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Abstract 1 

Background: Glioblastoma is a deadly brain tumor with median patient survival of 14.6 months.  2 

At the core of this malignancy are rare, highly heterogenous malignant stem-like tumor initiating 3 

cells. Aberrant signaling across the EGFR-PTEN-AKT-mTOR signal transduction pathways are 4 

common oncogenic drivers in these cells. Though gene-level clustering has determined the 5 

importance of the EGFR signaling pathway as a treatment indicator, multiparameter protein-level 6 

analyses are necessary to discern functional attributes of signal propagation. Multiparameter single 7 

cell analyses is emerging as particularly useful in identifying such attributes.  8 

Methods: Single cell targeted proteomic analysis of EGFR-PTEN-AKT-mTOR proteins profiled 9 

heterogeneity in a panel of fifteen patient derived gliomaspheres. A microfluidic cell array ‘chip’ 10 

tool served as a low cost methodology to derive high quality quantitative single cell analytical 11 

outputs.  Chip design specifications produced extremely high signal-to-noise ratios and brought 12 

experimental efficiencies of cell control and minimal cell use to accommodate experimentation 13 

with these rare and often slow-growing cell populations. Quantitative imaging software generated 14 

datasets to observe similarities and differences within and between cells and patients. 15 

Bioinformatic self-organizing maps (SOMs) and hierarchical clustering stratified patients into 16 

malignancy and responder groups which were validated by phenotypic and statistical analyses. 17 

Results: Fifteen patient dissociated gliomaspheres produced 59,464 data points from 14,866 cells.  18 

Forty-nine molecularly defined signaling phenotypes were identified across samples.  19 

Bioinformatics resolved two clusters diverging on EGFR expression (p = 0.0003) and 20 

AKT/TORC1 activation (p = 0.08 and p = 0.09 respectively). TCGA status of a subset showed 21 

genetic heterogeneity with proneural, classical and mesenchymal subtypes represented in both 22 

clusters.   Phenotypic validation measures indicated drug responsive phenotypes to EGFR blocking 23 
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were found in the EGFR expressing cluster. EGFR expression in the subset of drug-treated lines 24 

was statistically significant (p<.05). The EGFR expressing cluster was of lower tumor initiating 25 

potential in comparison to the AKT/TORC1 activated cluster. Though not statistically significant, 26 

EGFR expression trended with improved patient prognosis while AKT/TORC1 activated samples 27 

trended with poorer outcomes.   28 

Conclusions: Quantitative single cell heterogeneity profiling resolves signaling diversity into 29 

meaningful non-obvious phenotypic groups suggesting EGFR is decoupled from AKT/TORC1 30 

signalling while identifying potentially valuable targets for personalized therapeutic approaches 31 

for deadly tumor-initiating cell populations. 32 

 33 
Introduction  34 
 35 

The cell of origin for many cancers is a specific, rare subset of cancer cells responsible for 36 

tumor initiation, cellular heterogeneity and various features that underlie the malignant nature of 37 

the cancer types which they have been identified in.  (1,2)  Among those cancers with a cancer 38 

stem cell origin is the highly malignant and deadly glioblastoma brain tumor. Patients have a 39 

median survival of 14.6 months from diagnosis and five year survival is an abysmal 5%.  (3) 40 

 Patient glioblastoma tumors yield relatively stable cancer stem-like, tumor initiating cell 41 

populations which retain some of the phenotypical and genetic heterogeneity of the cancers they 42 

produce in vitro. (4) Being able to recover these cells from patient biopsies in vitro are a robust 43 

predictor of clinical progression and outcome. These cells additionally serve as useful substrates 44 

for drug discovery and to determine the essential molecular signaling landscape contributing to in 45 

vivo malignancy and resistance.  (5,6)  46 

The mechanisms underlying gliomasphere malignancy can be defined by pathway 47 

redundancies in the biological systems controlling states of oncogenic activation in cancer cells 48 
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and their cancer initiating subtypes. (4,5) Signaling along the EGFR-PTEN-AKT-TORC1 49 

signaling axes provide phenotypic features in gliomasphere cell populations. (7) These pathways 50 

are especially important in governing cellular fate decisions by transmitting signals controlling 51 

survival, self-renewal, growth, proliferation, metabolism, glycolytic adaptation, drug efflux and 52 

symmetric division, among other essential features.  (8) (9) (10) (11) Targets of EGFR signaling 53 

have long been the therapeutic and diagnostic targets of glioblastoma which extends into the era 54 

of cancer immunotherapy, which utilizes EGFR in chimeric antigen receptor (CAR) T-cell therapy. 55 

