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Abstract: The composition and abundance of gut microbiota is essential for host health 22 

and immunity. Gut microbiota is symbiotic with the host, so changes in the host diet, 23 
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development, and health will lead to changes in the gut microbiota. Conversely, changes 24 

in the gut microbiota also affect the host conditions. In this experiment, 16S rRNA high-25 

throughput sequencing was used to compare the gut microbiota composition of 5 26 

healthy Paa Spinosa and 6 P. spinosa with rotten-skin disease. Results: the gut 27 

microbiota composition was significant difference between diseased P. spinosa and the 28 

healthy P. spinosa; LEfSe analysis showed that the relative abundance of 29 

Methanocorpusculum, Parabacteroides, AF12, PW3, Epulopiscium, and Oscillospira 30 

were significantly higher in the diseased P. spinosa, while the relative abundance of 31 

Serratia, Eubacteium, Citrobacter, and Morganella were significantly lower. 32 

Conclusion: Rotten-skin disease changed P. spinosa gut microbiota significantly; The 33 

relative abundance of Epulopiscium and Oscillospira might be related to the health 34 

conditions of the host skin and gallbladder; The relative abundance of Serratia and 35 

Eubacteium might be important for maintaining the gut microbiota ecosystem. 36 

 37 
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Introduction 44 

The giant spiny frog (Paa spinosa) is a large edible frog distributed in the 45 
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mountains of China and Vietnam (1). It is favored by people for its great economic and 46 

medicinal value (2). In recent years, due to the increase of market demand and the 47 

destruction of habitats, the wild P. spinosa have been declined sharply. The Chinese 48 

Red Animal List has listed P. spinosa as a “vulnerable” species(3) (4). The artificial 49 

breeding has provided an effective way to meet market demand and protect wild P. 50 

spinosa. However, frequent disease problems seriously restrict the development of the 51 

P. spinosa industry (1) (5). 52 

The rotten-skin disease is a common disease of P. spinosa, which is characterized 53 

by a dull epidermis and white spots appearing at the beginning, and then the epidermis 54 

falls off and begins to rot until the bone is exposed(6). Many pathogens cause rotten-55 

skin disease, such as Proteus mirabilis and Yersinia kristensenii(6). Some diseased 56 

frogs will not die immediately, but growth is affected (7), some pathogens not only 57 

cause diseased frogs to show signs of rot but also cause a large number of deaths, such 58 

as Chytridiomycosis. The diversity of pathogens of rotten-skin disease bring difficulties 59 

to routine methods of preventing the disease, a new method is needed immediately. 60 

Animal gut microbial communities as host “microbial organs” play an important 61 

role in host immunity and health, such as promoting the absorption of nutrients(8) (9) 62 

(10), impeding pathogens colonization in the gut (11) and regulating host immunity to 63 

maintain host health. Gut microbiota is symbiotic with the host, so changes in the host 64 

diet, development, and health can lead to changes in the gut microbiota (12)(13)(14). 65 

Conversely, changes in the gut microbiota also affect the host conditions. The normal 66 

microbiota composition is the guarantee for maintaining the physiological function of 67 
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the host (15). When the physiological function of the host is abnormal (such as the 68 

disease involving), the gut microbiota composition will change as well(16). In recent 69 

years, a new understanding of aquatic animal diseases has been gained by comparing 70 

the gut microbiota of diseased aquatic animals with healthy ones (Table 1). So we 71 

hypothesized that gut microbiota changed significantly between the healthy P. spinosa 72 

and the rotten-skin diseased P. spinosa. And comparing the composition of gut 73 

microbiota of healthy P. spinosa and the rotten-skin diseased P. spinosa we will know 74 

the microbiota change, which may be vital to discover the antagonistic bacteria of P. 75 

spinosa rotten-skin disease and explore new methods to prevent and control rotten-skin 76 

disease. 77 

In this paper, the 16S rRNA amplicon high-throughput sequencing technology was 78 

used to investigate the effects of rotten-skin disease on gut microbiota composition in 79 

