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Highlights 

 We present a novel toolbox to carry out DBS imaging analyses on a group-

level 

 Group electrodes are visualized in 2D and 3D and related to clinical 

regressors 

 A favorable target and connectivity profiles for the treatment of PD are 

validated 
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Abstract 

Deep Brain Stimulation (DBS) is an established treatment option for movement 

disorders and is investigated to treat a growing number of other brain disorders. It 

has been shown that DBS effects are highly dependent on exact electrode 

placement, which is especially important when probing novel indications or 

stereotactic targets. Thus, considering precise electrode placement is crucial when 

investigating efficacy of DBS targets. To measure clinical improvement as a function 

of electrode placement, neuroscientific methodology and specialized software tools 

are needed. Such tools should have the goal to make electrode placement 

comparable across patients and DBS centers, and include statistical analysis options 

to validate and define optimal targets. Moreover, to allow for comparability across 

different research sites, these need to be performed within an algorithmically and 

anatomically standardized and openly available group space. With the publication of 

Lead-DBS software in 2014, an open-source tool was introduced that allowed for 

precise electrode reconstructions based on pre- and postoperative neuroimaging 

data. Here, we introduce Lead Group, implemented within the Lead-DBS 

environment and specifically designed to meet aforementioned demands. In the 

present article, we showcase the various processing streams of Lead Group in a 

retrospective cohort of 51 patients suffering from Parkinson’s disease, who were 

implanted with DBS electrodes to the subthalamic nucleus (STN). Specifically, we 

demonstrate various ways to visualize placement of all electrodes in the group and 

map clinical improvement values to subcortical space. We do so by using active 

coordinates and volumes of tissue activated, showing converging evidence of an 

optimal DBS target in the dorsolateral STN. Second, we relate DBS outcome to the 

impact of each electrode on local structures by measuring overlap of stimulation 

volumes with the STN. Finally, we explore the software functions for connectomic 

mapping, which may be used to relate DBS outcomes to connectivity estimates with 

remote brain areas. We isolate a specific fiber bundle – which structurally resembles 

the hyperdirect pathway – that is associated with good clinical outcome in the cohort. 

The manuscript is accompanied by a walkthrough tutorial through which users are 

able to reproduce all main results presented in the present manuscript. All data and 

code needed to reproduce results are openly available.  
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Introduction 
 

The modulation of neural networks by Deep-Brain Stimulation (DBS) is an efficacious 

and established treatment option for specific neurological and psychiatric disorders, 

and is currently investigated for other brain disorders. DBS treatment is best explored 

in movement disorders (Benabid et al., 1991; Kupsch et al., 2006a), with the 

subthalamic nucleus (STN) and internal pallidum (GPi) as the most established 

targets (Schuepbach et al., 2013). The application is continuously extended to other 

indications and targets (for a review see Lozano and Lipsman, 2013). Aside from its 

clinical value, DBS opens an invaluable window to the human brain and it is 

increasingly adopted to probe causal relationships between stimulated targets and 

certain behavioral effects, such as risk control (Irmen et al., 2019a; Nachev et al., 

2015), movement speed (W.-J. Neumann et al., 2018), memory learning (de Almeida 

Marcelino et al., 2019) or verbal fluency (Ehlen et al., 2017; Mikos et al., 2011).  

In early clinical studies which led to FDA- and CE-approval for indications like 

Parkinson’s Disease, Dystonia or Essential Tremor, the exact electrode placements 

were not investigated (Deuschl et al., 2006; Kupsch et al., 2006b; Schuepbach et al., 

2013). However, in these, DBS targets had already been well informed and 

established by decades of ablative surgery, which leads to about equal clinical 

effects (Altinel et al., 2019; Starr et al., 1998). However, a multitude of studies have 

shown that DBS electrodes need to be accurately placed to maximize clinical 

improvements (e.g. Dembek et al., 2019a; Horn, 2019; Horn et al., 2019a). Thus, 

when probing novel targets, things could turn out differently. For instance, in 

Depression and Alzheimer’s Disease, clinicians report that some patients largely 

improve while others do not (Laxton et al., 2010a; Riva-Posse et al., 2017). In the 

case of depression, however, two prospective, randomized, sham-controlled trials 

have failed (Dougherty et al., 2015; Holtzheimer et al., 2012). While some patients 

had responded well to treatment, their group effects were diminished by non-

responders. A possible (but unknown) explanation for the variability in outcome 

would be that responders had optimal lead placement while non-responders did not.  

By investigating their differential electrode placements, one could possibly find 

relationships between clinical outcome and modulated anatomical space and brain 

connectivity measures, as was shown for other diseases (Al-Fatly et al., 2019; 

Baldermann et al., 2019; Dembek et al., 2019a; Horn, 2019; Reich et al., 2019).  
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Thus, large-scale group studies that include electrode placement could 

comprehensively help to investigate relationships between stimulation sites and 

clinical/behavioral outcomes.  

With the publication of the software Lead-DBS in 2014 (Horn and Kühn, 2015) and its 

further methodological advancement over the years (Ewert et al., 2019, 2018; Horn 

et al., 2019a, 2014; Horn and Blankenburg, 2016), an openly available tool was 

created, which allows for precise electrode reconstructions based on pre- and post-

operative imaging data.  

One key goal of the software is to make electrode placement transferable and 

comparable across centers and patients by warping their coordinates into a common 

stereotactic space. While the idea of warping to MNI space is surely not novel (the 

concept has been around in the neuroimaging community for decades, e.g. 