(12,13) 56 

Clustering gliomasphere models according to The Cancer Genome Atlas (TCGA) 57 

classification system has provided insight into the genetic landscape of gliomaspheres.  (10) 58 

Mesenchymal and non-mesenchymal gliomasphere subtypes have been delineated with non-59 

mesenchymal gliomaspheres consisting of both classical and proneural subtypes. (11) Other 60 

studies have found gliomasphere models cluster according to a lower malignancy proneural and 61 

higher malignancy mesenchymal classification with proneural status conferring phenotypes with 62 

lower sphere formation and improved survival in in vivo xenografts of gliomaspheres.  (14,15) 63 

Based on the gene-level mutations, EGFR mutations (including point mutations, 64 

amplifications, rearrangements, and alternative splicing) are found in all subtypes of glioblastoma 65 

and are present in 57% of glioblastoma (7,16,17). At the protein level, cellular EGFR expression 66 

is tightly controlled in normal but not in cancerous cells by epigenetic regulation and protein 67 

degradation pathways, leading to overall high EGFR protein levels (18,19). These findings indicate 68 

that the gene-level mutations of EGFR and its protein-level expression can be vastly different. 69 

Given the discrepancies between the gene-level mutations and the protein-level expression 70 

of EGFR and other molecules in the EGFR signaling pathways, it is important to detect the protein 71 
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level changes in gliomasphere. Multiparameter single cell measurement of EGFR, PTEN, 72 

activated AKT and TORC1 signaling had been used previously to aggregate and identify 73 

prognostic glioblastoma subtypes. (20) By extending this methodology across a panel of patient-74 

derived gliomasphere samples, we sought to observe and detail the signaling diversity within this 75 

stem-like subset of cells.  In measuring this native signaling heterogeneity and deploying cluster-76 

based analyses with comparison to genotypic and phenotypic descriptors, features of response and 77 

target characterization can be observed. 78 

 79 

Results   80 

Experimental design 81 

Patient glioblastoma tumors (Fig. 1A, left) were dissociated and placed in defined serum 82 

free enrichment media to select for in vitro growth and expansion of gliomaspheres as 83 

neurospheres (Fig. 1A, middle, right). After stem-like cell selection and enrichment, neurospheres 84 

are dissociated into single cells and loaded into chambers of microfluidic cell array chips for 85 

quantitative immunocytochemical staining and imaging (Fig. 1B, left, Supplementary Methods). 86 

Imaging software quantifies the average fluorescent intensity from each cell for each defined 87 

biomarker as the means to reflect individual cellular protein concentration (Fig. 1B, middle). 88 

Bioinformatic analysis of a dataset of all cells from a series of samples resolves complex intra- 89 

and -inter sample signaling heterogeneity.  The resulting data is validated with genotypic and 90 

phenotypic measures to assess functional status (Fig. 1C, bottom right).   91 

 92 

Heterogeneity profiling of patient-derived gliomaspheres 93 
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A series of bioinformatic steps quantified individual and multiparameter, parallel datasets 94 

to characterize and discern cellular heterogeneity among cells and patients.. In total, 14,866 cells 95 

(mean = 991 cells/line), produced 59,464 individual data points from fifteen human gliomasphere 96 

lines (Supplemental Table 1). Pairwise average linkage using Pearson correlation clustering of 97 

individual protein expression  vectors EGFR, PTEN, pAKT and pS6 identified reasonable 98 

correlation coefficients  between PTEN and pS6 and  pAKT and pS6 (Fig. 2A). Boxplots of single 99 

cell expression of these markers for each sample revealed unique sample diversity and substantial 100 

molecular and cellular heterogeneity (Fig. 2B).  Boxplots of all cells showed the spread of values 101 

for each marker in the dataset, showing, while individual parameters were not skewed, there 102 

existed a wide distribution of values for each marker (Fig. 2B). Self-organizing maps (SOMs) 103 

resolved forty-nine unique molecular phenotypes across patients (Fig. 2C).  Unsupervised 104 

hierarchical clustering based on neighborhood frequency vectors (NFVs) of self-organizing map 105 

(SOM) projections in Fig. 2C yielded two predominant clusters (Fig. 3B-3C). By taking the 106 

average biomarker intensity of all cells in each cluster, two quantitative multiparameter signaling 107 

phenotypes emerged (Fig. 3C, Supplemental Methods).   108 

Identified clusters revealed Cluster I to becharacterized by significantly high EGFR 109 

expression (p = 0.0003) with decreased pAKT and TORC1 in comparison to Cluster II, which had 110 

lower EGFR expression and higher pAKT and pS6 levels (p = 0.08, and p = 0.09 respectively). 111 

PTEN expression was statistically insignificant and barely discernible between clusters.  112 

