to 200 µm. (f) MSC trajectories in a control
assay. (g) MSC trajectories in a co–culture assay including hepatocytes beyond the right boundary of the image. In both (f) and (g),
the blue circles indicate cell positions at t = 0 h, and the red circles indicate cell positions at t = 24 h. All trajectories are shifted so
that they start at the origin.
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Many experimental studies indicate a role for chemokinesis or chemotaxis in120

co-culture experiments but do not show any spatial or temporal information121

about distributions of signalling molecules (Das et al. 2015). Therefore, we122

are motivated to model such experiments in a different way. For simplicity123

we apply our models to a small rectangular subregion as illustrated by the124

orange rectangle in Figure 2(c). Migration of cells in this subregion is pre-125

dominantly horizontal, and to be consistent with this we develop our models126

in a one–dimensional geometry. Typical doubling times of MSC cell are over127

50 h (Gruber et al. 2012), and since we only focus on relatively short time128

experiments we neglect the contribution of cell proliferation in our models.129

3 Discrete models130

The experimental data in Figure 2 provides strong evidence that MSC migra-131

tion is biased in the presence of hepatocytes. Since hepatocytes are known to132

produce signalling molecules, such as SDF-1, we hypothesize that the directed133

migration of MCSs in Figure 2 is driven by a chemical signal. However, the134

data in Figure 2 does not indicate whether the directed migration arises from135

chemokinesis or chemotaxis, since both of these mechanisms can give rise to136

directed migration in the presence of a gradient of signalling molecule (Cai137

et al. 2006; Painter and Sherratt 2003). The modelling framework developed138

in this study can be used to examine either chemokinesis, chemotaxis, or a139

combination of chemokinesis and chemotaxis. For simplicity, we present the140

details by focusing on modelling chemokinesis in the main document. Addi-141

tional results for modelling chemotaxis are presented in the Supplementary142

Material.143
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3.1 Full discrete model144

We consider an agent–based model on a one–dimensional lattice where each145

site is indexed i ∈ [1, I] and has position x = (i − 1)∆, where ∆ is the146

lattice spacing that we take to be a typical cell diameter. The lattice is occu-147

pied by two different types of agents that represent the two different types of148

cells in the co-culture experiment: Subpopulation 1 which secretes signalling149

molecules, such as the hepatocytes in Figure 2, and Subpopulation 2 which150

senses and responds to the signalling molecules, such as the MSCs in Figure151

2. The model is an exclusion process, meaning that each lattice site can be152

occupied by, at most, one agent. Therefore, in any single realisation of the153

model the occupancy of agents from Subpopulation 1 is given by Ai ∈ {0, 1}.154

If site i is occupied by an agent from Subpopulation 1 we have Ai = 1,155

and Ai = 0 otherwise. Similarly, in any single realisation of the model the156

occupancy of agents from Subpopulation 2 is given by Bi ∈ {0, 1}. The total157

number of agents from Subpopulation 1 and Subpopulation 2 are N1 and N2,158

respectively.159

Since signalling molecules are many orders of magnitude smaller than cells,160

we allow each lattice site to be occupied by an arbitrary number of molecules,161

and we describe the density of signalling molecules at site i as Ci ∈ [0,∞),162

where Ci is a continuous function of time. We assume that Ci is measured163

in some appropriate unit, such as µM. Such hybrid models that treat cells as164

discrete objects and signalling molecules as continuous densities is standard in165

the mathematical biology literature (Alacón et al. 2003; Mallet and de Pillis166

2006). We will now specify how agents on the lattice move in response to the167

signalling molecules.168
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Fig. 3. Discrete modelling framework. (a) A schematic of the agent–based model
comprising Subpopulation 1 and Subpopulation 2. (b) Spatial distribution of the
signalling molecule density in the full discrete model. (c) Spatial distribution of
the approximate density of the signalling molecule density in the reduced discrete
model.

