Abstract
Motivation One of the most popular techniques in biological studies for analyzing high throughput data is pathway enrichment analysis (PEA). Many researchers apply the existing methods without considering the topology of pathways or at least they have overlooked a significant part of the structure, which may reduce the accuracy and generalizability of the results. Developing a new approach while considering gene expression data and topological features like causal relations regarding edge directions will help the investigators to achieve more accurate results.
Results We proposed a new pathway enrichment analysis based on Bayesian network (BNrich) as an approach in PEA. To this end, the cycles were eliminated in 187 KEGG human signaling pathways concerning intuitive biological rules and the Bayesian network structures were constructed. The constructed networks were simplified by the Least Absolute Shrinkage Selector Operator (LASSO), and their parameters were estimated using the gene expression data. We finally prioritize the impacted pathways by Fisher’s Exact Test on significant parameters. Our method integrates both edge and node related parameters to enrich modules in the affected signaling pathway network. In order to evaluate the proposed method, consistency, discrimination, false positive rate and empirical P-value criteria were calculated, and the results are compared to well-known enrichment methods such as signaling pathway impact analysis (SPIA), bi-level meta-analysis (BLMA) and topology-based pathway enrichment analysis (TPEA).
Availability The R package is available on carn.
Footnotes
↵* Assistant Professor of Systems Biology and Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB),Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran
Considering acceptance of the R package in cran repository, its address has changed from Github to cran. Some typographical errors in the main text and Figures S2 and S3 captions have been corrected.