 113 

TCGA grouping of gliomaspheres reveal genotypic heterogeneity in clusters 114 

The Cancer Genome Atlas (TCGA) subgroupings were available on twelve of fifteen 115 

gliomasphere samples across the EGFR expressing Cluster I (5/7 samples, 71.4%) and 116 
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AKTAKT/TORC1 activated Cluster II (7/8 samples, 87.5%) (Fig. 3A).  The EGFR expressing 117 

Cluster I had two proneural samples (2/5, 40.0%), two classical samples (2/5, 40.0%) and one 118 

mesenchymal sample (1/5, 20.0%).  Isocitrate dehydrogenase 1 gene mutations (IDHR1324) were 119 

found in both proneural samples in this cluster (patients 2 and 3). (21) Within the 120 

AKTAKT/TORC1 activated Cluster II, there were three classical samples (3/7, 42.8%), three 121 

proneural samples (3/7, 42.8%) and one mesenchymal sample (1/7, 14.2%) (Supplemental Table 122 

2). 123 

 124 

High EGFR expressing Cluster I samples are responsive to EGFR inhibition 125 

 Visualization of single cell EGFR expression profiling revealed a broad diversity in EGFR 126 

expression (Fig. 3A).  A randomly selected subsample of seven gliomasphere lines, all of which 127 

were either proneural or classical samples, were tested for response to the EGFR blocker erlotinib 128 

(Fig. 3B). LC50 measurements of sphere size and sphere number showed EGFR expression Cluster 129 

I had lower LC50 and high AKTAKT/TORC1 Cluster II had higher LC50s (Sphere size: Cluster I 130 

LC50 mean = 0.26µM, Cluster II LC50 mean = 3.27µΜ. Sphere number: Cluster I LC50 mean = 131 

0.33µM, Cluster II LC50 mean = 5.22µM).  Non-parametric Mann-Whitney U tests on LC50s of 132 

sphere size and sphere number showed significant response to EGFR blockade in EGFR 133 

expressing Cluster I in comparison to AKTAKT/TORC1 activated Cluster II (Sphere size, p = 134 

0.029, SD = 3.57, two-tailed; Sphere number p = 0.029, SD = 5.81). Though significant differences 135 

in sphere size and sphere number were found, the large standard deviation prohibits definitive 136 

discrimination between clusters.  Significant differences were found in mean EGFR expression 137 

and borderline significance in median EGFR expression within this subsample of drug-treated 138 
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lines, indicating a relationship between receptor expression and drug response (p =0.0418 mean, 139 

0.0501 median, T test, unpaired, 2-sided, unequal variance) (Supplemental Information).   140 

 141 

Molecularly defined clusters differed in malignancy response 142 

  Sphere formation efficiency was measured as an in vitro means to assess tumor initiation 143 

potential in a random subsample of five gliomasphere lines from each cluster which included 144 

proneural, classical and mesenchymal samples.  (Fig. 3C).   Non-parametric Mann-Whitney U 145 

tests of sphere formation efficiency showed significantly higher sphere formation efficiency in 146 

AKTAKT/TORC1 activated Cluster II in comparison to EGFR expressing Cluster I (p = .0159, 147 

SD = 139.04).  Though statistically significant, the standard deviation was quite large for definitive 148 

discrimination between clusters.   149 

 Kaplan-Meier curves were generated based on progression free survival and overall 150 

survival of patients gliomasphere lines were derived from (Supplementary Figure 4b). Though 151 

there were trends of better prognosis in EGFR expressing Cluster I and poorer prognosis in 152 

AKT/TORC1 activated Cluster II, hazard ratios for these outcome measures were not statistically 153 

significant in predicting prognosis. 154 

 155 
Discussion  156 
 157 

Single cell analysis for the purposes of cellularly heterogeneity profiling is becoming  158 

increasingly relevant for diagnostics, drug discovery, preclinical drug development, and basic and 159 

translational research. (20,22)  It is an important methodology for the dissemination and 160 

categorization of complex cellular heterogeneity and to improve life sciences research and 161 

development in fields where rare cells may be involved in natural and disease processes.  These 162 

sensitive analyses are becoming particularly relevant in cancer stem cell biology to understand the 163 
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extreme cellular, molecular and genetic heterogeneity and additionally identify potential targetable 164 

cell populations. (23,24) Single cell datasets often achieve a greater resolution than uniparameter 165 

analysis because, embedded in the methodology, are detailed examinations of the relationships 166 

between nodes in the oncogenic networks studied.  With the increasing incorporation of sensitive 167 

multiparameter single cell analysis technologies such as CyTOF and DNA barcoding to study 168 

putative tumor initiating cells, the methodologies have been deployed to observe putative brain 169 

cancer stem cells in parental tumors and characterize inherent molecular and functional 170 

heterogeneity and fates of these elusive yet highly malignant cells. (25,26)  171 