(Ashburner, 2012)), the process still has its limitations in an inherent loss of 

precision. Errors of placements in DBS electrode locations are prone to occur when 

studying them in a common stereotactic space. Over the years, our group and others 

have focused on minimizing these kinds of errors and improving the accuracy of 

Lead-DBS (Ewert et al., 2019b, 2018b; Hellerbach et al., 2018; Horn et al., 2019a; 

Husch et al., 2018; Schönecker et al., 2009; Dembek et al., 2019b). Strategies such 

as multispectral warps, subcortical refinements, brain shift correction, phantom-

validated automatic electrode localization, the possibility of manual refinements of 

warfields and detection of electrode orientation have led to a freely available pipeline 

that aims at maximizing precision both in native and common space (for an overview 

see (Horn et al., 2019a)). The registration pipeline of Lead-DBS was recently 

evaluated in a large comparative study and results were comparable to manual 

expert delineations of subcortical nuclei (Ewert et al., 2019b). While Lead-DBS is 

capable to register patient data to different stereotactical spaces, a worldwide 

standard of the neuroimaging community has been adopted as default: The Montreal 

Neurological Institute (MNI) space in its most current and best-resolved version 

(ICBM 2009b Nonlinear Asymmetric space). 

Various publications could demonstrate that electrode reconstructions in such 

common spaces remain informative and may be used to predict outcomes or 

behavioral measures across cohorts and DBS centers (Al-Fatly et al., 2019; 

Baldermann et al., 2019; de Almeida Marcelino et al., 2019; Horn et al., 2019a; W.-J. 

Neumann et al., 2018). Once electrodes are in such a common space, this allows for 
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analyses of DBS electrodes on a group level, and direct comparability of results 

between patients, research groups and software tools. 

Here, we introduce a novel open source toolbox, Lead Group, which was 

implemented within the Lead-DBS environment and specifically designed with group 

level analyses in mind. While Lead Group has been available in prototype form for a 

while, it has not been written up methodologically and development work was only 

now completed, including documentation, a test-dataset, step-by-step tutorial and a 

largely improved user-interface.  

In this manuscript, we apply Lead Group to investigate a previously published 

retrospective cohort of 51 patients suffering from Parkinson’s disease (PD) that 

underwent STN-DBS surgery. Electrodes of the whole group are visualized both in 

two- and three-dimensional views. Different types of variable mappings are 

presented and novel types of connectome derived approaches are investigated. We 

present concise results and release this dataset in form of a Lead group project. A 

step-by-step tutorial that allows for reproduction of core result figures presented here 

is included as supplementary material. 
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Figure 1: Lead Group Pipeline. The main features and options of the toolbox are shown, including the setup of a 

group study and settings, which can be chosen for the following processing steps: The visualization of all 
electrodes in 2D and 3D as well as statistical analyses in relation to either local or connected structures. Those 
stages highlighted in bold text are described in more detail in the paper. 
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Methods and Material 
 
Patient Cohort 
 
To illustrate the multiple analysis pipelines and visualization options available within 

Lead Group, we included data from a retrospective cohort, which has been described 

in detail elsewhere (Horn et al., 2019a). Briefly, fifty-one patients implanted with 2 

quadripolar DBS electrodes (Model 3389; Medtronic, Minneapolis, MN) to bilateral 

STN to treat Parkinson’s disease (PD) were included. Patients underwent DBS 

surgery at Charité – Universitätsmedizin Berlin. DBS response was defined as the 

percentage improvement along the Unified Parkinson’s Disease Rating Scale 

(UPDRS)-III motor score ON vs. OFF, which was assessed within an interval of 12-

24 months after surgery. Clinical ratings took place after a washout from 

dopaminergic medication of more than 12 hours. Imaging data of all patients 

consisted of multispectral preoperative MRI (T1 and T2 weighted) sequences 

scanned at 1.5T, axial, coronal and sagittal postoperative T2 sequences for 45 

patients or postoperative CT scans for the remaining 6 patients. This study was 

approved by the local ethics committee of the Charité, University Medicine Berlin 

(master vote EA2/186/18). 

 

Electrode Localization 

Before patient folders may be imported and further processed in Lead Group, it is 

necessary to localize electrodes for each patient using Lead-DBS (which is optimized 

for single-patient use, bulk-processing with parallel computing, or job submission 

systems on compute clusters). Localizations were carried out using default 

parameters of the Lead-DBS v.2 pipeline (Horn et al., 2019a). Briefly, linear co-

registration of postoperative images to preoperative MRI scans were performed using 

a linear transform solved using Advanced Normalization Tools (ANTs; 

http://stnava.github.io/ANTs/; (Avants et al., 2008)). If needed, these linear within-

patient transforms were manually refined using 3D Slicer (www.slicer.org). 