P. spinosa. The potential probiotics and antagonistic bacteria were screened out in the 80 

healthy P. spinosa through comparing the composition of gut microbiota between 81 

healthy and diseased P. spinosa, and expected to enrich the theories about regulating 82 

gut microbiota structure by using microbial ways and realizing the microecological 83 

prevention of rotten-skin disease in P. spinosa.  84 

 85 

Materials and methods 86 

Sample Collection 87 

All animal experiments were conducted in accordance with the recommendations in the 88 

Guide for the Care and Use of Laboratory Animals of the National Institute of 89 
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Health(NIH). The experimental animals were approved by the experimental animal 90 

ethic committee of Hunan Agriculture University. All samples were collected from 91 

Shimen County, Hunan ProvinceWeixin Town P.spinosa farm (110°29'-111°33'E, 92 

29°16'-30°08 N). There were 11 P.spinosa in the experiment, including 5 Healthy 93 

P.spinosa (H) and 6 diseased P.spinosa (D). The frog was anesthetized and dissected 94 

under sterile conditions, collected gut contents, transferred to 2 ml sterile EP tubes and 95 

stored at -80 ° C, used for subsequent DNA extraction. 96 

 97 

DNA extraction and high-throughput sequencing 98 

The gut microbiota DNA was extracted using a DNeasy PowerSoil Kit (QIAGEN, 99 

Germany). The V4-V5 hypervariable region of the prokaryotic 16S rRNA gene was 100 

amplified using the universal primer pair 515F and 909R, with a 12-nt sample-specific 101 

barcode sequence, including at the 5'-end of the 515F to distinguish samples (17) (18). 102 

PCR was performed, and amplicons were sequenced using a MiSeq system at 103 

Guangdong Meilikang Bio-Science, Ltd. (China), as described previously (1). 104 

The raw sequences were merged using FLASH-1.2.8 software and processed using the 105 

QIIME pipeline 1.9.0 as described previously(1)(19). Chimeric sequences were 106 

identified and removed using the Uchime algorithm and the no-chimeric sequences 107 

were clustered into OTUs at 97% identity using UPARSE software (20) (21). The RDP 108 

classifier was used to detect the taxonomic assignments of each OTU (22). 109 

The merged sequences were submitted to the NCBI SRA database (accession number 110 

SRR10765290-SRR10765300 ). 111 

Data Analysis 112 
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The results for each parameter were presented as the mean ± standard error for each 113 

group. Principal coordinate analysis (PCoA) based on unweighted Unifrac distance was 114 

applied to evaluate the differences in different groups. Principal component analysis 115 

(PCA) was performed by R vegan package. Non-parametric ANOVA (PERMANOVA) 116 

was performed using the R vegan package(23) to analyze the significance of differences 117 

between groups; Welch's T-test(STAMP) was performed to analyze significantly 118 

different phylum in gut microbiota between groups; Prism 6 was used for box plot 119 

production; T tests was conducted by SPSS16.0 to analyze the significance of 120 

differences in diversity indicators; the p-value less than 0.05 were significant difference, 121 

p-value less than 0.01 were significant extremely. 122 

 123 

Results 124 

The skin of diseased P. spinosa had the white spot or large area of decay. After anatomy, 125 

there were obvious lesions in the liver and gallbladder. The liver blackened obviously. 126 

The gallbladder was enlarged or discolored. The symptoms of the diseased P. spinosa 127 

are shown in the picture (Fig. 1). 128 

A total of 466,541 high-quality sequences were obtained from the 11 gut microbiota 129 

samples. To avoid the influence of sequencing depth, 25,520 sequences were randomly 130 

selected from each sample for further analysis, and 5,793 OTUs from 704 genera were 131 

identified. The results of gut microbiota diversity indicated that the diversity index, 132 

such as Chao1, Observed-species, PD-whole-tree, Shannon index, and Simpson index, 133 

in healthy P. spinosa were significantly lower than the diseased P. spinosa, but the 134 
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Good-coverage had no difference (Fig.2). Removing the unclassified sequences 135 

(<0.001%),19 of the 56 phyla dominated the gut microbiota. Bacteroides and 136 

Firmicutes were the dominant microbiota in the gut of all samples (Fig. 3A), which is 137 

consistent with a previous study (1). Among them, the average relative abundance of 138 