Patient derived spheroid model systems may help define targetable cell subpopulations 172 

responsible for tumor initiation and malignancy. However, the cells, in the two decades since their 173 

identification, remain ambiguous to characterize and therapeutic interventions, for the range of 174 

malignant cancers they have been proposed to initiate, are still a challenge.  In this study, we sought 175 

to focus on the contribution of EGFR signaling on downstream AKT-TORC1 signaling pathways 176 

in gliomaspheres to discern inter- and intra- sample similarities and differences in these pathways.   177 

LC50s of EGFR inhibition based on sphere number and sphere size revealed EGFR 178 

expressing Cluster I samples to be drug responsive in comparison to AKTAKT/TORC1 activated 179 

Cluster II cells. Mean EGFR expression of treated samples differed significantly between clusters 180 

indicating a predictive target-response relationship of EGFR expression to inhibition.. This finding 181 

is in itself important as the evolution of computational target-response modelling is becoming an 182 

important component in drug development to screen out potential candidate failures as early as 183 

possible and move efficacious candidates to market quicker at reduced costs. The finding is 184 

consistent with other EGFR blocking studies in patient derived gliomasphere models in achieving 185 

reduced sphere growth.  It alsolends downstream mechanistic insight into why some gliomaspheres 186 
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grow and proliferate in the absence of exogenous mitogen EGF supplementation and recover from 187 

EGFR blocking action. (27) 188 

In vitro sphere formation assays, as a measure of tumor initiation potential, revealed the 189 

high EGFR expressing Cluster I to have lower sphere forming efficiency in comparison 190 

AKT/TORC1 activated signature.  A Within the EGFR expressing samples a range of sphere 191 

formation efficiencies were found  suggesting potential heterogeneity within this population. And 192 

although AKT/TORC1 had high sphere forming potential suggesting greater malignancy and 193 

perhaps complexity, the samples revealed  uniform phenotypes on this measure.  194 

Cluster based heterogeneity profiling did not significantly predict progression free survival 195 

or overall survival in patients (Supplemental Figure 4b).  Perhaps this may be due to a low 196 

number of samples or limited number of parameters.  However, the high EGFR Cluster I showed 197 

trends of improved prognosis and AKT/TORC1 activated Cluster II trended towards poorer 198 

prognosis.  Taken together with in vitro sphere efficiency assays, the methodology employed 199 

suggest these signaling phenotypes may play a role in meaningfully distinguishing populations. It 200 

has been found AKT and TORC1 activation are key drivers of malignancy, reactivation, treatment 201 

resistance and response phenomena. (28) Thus, the identity of a therapeutic foci in gliomaspheres 202 

may come to be of use in modeling interventions at these cells. (29) 203 

 The clusters consisted of proneural, classical and mesenchymal TCGA groupings. All 204 

EGFR expressing Cluster I proneural gliomaspheres had mutations in the isodehyrodgenase 205 

isocitrate dehydrogenase (IDH1) gene, while all AKT/TORC1 activated Cluster II proneural 206 

gliomaspheres did not harbor this mutation. Given IDH1 mutations are a feature of lower grade 207 

brain tumors, consistent with the sphere forming ability of these samples. Additionally, through 208 
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recent evidence from other single cell analytical techniques, IDH1 mutation has been observed as 209 

a feature of EGFR amplification, suggesting this clustering is reasonable.  (30) 210 

It is relevant to recognize bulk, uniparameter or quantitatively insensitive cell metrics could 211 

have obscured subtle yet crucial, informative molecular differences in the cells which 212 

multiparameter single cell clustered datasets resolve.  Correlative analysis of individual proteins, 213 

while identifying potentially meaningful correlations, could not reveal the level of cellular 214 

complexity this type of multiparameter, parallel analyses was able to discern in terms of the 215 

phenotypes identified.  Of note, while some parameters studied did not reach statistical 216 

significance, they were still vital to resolving phenotype clusters. The activated states of AKT and 217 

TORC1, while of only borderline statistical significance, proved essential to distinguishing clusters. 218 