Preoperative scans were multispectrally normalized into MNI (ICBM 2009b NLIN 

Asym; (Fonov et al., 2009)) space using ANTs and the “Effective: low variance” 

protocol with subcortical refinement implemented in Lead-DBS. This normalization 

scheme was top performer in a recent exhaustive evaluation for registrations of 

subcortical structures such as the STN and GPi (Ewert et al., 2019b).  
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Lead Group Setup and Visualization 

To set up the group analysis in Lead group, all 51 patients were selected and their 

percentage improvement on the UPDRS-III motor score entered as a variable into 

the Lead Group GUI (see section S1.1 in the walkthrough tutorial appended within 

the supplementary material). Some analyses offered by Lead Group are parametric 

in nature, i.e. could directly take advantage of the continuous variable %-UPDRS-III 

improvement. However, others are meant to compare groups (e.g. to analyze 

differences between hospitals or compare top vs. poor responders). To demonstrate 

these analysis streams, as well, a median split was applied to assign a variable 

separating good (25) from poor (23) responders, with 3 patients lying exactly on the 

median score of 44 % (not assigned by the variable). This step arbitrarily separated 

the group in two subgroups of similar size. Stimulation parameters, i.e. active 

contacts and amplitudes, were specified for each individual patient. Volumes of 

tissue activated (VTA, representing a rough approximation of the surrounding tissue 

modulated by DBS) were calculated using a finite element method (FEM) approach 

(Horn et al., 2019a, 2017c). As alternatives, three other heuristic models are 

implemented in Lead-DBS (Dembek et al., 2017; Kuncel et al., 2008; Mädler and 

Coenen, 2012) which were not used in the present manuscript.  

 

To graphically illustrate the electrode placement in relation to respective clinical 

outcome following DBS, active contacts of all patients from the two groups (upper vs. 

lower half in clinical improvement) were visualized, both in two-dimensional and 

three-dimensional space (sections S1.2 - S1.4 in the walkthrough tutorial). A 100-

micron T1 scan of an ex vivo human brain, acquired on a 7 Tesla MRI scanner with a 

scan time of 100 hours (Edlow et al., 2019) served as a background template 

throughout this paper and the definition of STN boundaries was informed by the 

DISTAL atlas (Ewert et al., 2018a). 

 

In a next step, four different implemented options that map variables (such as %-

UPDRS-III improvement in the example case) to anatomical space were applied. 

First, all active contacts were visualized as a point cloud and colored by the variable 

intensity (section S1.6 in the walkthrough tutorial). Second, the improvement variable 

was mapped to an equidistant point grid after solving a scattered interpolant based 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 15, 2020. ; https://doi.org/10.1101/2020.01.14.904615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.904615


on the original values and active coordinates (section S1.7 in the walkthrough 

tutorial). Third, this equidistant grid was visualized as an isovolume, i.e. the grid was 

thresholded and visualized as a 3D-surface (section S1.8 in the walkthrough tutorial). 

These first three options mapped clinical improvement to the active contact 

coordinates. A fourth option is available that instead mapped these values to VTAs 

(section S1.9 in the walkthrough tutorial). Here, each binary VTA was weighted by its 

corresponding improvement value and for each voxel a T-value was estimated. The 

resulting volume was thresholded based on visual inspection at an arbitrary T-value 

(10.56). This value was visually chosen to obtain a “sweet-spot” with small 

anatomical extent. 

 

Connectomic analyses 

Seeding from VTAs, estimates of structural connectivity to other brain areas can be 

computed in Lead group. To do so, patients’ individual diffusion weighted images or a 

normative connectome may be used. Within Lead-DBS, four structural group 

connectomes are currently available and can be chosen depending on the cohort of 

study. For the present work, a PD-specific connectome was used, which was 

obtained from 85 patients included in the Parkinson’s Progression Markers Initiative 

(PPMI; www.ppmi-info.org) database (Marek et al., 2011). This processed 

connectome has been used in prior studies (Ewert et al., 2018a; Horn et al., 2019a, 

2019b, 2017a, 2017c; Irmen et al., 2019b) and processing details are reported 

elsewhere (Ewert et al., 2018a). 

For the present analysis, we selected fibers of the connectome that traversed 

through the VTA and terminated in distinct regions of a publicly available parcellation 

of the sensorimotor cortex, the Human Motor Area Template (HMAT; Mayka et al., 

2006), which contains regions defining S1, M1, supplementary and 

presupplementary motor area (SMA/preSMA), dorsal and ventral premotor cortex 

(PMd/PMv; section S1.12 in the walkthrough tutorial). 

 

A second connectomic analysis stream implemented into Lead group works on a 

fiber level in a mass-univariate fashion (section S1.13 in the walkthrough tutorial). For 

each tract of a group connectome, improvements associated with VTAs that are 

connected to the tract are compared to the improvement values of VTAs not 

connected to the tract in two-sample t-tests. The method is referred to as 
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“discriminative fibertract analysis” in the software and was introduced in (Baldermann 

et al., 2019). By running the aforementioned test for every tract, each receives a 

predictive value in form of a T-score that can be positive or negative. Tracts are then 

color-coded by their T-score for visualization. Fibers mapped in red are 

predominantly connected to VTAs that were associated with better treatment 

response. The opposite would account for “negative fibers”. These are not shown 

given the large overall improvement of the cohort. Also, based on clinical and 

pathophysiological knowledge, it is unreasonable to hypothesize that DBS with poor 

placement would contribute to worsening of motor symptoms above and beyond 

side-effects which are not covered by the UPDRS and not largely present in long-

term stimulation-settings as the ones studied here. 

 
Statistical Analysis 

While the aforementioned processing steps mainly serve to visually describe DBS 

effects with regard to their anatomical sites, Lead group further provides specific 

statistical tests and ways to export metrics to run more elaborate statistical analyses 

in different software. For instance, it is straight-forward to export intersection volumes 

between VTAs and a specific anatomical atlas structure (such as the STN) or 

correlate these with clinical improvement values directly within Lead group. For the 

purpose of this study, intersections between each patient’s (bilateral) VTA and the 

(bilateral) STN atlas volume were correlated with the clinical outcome variable by 

conducting a Spearman’s rank-correlation. Random permutation (× 5000) was 

conducted to obtain P-values. Similarly, the values of the top and bottom responding 

half of the cohort were compared using a two-sample T-test. The same two types of 

analyses can be applied to connectivity estimates (e.g. of tract counts connecting 

VTAs with a cortical region such as the SMA). Similarly, those metrics can instead be 

exported for further analysis elsewhere. 
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Results 
 
 

Clinical Improvement 

The 51 patients (age 60 ± 7.9; 17 female) improved by 45.4 ± 23.0% on the UPDRS 

III motor score, from a postoperative baseline of 38.6 ± 12.9 to 21.1 ± 8.8 points. For 

further demographic details on the cohort, please see (Horn et al., 2019a, 2017c). 