Bacteroides, Firmicutes, Proteobacteria, Tenericutes, and Euryarchaeota was more 139 

than 1% in all samples (Fig. 3A). STAMP based on relative abundance of top 10 phyla 140 

in the gut microbiota showed that Proteobacteria was significantly higher in the healthy 141 

P. spinosa, while the relative abundance of Euryarchaeota and Spirochaetes were 142 

significantly lower (Fig. 3B). 143 

PCA based on the relative abundance of all gut microbiota genera and PCoA based on 144 

the relative abundance of the all gut microbiota genera showed that there were 145 

significant differences in gut microbiota composition between diseased and healthy P. 146 

spinosa (PERMANOVA, F= 3.0464, p = 0.008) (Fig. 4A and 4B). Unweighted Pair-147 

Group Method with Arithmetic means UPGMA analysis shown that microbiota 148 

composition were familiar between the groups(Fig. 4C). 149 

Lefse analyzed the difference of gut microbiota at genus level showed that relative 150 

abundance of Serratia, Eubacteium, Citrobacter, and Morganella were significantly 151 

higher in  healthy P. spinosa, while the relative abundance of Methanocorpusculum, 152 

Parabacteroides, AF12, PW3, Epulopiscium, and Oscillospira were significantly lower 153 

(Fig. 5). 154 

Discussion 155 

Recent researches have shown that gut microbiota has participated in various disease 156 
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processes through the gut-brain axis (24) (25), the gut-lung axis (26) (27) the gut-157 

vascular axis(28, 29) , the gut-bone axis (30) (31),the gut-Hepatic axis (32) (33) and 158 

other axis (34). The concept of “core microbiota” indicated that the core microbiota in 159 

the gut of healthy hosts could maintain the stability of gut microbiota composition and 160 

function, and positively regulated the host through these axis to maintain host health 161 

(35). The gut microbiota function was destroyed because of the destruction of the core 162 

microbiota, and the host might become sick or aggravate the lesion (16). In this study, 163 

the gut microbiota of diseased and healthy P. spinosa was compared, and the results 164 

revealed significant differences in the gut microbiota composition of healthy and 165 

diseased P. spinosa. The composition of microbiota was destroyed because of pathogen 166 

invading. 167 

Current researches on gut microbiota focused on gut microbiota diversity and gut 168 

microbiota composition. According to the diversity resistance hypothesis, the more 169 

diverse that the microbial community was and the more possible that the host 170 

resistanted to pathogen invasion (36). Studies in the largemouth bronze gudgeon 171 

(Coreius guichenoti) (37), crucian Carp (Carassius auratus) (14), and ayu 172 

(Plecoglossus altivelis) (38) showed that the microbiota diversity was significantly 173 

higher in healthy samples. However, this study found that gut microbiota diversity was 174 

significantly higher in diseased P. spinosa. The results were consistent with the results 175 

of grass carp (Ctenopharyngodon idellus) (39). And found that the amino acid 176 

metabolism, carbohydrate metabolism, and immune-related pathway genes of diseased 177 

grass carp were more abundant through microbiota gene prediction (39). The increased 178 
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microbiota diversity in the gut of the diseased host may because the microbial 179 

homeostasis in the gut of the diseased host has not been broken immediately. To 180 

maintain the health of the host, the gut microbiota diversity was increased to protect 181 

against pathogen invasion. The results of this study and previous studies have shown 182 

that the use of gut microbiota diversity to assess host health is limited. 183 

The relative abundance of Methanocorpusculum, Parabacteroides, AF12, PW3, 184 

Epulopiscium, and Oscillospira in the gut of rotten-skin P.spinosa were significantly 185 

higher than healthy P. spinosa. Although Methanocorpusculum is not a pathogen, it is 186 

abundant in diseased samples (40). It can effectively convert heavy metals or metalloids 187 

into more toxic derivatives than compounds, which was harmful to host health (41); 188 