This is an important consideration given dual inhibition of these targets has shown evidence of 219 

therapeutic potential. This additionally supports an emerging understanding of low TORC1 220 

activation is a defining and essential characteristic of gliomasphere and cancer stem cell phenotype 221 

maintenance.  (31) (27)  222 

This study was limited by a modest number of samples analyzed. Parallel analysis is a 223 

powerful approach to single cell heterogeneity analysis capacities, and 15 samples tested the 224 

minimal number of samples needed to quantify these valuable cells for definitive global 225 

understanding of this cell subtype. Sample number may have reduced statistical significance of the 226 

markers tested and suggested trends, but did not achieve statistically significant prognostic 227 

indication, latter particularly a measure to definitively prove these pathways as essential 228 

malignancy drivers of these cells (Supplementary Information). (6) (32) PTEN was statistically 229 

insignificant in gliomasphere lines and thus proteomic mapping capacities relied  on only three 230 

markers tested.  Despite these limitations, this study did indeed provide  insight into the clear utility 231 
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of quantitative single cell heterogeneity profiling and parallel analysis of these specific pathways 232 

contribute to and resolve molecular drivers of the cancer stem-like state and targeting of these cell 233 

populations.   234 

 235 
Materials and Methods 236 
 237 
Microfluidic cell array chips 238 

 Each cell array chip consists of 24 (3 x 8) chambers, each with dimensions of 8 mm (l) x 1 239 

mm (w) x 120 um (h) and total volume of 960 nL (Fig. 1B). Single cell suspension, culture media, 240 

and reagents were introduced and removed at chip ports by electronic, handheld semi-automated 241 

pipettor at 6uL/second to protect cells from shear forces and enable flexible reagent and cell control. 242 

 243 

Cell array chip construction 244 

 The cell array chip is fabricated by directly attaching a polydimethylsiloxane (PDMS)-245 

based microfluidic component onto an uncoated glass microscope slide. The microfluidic 246 

component was fabricated using a soft lithography method. Well-mixed Sylgard 184 PDMS 247 

(Corning Inc., A:B = 10:1 ratio) were poured onto a silicon wafer replicate of photolithographically 248 

defined microchannel patterns, vacuum degassed and allowed to harden overnight in 80oC oven. 249 

The microfluidic component was then peeled off the silicon wafer, edges cut with razor tool 250 

(Stanley, Inc.) and holes punched with pipette tip size-matched diameters at the ends of the 251 

microchannels. Direct attachment to uncoated glass slide was accomplished via pretreatment with 252 

oxygen plasma of bottom of microfluidic PDMS chip and top of uncoated microscope slide. The 253 

assembled chip was then baked in an 80oC vacuum oven for 24 hours. Prior to use, the chips were 254 

sterilized by exposure to UV light for 15 minutes.  255 

 256 
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Microfluidic chip cell loading and handling 257 

 To prepare microfluidic chips for cell loading, matrigel at 1:20 (BD Biosciences, Inc.) was 258 

used as a cell capture reagent and loaded into chambers for 12 hours at 8oC then washed with PBS.   259 

Although precise cell densities at time of loading were dependent on individual sample 260 

gliomasphere growth characteristics, cells were dissociated using TrypLE (Invitrogen), spun down 261 

at 1200 RPM for 1 min and pelleted, then resuspended at a density of 50 to 500 cells/μL for a 100-262 

1000 µL aliquot containing single cells with media in a 1.5mL tube (Eppendorf, Inc.). The tubes 263 

were triturated with Matrix pipettor and 2uL of cell suspension was loaded per matrigel pretreated 264 

microfluidic chamber. Three chambers were loaded per gliomasphere sample. Chips were then 265 

spun at 1000 RPM for 1 minute to assure all cells would fall into the same Z-plane for imaging. 266 

Chips were then placed in a 10-cm Petri dish with 1 mL double-distilled water (for hydration) and 267 

incubated in a 5% CO2, 37°C incubator for 10 minutes prior to on-chip quantitative 268 

immunocytometry. 269 

 270 

Gliomasphere models 271 

Collection of patient tumor tissue for the derivation of gliomaspheres was approved by the 272 

Institutional Review Board of UCLA.  Briefly,  tumors were washed, minced with a scalpel blade, 273 

digested with TrypLE (Invitrogen) for 5 minutes and spun down at 1200 RPM for 5 minutes. 274 

TrypLE was removed and tumor pieces were resuspended in chilled DMEM-F12 (Invitrogen), 275 

dissociated with at least 2 glass pasteur pipets (Fisher Brand) fire polished to successively smaller 276 

bores and put through a 70µm and 40um cell strainers (BD Biosciences). A Percol (GE Health 277 

Sciences) protocol was employed to remove red blood cells. (6)  278 
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Cells were seeded at a density of 100,000 cells/mL in a stem cell growth and enrichment 279 

medium consisting of DMEM/F12 medium supplemented with 1:50 B27 (Invitrogen), 20 ng/ml 280 

bFGF (Peprotech), 50 ng/mL EGF (Peprotech), 1:100 penicillin/streptomycin (Invitrogen), 1:100 281 