Electrode placement 
 

Active contacts were mapped to anatomical space and visualized in 2D slice views 

(figure 2). Contacts of the top responding half are shown in light red (and the best-

responding patient in dark red) while the bottom half is shown in light blue (with the 

poorest responder in dark blue). A similar export is shown in 3D in the left panels of 

figure 3 which separately shows the two medium-split halves of active contacts. The 

right panel shows 3D electrodes with realistic dimensions instead of point-clouds. 

 
 
Electrode position weighted by clinical improvement 

 
After the clinical regressor was mapped to coordinates of active electrode contacts 

and VTAs, these were visualized in various forms using Lead group in 3D (figure 5) 

and exported to visualize them in a NIfTI-viewer such as 3D Slicer in 2D (figure 4). 

Figure 5A shows the active contacts of both sides that were nonlinearly flipped to the 

left hemisphere. Contacts were color-coded by clinical improvement values, showing 

a predominantly better improvement within the STN as opposed to outside of it. This 

scattered point cloud was then used to fit a scattered interpolant from which an 

equidistant volumetric grid could be generated. In figure 5B, the raw points of this 

interpolation grid are visualized, leading to a potentially clearer impression of the 

spatial extent of the optimal target region. Figure 5C uses a different approach to 

visualize the same interpolated data grid in showing a 3D isosurface that is color 

coded by improvement values in surrounding points. By doing so, a point cloud (of 

active coordinates) is transformed to a volume which is shown as 2D slices in the 

upper panel of figure 4. 

Mentioned methods use active coordinates, while it is also possible to map 

improvement values to the spatial extent of each VTA. Figure 5D and bottom panel of 

figure 4 show results of voxelwise T-maps across weighted VTAs.  
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Independent of method or visualization strategy, these results favor an optimal target 

within the STN and at anterior level of the red nucleus at its largest extent. This 

confirms priorly published articles that came to the same conclusion (Akram et al., 

2017; Bot et al., 2018; Horn et al., 2019a). 

 

 

Figure 2: 2D Visualization in Lead group. 2D slices of the most dorsal contacts in the left hemisphere (K9). Axial 
view on the left, coronal view on the right. Light blue and light red colors represent poor vs. good responders, 
respectively and dark blue vs. dark red circles depict the two patients with the least and most clinical benefit. STN 
is shown in orange. 

 

Figure 3: 3D visualization in Lead group. Left side: All active electrode contacts are shown as Point-Clouds from 
posterior. Right side: Electrodes were mirrored and are shown from the left side. Good and poor responders are 
presented in the upper and lower row, respectively.  
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Figure 4: Clinical regressor. Upper panel: coordinates of all active contacts, weighted by clinical improvement. 
Lower panel: Volumes of tissue activated of all patients, weighted by clinical improvement. Tmaps, corrected for 
number of VTAs are presented, ranging from negative (blue) to positive (red) clinical outcome. Coronal view on 
the left, axial view on the right. STN highlighted with dashed orange line. Both regressions point towards an 
optimal stimulation site within the more dorsal part of the STN.  
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Figure 5: Mapping regressors in Lead group. Panel A: All active contacts, shown as point clouds colored by 
clinical improvement. Panel B: regressor is mapped to electrode coordinates as interpolated point mesh. Panel C: 
regressor mapped as isosurface. Panel D: VTAs of patients weighted by clinical improvement and thresholded by 
a T-value of 10.56; Color bar relates to Panels A-C and clinical improvement is guided by percentage UPDRS-III 
motor score improvement. Left hemisphere is displayed, with STN in orange. 

 

Distance to target 

Above approaches aimed at defining optimal targets in a data-driven fashion, i.e. by 

weighting electrode coordinates or VTAs with clinical improvement scores and 

aggregating those values on a group level. Alternative research questions could aim 

at validating known targets or coordinates. For instance, if an optimal target 

coordinate was reported in the literature, an aim could be to validate the target using 

a novel cohort (Horn et al., 2019a). Here, we explore this option by calculating 

distances between each target coordinate and the atlas definition of the STN. To do 

so, a “target report” can be generated within Lead group (see section S1.10 in the 

walkthrough tutorial), which calculates the distance in mm of each electrode contact 

to the closest voxel of the chosen atlas structure. In addition, a threshold can be 

selected so that a binary table will be provided, indicating whether or not a contact 

resides inside or outside of the anatomical structure. Of note, this “structure” can be 

defined as any map defined in NIfTI format in standard space, i.e. it does not 

necessarily need to be a brain nucleus like the STN in our example. In figure 6 these 
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distances are presented for the best (82% improvement) and the poorest (-11% 

improvement) responders in synopsis with their electrode reconstructions. Not 

surprisingly, their proximity to the target differs largely and the active contact of the 

best responder was placed inside the STN. 