3.1.1 Agent movement169

Within a particular time step of duration τ , agents from Subpopulation 1 and170

Subpopulation 2 attempt to undergo a nearest neighbour random walk with171

probability f1(Ci) ∈ [0, 1] and f2(Ci) ∈ [0, 1], respectively. The functional172

forms of f1(Ci) and f2(Ci) determine how the agents respond to the density173

of signalling molecules. For example, if f1(Ci) is increasing, the signalling174

molecules amplify the migration rate of Subpopulation 1. We will discuss the175

particular choice of f1(Ci) and f2(Ci) in Section 5.2.176

Agent movement is simulated using a random sequential update method. Dur-177

ing a time step of duration τ , N1 +N2 agents are randomly selected, one at a178

time, with replacement (Jin et al. 2016a). If an agent from Subpopulation 1 at179

site i is selected, that agent attempts to undergo a nearest neighbour random180

walk with probability f1(Ci). Similarly, if an agent from Subpopulation 2 at181

site i is selected, that agent attempts to undergo a nearest neighbour random182

walk with probability f2(Ci). In all cases the target site is chosen at ran-183

dom, and potential motility events are aborted if the target site is occupied.184

Reflecting boundary conditions are applied.185
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3.1.2 Signalling molecules186

To be consistent with our experimental observations in Figure 1, we assume187

the signalling molecules are secreted by agents from Subpopulation 1 at a188

particular rate. The signalling molecules diffuse, undergo decay, and are taken189

up by agents from Subpopulation 2. We suppose that the spatial and tem-190

poral distribution of signalling molecules is governed by discrete conservation191

statement,192

δCi
τ

=

linear diffusion︷ ︸︸ ︷
Dc

∆2
[Ci−1 − 2Ci + Ci+1] +

secretion by
Subpopulation 1︷︸︸︷

λAi −

uptake by
Subpopulation 2︷ ︸︸ ︷
κCiBi −

intrinsic decay︷︸︸︷
µCi ,

(1)

where Dc [µm2/h] is the molecular diffusivity, λ [µM/h] is the secretion rate, κ193

[/h] is the uptake rate and µ [/h] is the intrinsic decay rate. We solve Equation194

(1) numerically as outlined in the Supplementary Material.195

3.2 Reduced discrete model196

We now formulate a reduced discrete model that retains key elements of the197

full discrete model without the need to explicitly solve for the spatial and198

temporal distribution of the signalling molecules. To distinguish between the199

two models we write the site occupancy of Subpopulation 1 and Subpopulation200

2 as Ui ∈ {0, 1} and Vi ∈ {0, 1}, respectively. The diffusivity of signalling201

molecules is approximately three orders of magnitude greater than a typical202

cell diffusivity (Jin et al. 2017; Mac Gabhann and Popel 2004). This motivates203

us to simplify the model by assuming we have quasi-steady conditions since204

the diffusive transport evolves on much faster timescale than the source terms205

on the right of Equation (1). If the magnitude of the source terms in Equation206

(1) are negligible relative to the diffusive transport term, at steady state we207

have Ci+1 − 2Ci + Ci−1 = δCi = 0. Setting Ci+1 − 2Ci + Ci−1 = 0 and208
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δCi = 0 in Equation (1) gives Ci = λUi/(µ+ κVi), which could be a useful209

way to indirectly represent the effect of the signalling molecules as a function210

of the spatial arrangement of the agents on the lattice. This kind of quasi-211

steady assumption is often used to simplify continuum mathematical models212

where some kind of diffusible signal (e.g. Cai et al. 2006) or diffusible nutrient213

(e.g. Breward et al. 2002) is assumed to approach steady state much faster214

than the dynamics of some population of cells. The consequences of making215

such assumptions in a stochastic framework are rarely, if ever, examined in216

detail.217

Since we have an exclusion process, each lattice site can be occupied by a218

single agent. Therefore, simply applying Ci = λUi/(µ+κVi) leads to Ci = 0219

at any site with Ui = 0, or Ci = λ/µ for any site with Ui = 1. To make220

this approximation more realistic, we take the occupancy of lattice site i to221

be the average of the nearest neighbour lattice sites, Ûi = (Ui−1 + Ui+1)/2222

and V̂i = (Vi−1 + Vi+1)/2, giving223

Gi =
λÛi

µ+ κV̂i
. (2)