Glutamax (Invitrogen) and 5 ug/ml heparin (Sigma-Aldrich). Heparin, bFGF and EGF were 282 

supplemented weekly and Glutamax bi-weekly. Media was changed upon passaging or when 283 

media became acidic. Passaging was done according to visual observation when the majority of 284 

neurosphere aggregates were observed to merge into larger aggregates. Spheres were passaged 285 

into fresh media following either enzymatic dissociation with TrypLE and glass pipet dissociation 286 

or chopping using an McElwin automated tissue chopper (Geneq. Inc.).  (1)(6)  287 

 288 

Quantitative microscopic imaging 289 

Optimization protocols were developed for assessment of phosphorylation of ribosomal 290 

protein S6 for EGFR (Hylite 750nm) and PTEN (555nm) and activated downstream 291 

phosphorylation of AKT (Alexa 647nm) and TORC1 (via readout of activated phosphorylated S6 292 

(Alexa 488nm)) (See Supplemental Methods).  Microfluidic cell array chips facilitated cell and 293 

reagent control and improved signal-to-noise ratio. Each chip accommodates 3 chambers/sample 294 

and up to 8 samples on each microfluidic chip (Fig. 1B). Details on optimization procedures and 295 

imaging are available in Supplementary Methods. Individual images were taken for the 4 296 

fluorophore-labeled antibodies (488nm, PE, 647nm and 750nm).   (20)  297 

 Chips containing fixed immunolabelled cells were mounted onto a Nikon TE2000S 298 

inverted fluorescent microscope with a CCD camera (Photometrics, Inc.) and X-cite light source 299 

(Lumen Dynamics Group).  The size of each channel had design specifications for edges to align 300 

outside the imaging area.  Each channel had a length permitting 8 imageable frames, and all frames 301 
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were used for image analysis.  Imaging parameters were optimized and controlled for to assure all 302 

data could be directly comparable. The light source bulb was evaluated in between each sample 303 

imaged for operational fidelity. Quantitative imaging was obtained by measuring the fluorescence 304 

intensity for each cell area using MetaMorph (Molecular Devices, Version 7.5.6.0). Description 305 

of the MetaMorph software module are available in Supplementary Methods.   306 

 307 

Bioinformatic self organizing maps (SOMs) and clustering derivation 308 

 Self-organizing maps (SOMs) were generated in R (Supplemental Methods). (20,33)  A 309 

SOM grid consists of a set of units each characterized by a codebook vector consisting of the four 310 

values (EGFR, PTEN, pAKTAKT and pS6).  Input measurements were unit normalized.  The 311 

codebook vectors are then randomly initialized based on the input data and a training process 312 

involves repeated presentation of the training data to the map.  Each presented datapoint is assigned 313 

to a most similar “winning” grid and the codebook vector of the winning grid is updated using a 314 

weighted average, where the weight is the learning rate α.  Three SOMs are trained for each data 315 

set, and the resulting maps examined for qualitative consistency.  Testing various SOM grid sizes 316 

identified a 7 x 7 grid as smallest size to capture differences between gliomasphere samples. (Fig. 317 

2D). 318 

Hierarchical clustering of Neighborhood Frequency Vectors (NFVs) of SOMs (Fig. 2E, 319 

3A) with waterfall plots displaying differing average intensities values for each cluster were 320 

generated (Fig. 2B, 2F). Further analytical details can be found in the Supplemental Methods. 321 

 322 

TCGA Microarray Analysis 323 
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The Verhaak et al. classification of The Cancer Genome Atlas Glioblastoma database was 324 

used to inform TCGA analysis. (10) The unified gene expression dataset is the combined 325 

expression data from three platforms, Affymetrix HuEx array, Affymetrix U133A array and 326 

Agilent 244K array into a single expression pattern that was used for the original classification of 327 

the TCGA dataset into four categories.  The unified gene expression data was combined with tumor 328 

and gliomasphere data which was obtained on the Affymetrix U133 plus 2.0 array and normalized 329 

with the using the R package limma. (34,35) Batch effects were then adjusted using ComBat (36) 330 

on the normalized data. ClaNC, the LDA based centroid classification algorithm used by Verhaak 331 

et al. to create the classifications was then applied to determine a 3-class centroid-based classifier 332 

using only the data from Mesenchymal, Proneural or Classical TCGA samples. (37) The original 333 

dataset has been reported on previously, consisting of 56 Mesenchymal samples, 53 Proneural and 334 

38 Classical samples consisting of 147 total samples excluding the 26 Neural samples were used 335 

in building the classifier. (11) This classifier was then used to assign a TCGA category 336 