 

 
Figure 6: “Target report” feature showing distance from contact center to its closest STN voxel. For each active 
contact (highlighted in red), the distance from the contact center to the STN is shown for patients with best (red) 
and worst (blue) clinical outcomes. 

 
Intersection with local structures 
 
Instead of calculating absolute electrode distances, a similar approach is to calculate 

the intersections between each VTA and an anatomical atlas structure (see section 

S1.11 in walkthrough tutorial). These intersecting volumes may be either used in 

statistical tests in Lead group, or exported for further analysis. In our example, we 

hypothesized, that clinical improvement would correlate positively with the volume of 

STN intersection and accordingly, that the group of top half responders, as initially 

assigned by a median split, would intersect with the STN to a significantly higher 

degree than the group of bottom half responders (figure 7). 

 

Figure 7: VTA intersection with the STN explains clinical improvement. Left side: Spearman’s rank-correlation 
between clinical improvement and intersections between VTA and the STN. Patients with best vs. poorest 
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responses (figure 6) are highlighted with large circles. Right side: Patients were arbitrarily median-split into two 

groups, based on their percentage improvement on the UPDRS-III score. The group of better responders (red) 
showed significantly higher VTA overlap with the STN. 

 
 
Fibercounts to connected structures 
 
Based on the PPMI 85 connectome, fibers traversing through each VTA were 

isolated and the ones terminating in each cortical region defined by the HMAT 

parcellation were counted using Lead group. These numbers were correlated with 

clinical improvement across the group. As can be seen in figure 8, the number of 

fibers reaching preSMA (R = 0.29) and PMv (R = 0.3) could explain part of the 

variance in clinical improvements. In turn, less fibercounts connecting VTAs to M1 or 

S1 were associated with better %UPDRS-III improvement (R = -0.4 and R = -0.46). 

Of these results, only the latter two would remain significant after applying Bonferroni 

correction to p-values. 

 

 
 

Figure 8: Correlation with connectivity to cortical structures. The six structures of the HMAT parcellation, colored 
by the R value, resulting from Spearman’s rank-correlations between fibercounts to these areas and clinical 
improvement. 
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Discriminative fibers 
 
The above analysis aimed at identifying cortical regions to which connections were 

positively or negatively associated with clinical improvements. An additional analysis 

stream available within Lead group could complement this concept by identifying 

specific tracts that were associated with clinical improvement. To do so, mass-

univariate T-tests were conducted for each tract of the normative PD connectome 

between improvement values of connected vs. unconnected VTAs. Fibers were then 

color-coded by their T-value. The top 10% of the fibers are shown in figures 9A and 

9B. This analysis revealed that the most positively associated tracts of the 

connectome traversed within the internal capsule and seemed to branch off to the 

STN in a similar fashion and at a similar location as the hyperdirect pathway when 

revealed by single-axon tracing in the macaque (e.g. compare to figs. 2-4 in Coudé et 

al., 2018a or fig. 4 panel B subpanel v in Petersen et al., 2019). Crucially, tracts that 

passed by the STN (i.e. fibers of the cortico-spinal tract) received lower T-values and 

are not shown due to thresholding applied to results. This is remarkable, since the 

hyper-direct pathway (i.e. corticospinal tract axons that branch off collaterals to the 

STN) is considered hard if not impossible to differentiate from the corticospinal tract 

based on diffusion-based tractography (Petersen et al., 2019a). To address this and 

similar shortcomings of diffusion tractography, Petersen et al. have recently 

genuinely applied holographic manual reconstructions to define an atlas that defines 

hyperdirect pathways to the STN (Petersen et al., 2019a). The lower limb M1 portion 

of this atlas is shown in direct synopsis with our results (figure 9 C). 
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Figure 9: Discriminative fibers. Tracts that are positively associated with clinical improvement are colored by their 

T-value (in panels A & B). Fibers with strongest discriminative value pass from the STN via the internal capsule to 
the motor cortex. SMA (dark blue) and preSMA (light blue) which were informed by the HMAT atlas (A). Within the 
STN (B), the most positively significant fibers (shown from posterior) traverse within the internal capsule and 
seem to branch off to the STN in a similar fashion as the hyperdirect pathway (e.g. compare to figs. 2-4 in Coudé 
et al., 2018). Moreover, these tracts project to the dorsal part of the STN at the same location that peaked when 
mapping improvements to active coordinates or VTAs (figure 4 and 5). Please note that the hyperdirect pathway 
is implemented by axon collaterals of axons that pass by the STN as can be seen in direct synopsis with an atlas 
of the hyperdirect pathway (Petersen et al., 2019); C) in which the collaterals are shown in red while the passing 
axons were faded to white.  
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Discussion 
 
Advanced neuroimaging methods are, without any doubt, inevitable to advance Deep 

Brain Stimulation. Not only can they assist surgical targeting, but also post-operative 

analyses of DBS effects and to gain added knowledge about functional 

neuroanatomy. Here, we present a freely-available open-source toolbox that was 

designed to carry out neuroimaging-based DBS research on a group level. Although 

our own development focused on patients undergoing DBS with chronically-

implanted electrodes, Lead group was recently used to localize stereotactic 

intracranial EEG (iEEG) electrodes as well (Toth et al., 2019). 

To demonstrate the functionality of Lead group, we analyze a retrospective cohort of 

51 PD patients that underwent DBS surgery to the STN. This example application of 

Lead group led to results that were mostly confirmatory in nature but give a 

comprehensive picture of optimal DBS placement in the STN to treat PD. 

Specifically, our analysis confirms that an optimal DBS target resided within the 

dorsolateral STN and suggests that the hyperdirect pathway could play a role in 

mediating treatment effects. 