Therefore, in the reduced model, we take Gi to approximate density of the224

signalling molecule density at site i. Using this approximation in our discrete225

modelling framework allows us to implicitly simulate the role of the signalling226

molecules without needing to solve Equation (1). This approach has three227

clear advantages over the full discrete model: (i) the reduced discrete model228

involves less parameters than the full discrete model; (ii) the reduced discrete229

model is faster to computer than the full discrete model since there is no need230

to solve the evolution equation for Ci; and (iii) the reduced discrete model is231

more consistent with typical experimental observations that do not measure232

or report spatial and temporal distributions of the signalling molecules.233

The reduced discrete model is implemented computationally using a similar234
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random sequential update method. The only difference is that in the reduced235

discrete model we apply f1(Gi) and f2(Gi) instead of f1(Ci) and f2(Ci), and236

there is no need to solve the evolution equation for Ci. Of course, the key237

question that we are interested in now is to establish when the reduced model238

provides a good approximation to the full model. Intuitively we expect that239

the reduced discrete model will be a good approximation of the full model240

when Ci is accurately approximated by Gi. However, to explore this quanti-241

tatively we need to compare the performance of the two models over a series242

of biologically relevant parameter values. Before we consider this comparison,243

we also provide more mathematical insight into the two models by deriving244

approximate continuum limit descriptions of the two discrete modelling frame-245

works.246

4 Continuum limit descriptions247

We begin the continuum limit derivation by assuming we have access to a large248

number of identically prepared realisations of the full discrete model, and we249

denote the average occupancy of Subpopulation 1 and Subpopulation 2 at site250

i by Āi ∈ [0, 1] and B̄i ∈ [0, 1], respectively. Similarly, the average density of251

signalling molecules at site i is given by C̄i ∈ [0,∞). Invoking a mean-field252

assumption and accounting for all possible events that alter the occupancy of253
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site i over a time step of duration τ , we obtain254

δĀi =

migration into site i︷ ︸︸ ︷
1

2

(
1− S̄i

) (
f1(C̄i−1)Āi−1 + f1(C̄i+1)Āi+1

)
− f1(C̄i)

2
Āi
(
2− S̄i−1 − S̄i+1

)
︸ ︷︷ ︸

migration out of site i

, (3)

δB̄i =

migration into site i︷ ︸︸ ︷
1

2

(
1− S̄i

) (
f2(C̄i−1)B̄i−1 + f2(C̄i+1)B̄i+1

)
− f2(C̄i)

2
B̄i

(
2− S̄i−1 − S̄i+1

)
︸ ︷︷ ︸

migration out of site i

, (4)

where δĀi and δB̄i are the change in occupancy at site i of Subpopulation 1255

and 2, respectively, and S̄i = Āi + B̄i is the total average occupancy at site256

i. To convert these discrete conservation statements into continuous expres-257

sions we identify the discrete variables with appropriate continuous variables,258

Āi(t) = a(x, t), B̄i(t) = b(x, t) and C̄i(t) = c(x, t). Expanding each term259

in Equations (3)–(4) about site i using a Taylor series and neglecting terms260

of O(∆3), we divide both sides of the resulting expressions by τ and take the261

limit ∆→ 0 and τ → 0 jointly, with the ratio ∆2/τ held constant, to give262

∂a

∂t
=
∂

∂x

[
(1− s) ∂

∂x
(Da(c)a) +Da(c)a

∂s

∂x

]
, (5)

∂b

∂t
=
∂

∂x

[
(1− s) ∂

∂x
(Db(c)b) +Db(c)b

∂s

∂x

]
, (6)

∂c

∂t
=Dc

∂2c

∂x2
+ λa− κcb− µc, (7)

where Da = ∆2f1(c)/ (2τ) and Db = ∆2f2(c)/ (2τ) are the diffusion coeffi-263

cients for Subpopulation 1 and Subpopulation 2, respectively and s(x, t) = a(x, t)+264

b(x, t). We refer to Equations (5)–(7) as the full continuum model.265

The continuum limit description of the reduced discrete model can be obtained266
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using a very similar approach. The approximate conservation statements for267

the two subpopulations can be written as,268

δŪi =
1

2

(
1− S̄i

) (
f1(Ḡi−1)Ūi−1 + f1(Ḡi+1)Ūi+1

)
− f1(Ḡi)

2
Ūi
(
2− S̄i−1 − S̄i+1

)
, (8)

δV̄i =
1

2

(
1− S̄i

) (
f2(Ḡi−1)V̄i−1 + f2(Ḡi+1)V̄i+1

)
− f2(Ḡi)