(Mesenchymal, Proneural or Classical) to each gliomasphere sample. Because of the lack of gene 337 

name overlap from the Affymetrix U133A array used by TCGA and the Affymetrix U133 plus 2.0 338 

microarray used for our classifications, only 789 of the original 840 genes were used to classify 339 

the samples. 340 

 341 

Quantitative neurosphere analysis 342 

Neurosphere size and number measurements were obtained with an Acumen eX3 plate 343 

reader in the UCLA California NanoSystems Institute (CNSI) Molecular Shared Screening 344 

Resource core facility.  For this, cells were fixed with 1:1 mixture of 4% paraformaldehyde  and 345 

100% methanol, 50 µL/well.  After at least 4 hrs post-fixation the DNA binding Syto-9 dye was 346 
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added (1:1000 dilution in PBS, 10 µL/well).  The parameters from data output for each identified 347 

object included peak and total intensities (FLU), diameter (expressed as width and depth in µm), 348 

and spherical volume (µm3).  Thresholds for false, i.e. non-neurosphere objects (e.g., cell clumps, 349 

single cells, DNA remnants, debris, etc), were defined by: 1) objects with diameter <35 um, 2) 350 

peak intensity <100 FLU or 3) width/depth ratio >4.  After setting thresholds, means and standard 351 

error for sphere numbers were calculated based on number of objects from an average of 10 wells 352 

and mean spherical volume per condition to estimate neurosphere size. (38) 353 

 354 

Erlotinib LC50  355 

Assessment of LC50 via quantitative measurements of sphere size and sphere number was 356 

deployed (Fig. 3B). Gliomaspheres were dissociated and resuspended in neurosphere media and 357 

plated into 96 well microplates at a 50 cell/well density for each sample (10 wells/condition). 358 

Experimental parameters included DMSO treated control wells and 5 conditions treated with serial 359 

dilutions of Erlotinib (LC Laboratories) to a final volume 100 µL/well.  Final DMSO concentration 360 

was equalized to match with DMSO% in highest concentration for each compound.  Plates were 361 

incubated and monitored for formation of 10 neurospheres/well, occurring at approximately 16 362 

days post-incubation.   363 

 364 

Sphere initiation efficiency assays 365 

 Limiting dilution assays were performed by single cell dissociation and resuspension in 366 

neurosphere media and plated into 96 well microplates.  A measure of sphere forming efficiency 367 

was achieved by seeding incrementally increasing numbers of cells at intervals 50 cells up to 800 368 

cells/well and assessing the number of cells required to achieve ten gliomasphere spheres per well.  369 
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Plates were incubated and monitored for sphere formation over a 16 day incubation period.  The 370 

minimal cell density to achieve 10 gliomasphere neurospheres per well is reported (Fig. 3C).  371 

 372 

Patient analyses 373 

 This study was overseen and approved by the UCLA Institutional Review Board and 374 

HIPAA compliant.  Patient demographics, treatment and outcome data are available in 375 

Supplemental Table 1. Eligible patients consisted of full treatment for glioblastoma, including 376 

surgery, chemotherapy and/or radiation therapy and resected tissues capable of renewable 377 

neurosphere formation and maintained for at least three passages. Outcome and survival curves 378 

with their corresponding hazard ratios are available in Supplementary Methods. 379 

 380 
 381 
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Figure 1. Conceptual summary of quantitative single cell heterogeneity profiling of patient-398 
derived glioblastoma tumor initiating cells (TICs). 399 
 400 

 401 
A. (Left) T1 weighted MRI of brain tumor in left parieto-occipital lobe (in white). (Middle) 402 

Clinical glioblastoma samples are dissociated into single cells and placed in ‘neurosphere’ serum-403 

free enrichment media for in vitro selection and expansion of TICs. (Right) Brightfield image of 404 

classic 3D gliomasphere cell line sphere. Colored cells illustrate cellular heterogeneity. B. (Left) 405 

Image of 24 chamber microfluidic device. Chambers are filled with alternating yellow and blue 406 

dyes for visualization. Glioblastoma TIC are dissociated into single cells, loaded into microfluidic 407 

channels, labelled with fluorophore-conjugated antibodies for four signaling proteins (EGFR, 408 

PTEN, pAKT, and pS6) to measure signal through the oncogenic EGFR/PI3K/AKT/mTOR 409 

pathways. [anti-EGFR (purple), anti-PTEN (orange), anti-pAKT (red), and anti-pS6 (green)]. 410 

(Right) Fluorescent signal intensity of each the four markers of each cell is via quantification of 411 

immunofluorescent signal intensities of labelled single cells. C. Quantitative analysis involves: 412 

(Left) Unsupervised hierarchical clustering of neighborhood frequency vectors (NFVs) derived 413 

from ~1000 cells of each sample’s individual self-organizing map (SOM). (Top, right) Resultant 414 

self-organizing maps (SOMs) of the two clusters of gliomaspheres. (Lower, right) Phenotypic-415 

genotypic analysis of clustering included validation by: signal phenotyping, The Cancer Genome 416 