Parabacteroides goldsteinii in Parabacteroides can cause bacteraemia ; Previously 189 

studied in the gut microbiota of wild and cultured P. spinosa found that the cultured P. 190 

spinosa with more potential pathogens had more AF12 in the gut (1); Studies on human 191 

gallstones indicated that the relative abundance of Oscillospira was positive correlation 192 

with the gallstones (42, 43); The relative abundance of Epulopiscium was significantly 193 

increased in the gut of rotten-skin diseased P. spinosa, and also significantly increased 194 

in the feces of children with eczema(44). In summary, the gut microbiota that was 195 

significantly increased in the gut of rotten-skin disease P. spinosa was mostly 196 

opportunistic pathogen; Oscillospira and Epulopiscium were significantly increased in 197 

the gut of the diseased host when lesions occurred in the skin and gallbladder. It was 198 

speculated that these two species may be indicator microbiota in the pathogenesis of 199 

skin and gallbladder. 200 
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The relative abundance of Serratia, Eubacteium, Citrobacter, and Morganella in the 201 

gut of healthy P. spinosa was significantly higher than diseased P. spinosa. Some 202 

species in Serratia produced Prodigiosin and β‐lactam antibiotic carbapenem to inhibit 203 

the growth of pathogens in the host, thereby inhibiting the disease (45, 46); 204 

Bifidobacteria and Eubacteium hallii promoted acetate, butyrate, propionate, and 205 

formate to form, potentially contributing to gut SCFA formation with potential benefits 206 

for the host and for microbiota colonization of the infant gut (47). E. hallii was also 207 

capable of metabolizing glycerol to 3-hydroxypropionaldehyde with antibacterial 208 

properties (48); The relative abundance of Citrobacter and Morganella in the gut of 209 

healthy P. spinosa was significantly higher than diseased P. spinosa, however 210 

Citrobacter rodentium and Morganella morganii are common opportunistic pathogen 211 

(49) (50). In summary, Serratia and Eubacterium might be the main gut microbiota in 212 

the healthy P. spinosa that maintained the health of P. spinosa; Citrobacter and 213 

Morganella in the gut of healthy P. spinosa were significantly increased without causing 214 

disease. It might be that non-pathogenic strains of Citrobacter and Morganella 215 

appeared in the gut of healthy frogs, or there were pathogenic strains in these two 216 

species, but due to the inhibition of beneficial microbiota in the gut of healthy hosts, 217 

the host still maintained a healthy state of gut microbiota homeostasis. 218 

 219 

Conclusion 220 

Rotten-skin disease significantly changed P. spinosa gut microbiota; the relative 221 

abundance of Methanocorpusculum, Parabacteroides, AF12, PW3, Epulopiscium, and 222 
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Oscillospira were significantly higher in the diseased P. spinosa , while the relative 223 

abundance of Serratia, Eubacteium, Citrobacter, and Morganella were significantly 224 

lower; The relative abundance of Epulopiscium and Oscillospira might be related to the 225 

healthy condition of the host skin and gallbladder; The relative abundance of Serratia 226 

and Eubacteium might be important for maintaining the gut microbiota ecosystem. 227 
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Figure legends 419 

Fig.1 420 

A and B are the frogs of the early stage of the rotten-skin disease; C and D are the later 421 

stages; E and F are the liver and gallbladder of healthy P.spinosa; G and H are the 422 

Lesions in the liver and gallbladder of diseased P.spinosa. 423 

Fig.2 424 

Diversity analysis of the gut microbiota P. spinosa between healthy and diseased groups: 425 

(A) Chao1; (B) Goods-coverage; (C) observed-species; (D) PD-whole-tree; (E) 426 

Shannon index; (F) Simpson index. The gut microbiota of P. spinosa was collected from 427 

approximately 0.3g samples of the hindgut of each individual. Disease, the gut 428 

microbiota from six diseased P. spinosa. Health, the gut microbiota from five healthy 429 

P. spinosa. P values show the difference between the groups. P>0.05 represents the little 430 

difference between groups, p<0.05 indicates the significant difference between the 431 

groups, p<0.01 indicates the extremely different between the groups. Data are the 432 

mean± SE  433 

Fig.3 434 

The inner circular diagram（A） shows the relative abundance of different phyla in 435 

P.spinosa gut samples. The gut microbiota of P. spinosa was collected from 436 

approximately 0.3g samples of the hindgut of each individual. D, the gut microbiota 437 

from six diseased P. spinosa. H, the gut microbiota from five healthy P. spinosa. 438 

the significant difference in phylum between health and disease groups（B）. The 439 