2
V̄i
(
2− S̄i−1 − S̄i+1

)
, (9)

where all terms have a similar interpretation to those in Equations (3)–(4).269

We proceed to the continuum limit in the same way, arriving at270

∂u

∂t
=

∂

∂x

[
(1− s) ∂

∂x
(Du(g)u) +Du(g)u

∂s

∂x

]
, (10)

∂v

∂t
=

∂

∂x

[
(1− s) ∂

∂x
(Dv(g)v) +Dv(g)v

∂s

∂x

]
. (11)

where u(x, t) and v(x, t) are the densities of Subpopulation 1 and Subpopu-271

lation 2, respectively. Here, Da = ∆2f1(g)/ (2τ) and Db = ∆2f2(g)/ (2τ)272

are the diffusion coefficients for Subpopulation 1 and Subpopulation 2, respec-273

tively. We refer to Equations (10)–(11) as the reduced continuum model.274

5 Results and Discussion275

In this section we explore solutions of the full and reduced models, both dis-276

crete and continuum, for a typical geometry and timescale that reflect the277

co–culture assay in Figure 2. For the discrete models we set τ = 0.01 h and278

∆ = 20 µm to reflect a typical cell diameter. To simulate the width of the279

experimental field-of-view in Figure 2(c) we choose I = 201. We initialise the280

discrete simulations by placing agents from Subpopulation 1 to the left of the281

domain and agents from Subpopulation 2 to the right of the domain at t = 0.282
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All sites with i ≤ 76 are randomly populated with probability 0.6 by agents283

from Subpopulation 1 and all sites with i ≥ 126 are randomly populated with284

probability 0.6 by agents from Subpopulation 2. This initial condition leaves285

1000 µm of vacant space in the middle of the domain which is consistent with286

the initial width of the annulus of free space in Figure 2. In the full discrete287

model we assume that Ci = 0 at all sites at t = 0.288

The full and reduced continuum models are solved numerically as outlined in289

the Supplementary Material. The initial condition in the continuum model is290

consistent with the discrete models by setting a(x, 0) = 0.6 for 0 ≤ x ≤291

1500 µm, b(x, 0) = 0.6 for 2500 ≤ x ≤ 4000 µm, and a(x, 0) = b(x, 0) = 0292

elsewhere. In the full continuum model we set c(x, 0) = 0 for 0 ≤ x ≤ 4000 µm293

and we will comment on this choice of initial conditions later.294

5.1 Choice of model parameters295

To make our simulations consistent with experimental observations we note296

that MSCs are known to respond to diffusible molecules secreted by hepato-297

cytes in co–culture assays, whereas the migration of hepatocytes are unaffected298

by the presence of MSCs in co–culture (Novo et al. 2011; Yoon et al. 2016).299

Accordingly, in the discrete models we assume that agents from both subpop-300

ulations undergo unbiased migration when Ci = 0 and that Ci has no impact301

upon the migration of Subpopulation 1 so we set f1(Ci) to be a constant. In302

contrast, we choose f2(Ci) to be a smooth increasing function, given by303

f2(Ci) =
1

(1 +He−αCi)
, (12)

where α ≥ 0 specifies the strength of the chemokinetic response, and H is a304

constant relating to the migration rate of Subpopulation 2 in the absence of sig-305

nalling molecules. In this section we choose H = 9, which gives f2(0) = 1/10.306
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We set f1(Ci) = f2(0) = 1/10 so that in the absence of the chemical signal,307

agents from both subpopulations undergo unbiased random migration at the308

same rate. In terms of the continuum limit description, our choices of ∆, τ ,309

f1(Ci) and f2(Ci) correspond to Da = Db(0) = Du = Dv(0) = 2000310

µm2/h which is a typical value of cell diffusivity in low density tissue culture311

(Jin et al. 2016b).312

There are five free parameters in the full and reduced models: Dc, λ, κ, µ, and313

α. We note that the diffusivity of typical diffusible molecules is approximately314

105 µm2/h (Mac Gabhann and Popel 2004; Veldkamp et al. 2009). Exper-315

imental observations of the half life of diffusible molecules is around 0.5 h316

(Kirkpatrick et al. 2010), which corresponds to an exponential decay rate of317

approximately 1 /h. Therefore, we set Dc = 105 µm2/h and µ = 1 /h. We318

are unaware of any detailed experimental measurements of production and319

uptake rates of SDF-1 for co–culture experiments with hepatocytes and MSC320

so we choose λ = 1 µM/h and κ = 1 /h, to be of the same order as the decay321

rate. Later we will vary these choices of parameter values to gain insight into322

the sensitivity of the model predictions to these choices of parameter values.323