 

Neuroimaging and DBS 

The use of neuroimaging in the field of DBS has a long-standing history with x-ray 

and myelography applications as early examples. With the rise of MRI and CT 

modalities, it became standard to include neuroimaging data into the clinical 

procedure. For instance, at around 2000, Hariz and colleagues published a paper 

that reported use of T2-weighted MRI for pre- and postoperative imaging in a time at 

which most centers still used indirect targeting on T1-volumes or ventriculography 

(Hariz et al., 2003). 

The rise of MRI and CT made it possible in numerous works to report on electrode 

placement in the individual patient (e.g. Krause et al., 2015; Laxton et al., 2010b for 

examples). However, while screenshots of postoperative imaging serve the purpose 

of confirming electrode placements well, they do not make them comparable to other 

patients and centers, in a standardized way. 

Instead, when using normalized and model-based electrode reconstructions in a 

standardized space, electrode placement may be characterized in a more objective 

fashion. This concept has been used in early work that characterized electrodes in 

standardized imaging-based spaces (e.g. Butson et al., 2011; Eisenstein et al., 2014; 
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Frankemolle et al., 2010; Maks et al., 2009; Nowinski et al., 2005). While the 

neuroimaging field (mostly driven by fMRI literature) largely converged on the MNI 

space, most of the functional neurosurgery literature expressed standardized 

coordinates in coordinates relative to the anterior and posterior commissure (AC/PC) 

(Horn et al., 2017a). This approach has strong limitations because it does not take 

patient-specific anatomical variability into account (Horn et al., 2017a; Nestor et al., 

2014). The Mayberg group may have been among the first to clinically adopt use of 

the MNI space for DBS localizations, potentially because surgical targets for 

depression resided more distant to the AC/PC (leading to larger errors) and because 

modern imaging modalities like fMRI, diffusion MRI and PET formed elementary 

components of their pioneering research (Choi et al., 2015; Riva-Posse et al., 2017, 

2014).   

 

A tool to shift DBS imaging research to a group level 

Despite aforementioned examples that showed the promise of group localizations, an 

open-source software capable of performing these analyses has not been developed 

(while a commercial solution is available in form of the CranialCloud software 

(D’Haese et al., 2015)). Lead-DBS and Lead group were specifically designed to 

perform group analyses in the field of DBS imaging and have been applied in over 

120 peer-reviewed articles (see https://www.lead-dbs.org/about/publications/). 

Examples that utilized group statistics span across different diseases like PD 

(Bouthour et al., 2019; Horn et al., 2019c), essential tremor (Al-Fatly et al., 2019; 

Kroneberg et al., 2019), Dystonia (Neumann et al., 2017), Meige syndrome (Yao et 

al., 2019), OCD (Baldermann et al., 2019; Huys et al., 2019), epilepsy (Middlebrooks 

et al., 2018; Wang et al., 2019), Tourette’s Syndrome (W. J. Neumann et al., 2018) or 

refractory thalamic pain syndrome (Levi et al., 2019). Using Lead-DBS, a sweet spot 

for STN-DBS in PD was defined and used to predict improvement of motor 

symptoms in out-of-sample data (Dembek et al., 2019a). Different subregions of the 

STN were associated with different non-motor outcomes in second study, by 

exploring local DBS effects (Petry-Schmelzer et al., 2019). Side-effects, such as 

hyperhidrosis (Yang et al., 2019) or ataxia and dysarthria (Al-Fatly et al., 2019) have 

been mapped to anatomy using a prototype of Lead group. In a sample of epilepsy 

patients implanted for DBS to the anterior nucleus of the thalamus (ANT), functional 

connectivity seeding from the VTAs was analyzed with respect to clinical response, 
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using a normative connectome (Middlebrooks et al., 2018). A different study applied 

Lead group to investigate a novel parietal surgical approach for ANT-DBS in epilepsy 

(Wang et al., 2019). In another recent study, resting-state functional MRI was 

acquired in PD patients while DBS was simultaneously switched on and off (Horn et 

al., 2019c). Here, DBS was able to shift functional connectivity profiles towards the 

ones observed in healthy controls. Focusing on a different analysis path, 

electrophysiological measures recorded from the LFP-signal of STN-DBS electrodes 

were mapped to subcortical anatomy of the human brain (Horn et al., 2017b). This 

confirmed that elevated beta-power is predominantly expressed within the 

sensorimotor functional zone of the STN, a finding that was reproduced and 

extended by two different teams again by the use of a Lead group prototype (Geng et 

al., 2018; van Wijk et al., 2017). The concept is now referred to as subcortical 

electrophysiology mapping and the involved research questions shaped functionality 

and continued development of Lead group while being applied in further studies 

(Lofredi et al., 2018; Neumann et al., 2017; Tinkhauser et al., 2019).  

 

The ability to nonlinearly map electrodes of patient cohorts into a comparable and 

well-defined space also led to the possibility of exploring subtle differences in their 

brain connectivity profiles. After pioneering work that applied commonly available 

pipelines from the neuroimaging field or commercial tools (Akram et al., 2018; 

Vanegas-Arroyave et al., 2016), Lead group was further improved to perform such 

analyses, as well (Horn et al., 2017a). Since then, the tool has empowered research 

that explored optimal connectivity profiles in PD (Horn et al., 2017c), OCD 

(Baldermann et al., 2019) and Essential Tremor (Al-Fatly et al., 2019). 