Atlas (TCGA) subgrouping, sphere-based drug response measures, sphere initiation efficiency, 417 

and patient characteristics of patient survival and disease progression.  418 
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Figure 2. Single cell measurements of EGFR, PTEN, pAKT and pS6 across patients. 419 

 420 
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A.  Pairwise average linkage using the Pearson correlation clustering of individual mean protein 421 

expression vectors EGFR, PTEN, pAKT and pS6 show correlation coefficients  between PTEN 422 

and pS6 and pAKTand pS6. B. Boxplot distribution of the complete dataset for each marker of all 423 

cells. Minimum non-outlier value is bottom horizontal line, first quartile represents bottom box, 424 

median is middle horizontal line denoted by an ‘X’, third quartile represents top box, and 425 

maximum non-outlier value is top horizontal line. Circles represent outlier values. Left, EGFR, 426 

pink. Middle left, PTEN, orange. Middle right, pAKT, red. Right, pS6, green. 427 

 428 
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Figure 3. Multiparameter self-organizing map (SOM) and clustering of human derived 444 

gliomaspheres. 445 

 446 

A. Rainbow colored normalized self organizing maps (SOM) display groupings of forty-nine 447 

molecular phenotypes on a 7 x 7 grid for each of the 15 patients. Red, high percentage of cells. 448 
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Green, low percentage of cells. Grey, <2% of cells. Above each patient map is the number of 449 

individual cells analyzed. Total cells analyzed=14,866. Range 469-1579 cells. Mean=991 cells. B. 450 

SOM derived Neighborhood Frequency Vectors (NFVs) for each of the 15 human-derived brain  451 

gliomasphere lines after unsupervised hierarchical clustering. A heatmap of the dataset where each 452 

row corresponds to one of 49 SOM unit and each column represents a patient gliomasphere line. 453 

Red and green indicate relative high and low neighborhood frequencies, respectively. C. (Top) 454 

Enlarged dendrogram reveals two main clusters. (Upper middle) Representative SOMs of each 455 

cluster. Color representation of the frequency at which individual cells are assigned to each SOM 456 

unit.  (Lower middle) Waterfall plots of mean expression for each of the four markers in each 457 

cluster of PI3K/AKT/TORC1 pathways mapped. (Bottom) Student’s t-test on mean expression 458 

levels reveal significantly differentially expression of EGFR biomarker between each cluster with 459 

borderline significance for pAKT and pS6. EGFR, pink. PTEN, orange. pAKT, red. pS6, green. 460 
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Figure 4. TCGA status, EGFR single cell profiling, drug response, malignancy profiles and 483 

activation schematic of clustered gliomasphere samples. 484 

 485 

 A. (Left) The Cancer Genome Atlas (TCGA) groupings. Green, CL=Classical. Yellow, 486 

PN=Proneural. Red, MS=Mesenchymal. *IDH1 mutant. ND=No Data. (Right) Diversity of EGFR 487 
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expression is observed by visualization heatmap of single cell profiling of EGFR expression for 488 

all 15 glioma cancer stem cell (gCSC) lines. Each vertical line corresponds to 1 cell set against a 489 

white background. Green=low expression, Red=high expression.  B. LC50s based on sphere size 490 

and sphere number to EGFR inhibitor erlotinib from a random sampling of 3 gliomasphere lines 491 

from Cluster I and 4 gliomasphere lines from Cluster II. (Middle) TCGA groupings of treated 492 

samples. (Right) Visualization heatmap of single cell EGFR expression of treated samples. C. In 493 

vitro sphere forming efficiency in subsample of 4 gliomasphere lines from each cluster. Y-axis, 494 

number of cells seeded to form 10 neurospheres. (Mann Whitney U Test, two-tailed, p < 0.016, 495 

SD = 139.04).  D. Schematic representation of two gliomasphere clusters.  Signal phenotyping 496 

denoted a high EGFR expressing cluster (Cluster I, blue) and activated AKT/TORC1 cluster 497 

(Cluster II, red). Genomic analysis identified evidence of genetic heterogeneity in each cluster. 498 

LC50s derived from sphere size and sphere number with the EGFR inhibitor erlotinib revealed the 499 

EGFR expressing Cluster I to be a drug responsive phenotype. Lower sphere initiation efficiency 500 

and trends of improved outcome were observed in EGFR expressing Cluster I in comparison to 501 

activated AKT/TORC1 Cluster II. EGFR (purple), PTEN (orange),  (red), and pS6 (green). Text 502 

size is indicator of level of expression. 503 
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