5.2 Comparisons of the full and reduced models324

Results in Figure 4(a)–(b) show snapshots of the time evolution of agent posi-325

tions in the full and reduced discrete models, respectively. In these preliminary326

simulations we specify a weak chemokinetic effect, α = 1. Comparing the327

distribution of agents in different rows of the subfigures shows that the two328

subpopulations migrate into the initially–vacant space over time. We estimate329

the expected behaviour of the simulations by averaging the occupancy of each330

lattice site using 500 identically–prepared realisations of the stochastic models331

and show the averaged density profiles in Figure 4(c) where we see that the332

averaged density profiles from the reduced discrete model compares very well.333
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Fig. 4. Comparison of the full and reduced discrete models. (a), (d), (g) Snapshots from the full discrete model at t = 0, 6, 12, 18,
and 24 h. The arrow along the vertical direction indicates increasing time. (b), (e), (h) Snapshots from the reduced discrete model at
t = 0, 6, 12, 18, and 24 h. (c), (f), (i) Density profiles of Subpopulation 1 and Subpopulation 2 from the full and reduced discrete models
at t = 0 and 24 h. The black arrow indicates increasing time. The inset in each subfigure shows profiles of the C̄i and Ḡi at t = 24 h. All
the simulation data are obtained by averaging over 500 statistically identically prepared realisations. Da = Db(0) = Du = Dv(0) = 2000
µm2/h, Dc = 105 µm2/h, λ = 1 µM/h, and κ = µ = 1 /h, ∆ = 20 µm and τ = 0.01 h for all the simulations.
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To investigate how the comparison between the full and reduced discrete mod-334

els depends upon the strength of the chemokinetic effect we present additional335

results in the in Figure 4 (d)–(e) for α = 100 and in Figure 4 (g)–(h) for336

α = 1000. Comparing the averaged density profiles at t = 24 h shows that337

we maintain reasonably good agreement between the reduced and full models338

for the moderate chemokinetic effect in Figure 4(f) but we see that the re-339

duced discrete model does not approximate the full discrete model very well340

when the chemokinetic effect is strong, as in Figure 4(i). In addition, in the341

Supplementary Material we compare the averaged density profiles at t = 48342

h to allow more time, beyond the typical experimental timescale, for the two343

subpopulations to interact. These additional results over a longer time scale344

are consistent with the results in Figure 4.345

All results in Figure 4 correspond to discrete results. We now examine how346

well the averaged data from the two discrete models compare with the numer-347

ical solution of the associated continuum limit descriptions. Results in Figure348

5(a)–(c) compare averaged density profiles from the full model with corre-349

sponding solutions of Equations (5)–(7) for α = 1, 100 and 1000, respectively.350

These results show that the new PDE models provide an accurate approxi-351

mation of the averaged behaviour of the full discrete model when α = 1352

and α = 100, but that the solution of the continuum limit PDE does not353

provide an accurate approximation of the averaged data from the full discrete354

model when chemokinesis is sufficiently strong, α = 1000. Similarly, results355

in Figure 5(d)–(f) compare averaged density profiles from the reduced model356

with corresponding solutions of Equations (10)–(11) for α = 1, 100 and 1000,357

respectively. Again, we see that the solution of the continuum limit PDE mod-358

els provides a good approximation of the averaged behaviour of the reduced359

discrete model when α = 1 and α = 100, but we observe some discrepancy360

when the chemokinesis is sufficiently strong, α = 1000. Therefore, while361

the continuum limit PDEs can provide a good description of the average be-362
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haviour of the discrete model for certain parameter choices, they do not always363

provide a good approximation of the discrete models and this discrepancy is364

associated with the failure of the mean-field approximation (Simpson et al.365

2010). Therefore, for the remainder of this study we will focus on using the366

discrete models and explore the differences in the performance of the full and367

reduced discrete models.368
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Fig. 5. Continuum–discrete comparisons of the full and reduced models. (a)–(c) Continuum–discrete comparisons of the full models at
t = 0 and 24 h. (d)–(f) Continuum–discrete comparisons of the reduced models at t = 0 and 24 h. The solid line indicates results
from the discrete models. The dashed line indicates results from the continuum models. The black arrow indicates increasing time.
Da = Db(0) = Du = Dv(0) = 2000 µm2/h, Dc = 105 µm2/h, λ = 1 µM/h, and κ = µ = 1 /h for all the cases. ∆ = 20 µm and τ = 0.01 h
for all the discrete simulations.
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We now quantitatively explore the difference between the full and reduced369

discrete models for a range of signalling molecules diffusivity (Dc = 10, 105,370