Extending this line of research, it was used to relate connectivity profiles seeding 

from DBS electrodes to behavioral instead of clinical changes induced by DBS. For 

instance, Neumann et al. showed that specific connections of the electrodes would 

lead to changes in movement velocity vs. reaction times in a motor task(W.-J. 

Neumann et al., 2018). De Almeida showed that functional connectivity between 

STN-DBS electrodes and a specific site in the ipsilateral cerebellum was associated 

with partly restoring motor learning in PD patients (de Almeida Marcelino et al., 

2019). Finally, focusing on localized instead of connectivity-mediated effects, Irmen 

et al. showed that modulating specific subregions of the STN could restore risk-taking 

behavior to a level observed in healthy controls (Irmen et al., 2019a). 
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Optimal placement in STN-DBS for treatment of PD 

While above results demonstrate general benefits of a DBS imaging group level tool, 

results obtained from the example cohort in the present manuscript should be set into 

scientific context, as well. 

In summary, our results confirm previous findings, that the stimulation of the STN, 

and more precisely its dorsolateral part is linked to UPDRS-III improvement (e.g. 

Caire et al., 2013). As mentioned above, this finding is not novel. In fact, recent 

studies that were carried out by four centers, each using three different 

methodologies, converged on almost the exact same optimal target coordinate 

(Akram et al., 2017; Bot et al., 2018; Horn et al., 2019a; Nguyen et al., 2019; for a 

review see Horn, 2019). One of those studies used commercial software (Akram et 

al., 2017), one a method that directly builds upon the imaging data in native patient 

space (Bot et al., 2018) and the third and fourth used Lead group (Horn et al., 2019a; 

Nguyen et al., 2019). Moreover, the two latter studies were able to significantly 

explain clinical improvement by measuring distance from each DBS electrode to the 

optimal coordinate. This illustrates that the precision of DBS imaging research has 

evolved to become useful, after a list of earlier studies had partly shown conflicting 

results (Horn, 2019).   

Our results further showed that treatment success was positively associated with 

structural connectivity to preSMA and PMv. Again, this has been shown before 

(Akram et al., 2017; Horn et al., 2017c; Vanegas-Arroyave et al., 2016). Here, we 

elaborate on this finding by isolating a specific fiber bundle that seems to be 

associated with clinical improvement. Interestingly, this analysis revealed that fiber-

tracts that connect the motor cortex with the STN are most associated with good 

clinical improvement while tracts of passage (i.e. the corticospinal tract, CST) are 

less so (figure 9). This result may be surprising, since separating the hyperdirect 

pathway from the CST is considered difficult if not impossible by means of dMRI 

based tractography (Petersen et al., 2019a).  

In the brain, the hyperdirect pathway is implemented in form of axon-collaterals 

branching off from axons traversing from the cortex inside the internal capsule 

(Coudé et al., 2018b; Gunalan et al., 2017; McIntyre and Hahn, 2010; Nambu et al., 

2002; Petersen et al., 2019b). Reconstructing such branching fibers is not possible in 

available tractography software packages, for obvious reasons of an already high 
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false-positive rate (Maier-Hein et al., 2017). Still, in direct comparison with single-

axon tracing data in the macaque, the anatomical course of the tract isolated here 

(figure 9B) starkly resembles the path of the axon-collaterals of the hyperdirect 

pathway (see tract atlas in fig. 9C or figs. 2-4 in Coudé et al., 2018). 

 

Limitations 

Mapping DBS electrodes to a group template inherently comes with a loss of 

precision and a multitude of related problems and limitations. Already beginning 

within the patient’s own space, brain shift introduces non-linear displacements 

between postoperative and preoperative scans, favoring the use of postoperative 

MRI, which makes it possible to directly visualize both the electrode and target 

structure in the same space (Hariz et al., 2003). This problem can partly be 

overcome by applying brain shift correction (Horn et al., 2019a) as applied here, but 

a residual error should be assumed to remain, especially in patients with large 

pneumocephalus volumes (Lee et al., 2010). Errors in localizing DBS electrodes 

themselves may potentially introduce a greater source of bias than could be 

assumed. To this end, Lead-DBS has incorporated a phantom-validated algorithm for 

automatic localizations based on postoperative CT volumes (Husch et al., 2018) as 

well as a multitude of manual refinement and control views. Still, empirical data on 

observer-dependencies or inter-rater errors of electrode localizations with Lead-DBS 

are lacking (such studies are currently underway). Nonlinearly warping electrodes 

into template space introduces an additional bias that cannot be completely 

overcome. Based on experience when visualizing the same patient in native and MNI 

space and comparisons with results from other tools, we are confident that 

localizations in MNI space are meaningful, since they have been used to explain 

(Horn et al., 2019a; Joutsa et al., 2018; Yao et al., 2019) or even predict (Al-Fatly et 

al., 2019; Baldermann et al., 2019; Horn et al., 2017d) clinical improvements in a 

number of studies. Still, the amount of error introduced by nonlinear registrations 

remains unclear. Some validation of electrode localizations in standard space were 

made using electrophysiology by various groups (Horn et al., 2017b; Neumann et al., 