STAMP based on the top 10 phyla of the gut microbiota compositions analyzed the 440 
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significantly different(p<0.05) phylum between the groups. 441 

Fig.4 442 

PCA profile(A). PCA was conducted based on the all genus microbial communities 443 

showing the differentiation of the P.spinosa gut microbiota communities between the 444 

health and disease group. PCoA profile(B)、and UPGMA cluster graph (C) based on 445 

the unweight unifrac distance showing the differentiation of the P.spinosa gut 446 

microbiota communities between each individual. The PCoA was conducted based on 447 

the all genus microbial communities. The gut microbiota of P. spinosa was collected 448 

from approximately 0.3g samples of the hindgut of each individual. Disease, the gut 449 

microbiota from 6 diseased P. spinosa. Health, the gut microbiota from 5 healthy P. 450 

spinosa. 451 

Fig.5 452 

LEfSe profile showing differences in healthy and diseased P.spinosa gut microbial 453 

communities. LEfSe analysis was conducted based on the top 40 genus compositions 454 

of the P. spinosa gut microbiota. The gut microbiota of P. spinosa was collected from 455 

approximately 0.3g samples of the hindgut of each individual. Disease, the gut 456 

microbiota from 6 diseased P. spinosa. Health, the gut microbiota from 5 healthy P. 457 

spinosa. 458 
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Table 1. Recent studies about gut microbiota between healthy and diseased samples 463 

Species Disease Finding Authors 

Grass carp 

(Ctenopharyng

odon idellus) 

Enteritis 
The association between changes of the gut 

microbiota and enteritis in grass carp 
(39)  

Crucian Carp 

(Carassius 

auratus) 

Red-

Operculum 

Disease 

The surge of some potential pathogens as 

bacterial signatures that were associated with 

“red-operculum” disease in crucian carps 

(16)  

largemouth 

bronze 

gudgeon 

(Coreius 

guichenoti) 

Furunculosis 

 The presence of healthy carriers of pathogenic 

Aeromonas salmonicida among the farmed fish, 

and the gut appeared as a probable infection 

source for furunculosis in largemouth bronze 

gudgeon. 

(37)  

Ayu 

(Plecoglossus 

altivelis) 

Vibrio 

anguillarum 

infection 

Vibrio anguillarum infection substantially 

disrupted the compositions and interspecies 

interaction of ayu gut bacterial community. 

(38)  

Zebrafish(Barc

hydanio rerio 

var) 

Aeromonas 

hydrophila 

infected 

the invasion of pathogen could change the gut 

microbiota composition and induce gut innate 

immune responses in zebrafish 

(51)  

Gibel Carp 

(Carassius 

gibelio) 

Cyprinid 

herpesvirus 2 

(CyHV-2) 

Infection 

The composition was dramatically altered 

following CyHV-2 infection ; Plesiomonas was 

highly abundant in infected samples, and could 

be used as a microbial biomarker for CyHV-2 

infection 

(52)  

Chinese mitten 

crab (Eriocheir 

sinensis) 

White spot 

syndrome 

virus (WSSV) 

infection 

Changes in gut microbiome were closely 

associated with the severity of WSSV infection 

and that indicator taxa could be used to evaluate 

the crab health status. 

(53) 

Shrimp 

(Litopenaeus 

vannamei) 

Acute 

hepatopancre

atic necrosis 

disease 

Shrimp heath is highly relevant to the 

homeostasis of its gut bacterial community. 
(35)  
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Table 1. Recent studies about gut microbiota between healthy and diseased samples 

Species Disease Finding Authors 
Grass carp 

(Ctenopharyng
odon idellus) 

Enteritis 
The association between changes of the gut 

microbiota and enteritis in grass carp 
(39)  

Crucian Carp 
(Carassius 
auratus) 

Red-
Operculum 

Disease 

The surge of some potential pathogens as 
bacterial signatures that were associated with 

“red-operculum” disease in crucian carps 
(16)  

largemouth 
bronze 

gudgeon 
(Coreius 

guichenoti) 

Furunculosis 

 The presence of healthy carriers of pathogenic 
Aeromonas salmonicida among the farmed fish, 

and the gut appeared as a probable infection 
source for furunculosis in largemouth bronze 

gudgeon. 