106 µm2/h) and a range of chemokinetic strengths (α = 1, 100, 1000). To371

quantify the quality-of-match between the full and reduced models, we com-372

pute a measure of the least–squares difference between the averaged density373

profiles,374

E1(t;Dc, α, λ, κ, µ) =
1

M

M∑
m=1

I∑
i=1

(
A

(m)
i (t)− U (m)

i (t)
)2
, (13)

E2(t;Dc, α, λ, κ, µ) =
1

M

M∑
m=1

I∑
i=1

(
B

(m)
i (t)− V (m)

i (t)
)2
, (14)

where m is an index indicating the number of identically-prepared realisa-375

tions and M = 500 is the total number of identically–prepared realisations376

considered. For each combination of Dc and α that we consider, we compute377

E1(24;Dc, α, λ, κ, µ) and E2(24;Dc, α, λ, κ, µ) with fixed values of λ = 1378

µM/h and κ = µ = 1 /h, and we plot the averaged density profiles at379

t = 24 h in Figure 6. Results in Figure 6 indicate that E1 is relatively small380

and insensitive to the parameter values we consider. In contrast, E2 increases381

with both α and Dc. In particular we see that the reduced discrete model382

can provide a very good approximation of the full discrete model when α is383

sufficiently small, but the approximation becomes poor when α increases.384
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Fig. 6. Comparisons of the results form the full and reduced discrete models. Density profiles of Subpopulation 1 and Subpopulation 2
from the full and reduced discrete models at t = 0 and 24 h are shown. The inset in each subfigure compares C̄i and Ḡi at t = 24 h. The
black arrow indicates increasing time. Da = Db(0) = Du = Dv(0) = 2000 µm2/h, λ = 1 µM/h, κ = µ = 1 /h, ∆ = 20 µm and τ = 0.01
h for all the simulations.
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In addition to comparing averaged agent density profiles for the full and dis-385

crete models, the insets provided in each subfigure of Figure 6 show the spatial386

distributions of C̄i and Ḡi at t = 24 h. We see that C̄i is accurately approx-387

imated by Ḡi when Dc = 10 and 105 µm2/h, whereas the comparison is388

poor when Dc = 106 µm2/h. As a result we have relatively good agreement389

between the full and reduced averaged density profiles in Figure 6(a)–(e) since390

C̄i is reasonably well approximated by Ḡi. However, results in Figure 6(f)391

shows that even with a relatively good match between C̄i and Ḡi, the match392

between the averaged density profiles of the full and reduced discrete models393

can still be poor when the strength of chemotaxis is sufficiently large, here394

α = 1000. Results in Figure 6(h)–(i) correspond to cases where C̄i and Ḡi do395

not match well and in all these cases we see that the average density profiles396

in the reduced discrete model do not provide a good approximation of the397

averaged density profiles in the full discrete model.398

Overall, comparing the average density profiles in Figure 6 confirms that the399

reduced discrete model can be used to approximate the full discrete model for400

certain parameter choices. In general we see that the quality of match between401

the two models tends to decreases with α and the performance of the reduced402

model is also sensitive to other parameters such as Dc. To provide further403

insight into how the performance of the reduced discrete model depends upon404

the choice of parameters we compute E1 and E2 at t = 24 h over a range of405

µ, λ, α and Dc. For each choice of α and Dc, we construct two-dimensional406

heat maps showing E1 and E2 as a function of µ and λ. The heat maps,407

shown in Figure 7, indicate that the reduced model provides a reasonably good408

approximation of the full model provided we have a sufficiently small α and409

Dc. Comparing the magnitude of E1 and E2 as a function of λ and µ indicates410

that the accuracy of the reduced discrete model is less sensitive to variation411

in λ and µ than it is to variations in α and Dc. Similar results (not shown)412

also indicate that E1 and E2 are relatively insensitive to the choice of κ for413
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the choice of initial condition to mimic the co–culture experiments in Figure414

2. Therefore, we have chosen to focus our examination of the performance of415

the reduced discrete model to α, Dc, λ and µ.416
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Fig. 7. Heat maps showing E1(24;Dc, α, λ, κ, µ) and E2(24;Dc, α, λ, κ, µ) for various choices of Dc, α, λ and µ with κ held constant at
κ = 1. In all simulations we have ∆ = 20 µm and τ = 0.01 h.
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6 Conclusion and Outlook417

Typical mathematical models of cell migration stimulated by signalling molecules418

involve some kind of reaction–diffusion equation to explicitly describe the spa-419

tial and temporal distribution of the signalling molecules. However, such in-420

formation is rarely available from experimental observations since signalling421

molecules are challenging to record and image. Motivated by a suite of new co–422

culture cell migration assays, we develop new mathematical modelling tools to423

describe the cell migration regulated by signalling molecules in an attempt to424

avoid the need for working directly with a description of the spatial and tem-425

poral distribution of signalling molecules. We first develop a full discrete model426

that describes the migration and interactions of two subpopulations of cells, in427

which the movement of one subpopulation is regulated by the presence of sig-428

nalling molecules secreted by cells in the other subpopulation. In this model,429

the spatial and temporal distribution of the signalling molecules is governed430

by a discrete conservation statement that is related to a reaction–diffusion431

equation. To make this description consistent with experimental observations,432

we simplify the full discrete model by invoking a quasi–steady state assump-433

tion in the reaction–diffusion equation governing the spatial and temporal434

distribution of the signalling molecules. With this simplification, we obtain a435

reduced discrete model which implicitly describes a similar interaction between436

the two cell populations without needing to solve the underlying conservation437

statement. To provide additional mathematical insight into these two models438

we obtain continuum limit descriptions of both models, leading to new PDE439

models.440

In the full discrete model we suppose that the migration rates of agents from441

Subpopulation 1 and Subpopulation 2 are given by functions f1(Ci) and f2(Ci),442

respectively, where Ci is the density of signalling molecules at site i. Similarly,443

in the reduced discrete model the migration rates of agents from Subpop-444
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ulation 1 and Subpopulation 2 are given by f1(Gi) and f2(Gi), respectively,445

where Gi is the approximate density of signalling molecules at site i. Choosing446

particular functional forms for f1 and f2 allows us to specify whether cell mi-447

gration is stimulated or inhibited by the signalling molecule. We choose forms448

of f1 and f2 that are relevant to the hepatocype–MSC co–culture experiments449

in Figure 2, and we compare the performance of the full discrete model and450

reduced discrete model for a typical experimental geometry, timescale, and451

parameter choices, and we focus on comparing the full and reduced models452

for different strengths of the chemokinesis effect. This comparison indicates453

particular situations where the reduced discrete model could be used in place454

of the full discrete model. In general we find that the reduced discrete model455

performs particularly well when the strength of chemokinesis is sufficiently456

small, whereas for sufficiently strong chemokinesis the comparisons indicate457

that the reduced model is not always a good approximation. Without making458

such comparisons, it is not obvious when it would be reasonable to use the459

reduced model.460

There are several features of this study that could warrant further inves-461

tigation: (i) For simplicity, we focus on developing one–dimensional models462

to describe cell migration regulated by signalling molecules, and these one–463

dimensional models can be extended to two–dimensional geometries where464

necessary; (ii) In all comparisons we assume Ci = 0 at t = 0 in the full model465

description. This assumption is reasonable given that typical experiments do466

not provide any information about the spatial and temporal distribution of467

signalling molecules. If, instead, the initial distribution for Ci was known or468

measurable, all comparisons in this work could be repeated making use of that469

information; (iii) In this work we choose particular forms of f1 and f2 that are470

relevant to the hepatocyte–MSC co–culture experiments in Figure 2. Other471

choices of f1 and f2 could be made for different co–culture systems as rele-472

vant; and (iv) In the current modelling framework we assume that cells sense473
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signalling molecules locally, at the same site i. However, in the cell biology474

literature there have been different hypotheses put forward about non-local475

sensing over different spatial ranges (Hopkins and Camley 2019). Such non-476

local sensing could be introduced into our modelling framework by making477

appropriate adjustments to the discrete models and then examining how these478

changes manifest in the continuum limit description.479
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