(37)  

Ayu 
(Plecoglossus 

altivelis) 

Vibrio 
anguillarum 

infection 

Vibrio anguillarum infection substantially 
disrupted the compositions and interspecies 
interaction of ayu gut bacterial community. 

(38)  

Zebrafish(Barc
hydanio rerio 

var) 

Aeromonas 
hydrophila 

infected 

the invasion of pathogen could change the gut 
microbiota composition and induce gut innate 

immune responses in zebrafish 

(51)  

Gibel Carp 
(Carassius 

gibelio) 

Cyprinid 
herpesvirus 2 

(CyHV-2) 
Infection 

The composition was dramatically altered 
following CyHV-2 infection ; Plesiomonas was 
highly abundant in infected samples, and could 
be used as a microbial biomarker for CyHV-2 

infection 

(52)  

Chinese mitten 
crab (Eriocheir 

sinensis) 

White spot 
syndrome 

virus (WSSV) 
infection 

Changes in gut microbiome were closely 
associated with the severity of WSSV infection 
and that indicator taxa could be used to evaluate 

the crab health status. 

(53) 

Shrimp 
(Litopenaeus 
vannamei) 

Acute 
hepatopancre
atic necrosis 

disease 

Shrimp heath is highly relevant to the 
homeostasis of its gut bacterial community. 

(35)  
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Figures 

Fig.1 

 

 

A and B are the frogs of the early stage of the rotten-skin disease; C and D are the later 

stages; E and F are the liver and gallbladder of healthy P.spinosa; G and H are the 

Lesions in the liver and gallbladder of diseased P.spinosa. 
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Fig.2 

 

Diversity analysis of the gut microbiota P. spinosa between healthy and diseased groups: 

(A) Chao1; (B) Goods-coverage; (C) observed-species; (D) PD-whole-tree; (E) 

Shannon index; (F) Simpson index. The gut microbiota of P. spinosa was collected from 

approximately 0.3g samples of the hindgut of each individual. Disease, the gut 

microbiota from six diseased P. spinosa. Health, the gut microbiota from five healthy 

P. spinosa. P values show the difference between the groups. P>0.05 represents the little 

difference between groups, p<0.05 indicates the significant difference between the 

groups, p<0.01 indicates the extremely different between the groups. Data are the 

mean± SE  
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Fig.3 

 

The inner circular(A) diagram shows the relative abundance of different phyla in 

P.spinosa gut samples. The gut microbiota of P. spinosa was collected from 

approximately 0.3g samples of the hindgut of each individual. D, the gut microbiota 

from six diseased P. spinosa. H, the gut microbiota from five healthy P. spinosa. 

the significant difference in phylum between health and disease groups(B). The STAMP 

based on the top 10 phyla of the gut microbiota compositions analyzed the significantly 

different(p<0.05) phylum between the groups. 
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Fig.4 

 

PCA profile(A). PCA was conducted based on the all genus microbial communities 

showing the differentiation of the P.spinosa gut microbiota communities between the 

health and disease group. PCoA profile(B)and UPGMA cluster graph (C) based on the 

unweight unifrac distance showing the differentiation of the P.spinosa gut microbiota 

communities between each individual. The PCoA was conducted based on the all genus 

microbial communities. The gut microbiota of P. spinosa was collected from 

approximately 0.3g samples of the hindgut of each individual. Disease, the gut 

microbiota from 6 diseased P. spinosa. Health, the gut microbiota from 5 healthy P. 
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spinosa. 
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Fig.5 

 

LEfSe profiles showing differences in healthy and diseased P.spinosa gut microbial 

communities. LEfSe analysis was conducted based on the top 40 genus compositions 

of the P. spinosa gut microbiota. The gut microbiota of P. spinosa was collected from 

approximately 0.3g samples of the hindgut of each individual. Disease, the gut 

microbiota from 6 diseased P. spinosa. Health, the gut microbiota from 5 healthy P. 

spinosa. 
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