2017; Nowacki et al., 2018; Tinkhauser et al., 2019; van Wijk et al., 2017). For 

instance, agreement between electrophysiology-defined and atlas-defined 

boundaries in standard space showed high agreement across 303 microelectrode 

recording sites when localizing recording-sites using Lead-DBS (Rappel et al., 2019). 
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Still, even if reconstructions in MNI space are meaningful, we must assume a slight 

bias since by definition, nonlinear registrations will introduce inaccuracies. Of note, 

the exact same bias applies when instead warping atlas structures from template to 

native space (at least when applying diffeomorphic registration strategies which are 

standard in the field (Avants et al., 2008)). Over the last decade, we aimed at 

minimizing this nonlinear error by introducing various concepts that ranged from 

multi-step linear transforms (Schönecker et al., 2009) over the introduction of multiple 

algorithms (Ewert et al., 2018a; Horn et al., 2019a, 2017a, 2017b; Horn and Kühn, 

2015) to the current multispectral default method that was recently empirically 

validated (Ewert et al., 2019b). Further methodological work such as the possibility to 

manually refine warp-fields has been published and implemented in Lead-DBS / 

Lead group (Edlow et al., 2019) but was not yet applied in the present work. Despite 

these efforts that may minimize bias introduced by warping electrodes to template 

space, these can likely never be overcome completely. Thus, the gold-standard for 

localizing DBS electrodes will always remain to work in native patient space, when 

the research questions we ask allow us to do so. A further limitation of Lead-DBS 

and Lead group is the accuracy of the implemented VTA models. While our pipeline 

includes the only finite element method based VTA model that is available in an 

open-source pipeline, more accurate models have been described in the literature 

(Chaturvedi et al., 2013; Gunalan et al., 2017). Lead-DBS uses a VTA model that 

thresholds the E-Field magnitude as this practice was suggested to yield good 

approximations by others (Åström et al., 2015). However, recent results by leading 

groups in this field suggested significant limitations of the approach (Duffley et al., 

2019; Gunalan et al., 2017). Moreover, limitations apply to the concept of the VTA 

itself. Specifically, it is impossible to represent the bioelectrical effects of DBS within 

a binary volume of any form. Such a representation cannot include information about 

which axons of which orientation, diameter or neurotransmitter types are modulated. 

While GABAergic neurons deplete by DBS almost immediately, Glutamatergic 

neurons do not (Amadeus Steiner et al., 2019; Milosevic et al., 2018b) – leading to 

differential modulation effects (while recent evidence suggests that the DBS effect in 

the STN for PD is predominantly mediated by GABAergic neurons (Milosevic et al., 

2018a)). Furthermore, models do not incorporate microscale anisotropy (while the 

use of macroscale anisotropy has been explored (Butson et al., 2006)) or 

heterogeneity of tissue (fluid-filled regions around neurons and axons lead to strong 
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spreads of current (Sriperumbudur et al., 2018)). This inherent limitation of 

representing DBS effects as a sphere has led to more advanced concepts such as 

pathway activation models (Gunalan et al., 2017) which have yet to enter the open-

source software field to become broadly applicable (such developments are currently 

underway (Butenko et al., 2019)). 

Instead of analyzing DBS effects on an axonal/neuronal level, Lead group works on a 

voxel-level, to analyze connectomic DBS effects. Thus, it approaches modeling 

problems from a neuroimaging perspective – while others have approached it from a 

cellular modelling perspective. While this strategy has been useful to predict clinical 

and behavioral effects and it does not require a multitude of biophysical assumptions, 

it is limited in the potential predictions that it can theoretically make (Petersen et al., 

2019a).  

A related limitation lies in the use of normative connectomes. While their utility could 

be shown to predict various clinical symptoms (Al-Fatly et al., 2019; Baldermann et 

al., 2019; Horn et al., 2017a, 2017c; Joutsa et al., 2018; Weigand et al., 2018), these 

datasets lack patient-specificity and should be seen as brain atlases of the wiring 

diagram of the human brain. And while atlases have been used in the field of DBS 

since the introduction of the Clarke-Horsley apparatus in 1906 (Clarke and Horsley, 

2007), insights derived from atlases should be transferred to individual patients 

cautiously, if at all (Coenen et al., 2019). Moreover, diffusion-weighted imaging based 

tractography and resting-state functional MRI, the modalities usually used for 

noninvasive connectivity mapping, are both highly derived modalities that show a 

multitude of inherent problems and lead to a high number of false-positive (Maier-

Hein et al., 2017) and false-negative (Maier-Hein et al., 2017; Petersen et al., 2019a) 

results. 

In sum, limitations in precision – from registrations and localizations in native space, 

warping bias in template space and limitations of applied biophysical models and 

connectomes – add up and make DBS imaging research challenging, especially so 

on a group level. Strategies to reduce bias include i) acquiring high-quality 

multimodal preoperative MRI data, ii) accurate postoperative imaging, iii) care- and 

skillful analysis and meticulous data control in every step of the pipeline and iv) 

cautious interpretation of results. Over the years, we have identified typical pitfalls 

and included control views, correction tools and mediation strategies to reduce bias 

wherever possible throughout the Lead-DBS software package. 
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Conclusions 

We present a novel open-source toolbox that is designed to shift deep brain 

stimulation imaging to a group-level. We show utility of the toolbox by presenting 

largely confirmatory results in a cohort of Parkinson’s Disease patients that 

underwent deep brain stimulation surgery to the subthalamic nucleus. Specifically, 

we validate an optimal target within this nucleus that has conclusively been described 

by four independent groups within the past two years. Furthermore, we show 

connectivity profiles and a specific tractogram that were associated with good clinical 

outcome in our analyses. Finally, we discuss findings and applications of group-level 

deep brain stimulation imaging while making aware of a multitude of limitations that 

apply to this strand of research. 
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Supplementary Material 

 
S1 – Walkthrough Tutorial 
 

1. Setup of Lead Group 
 

a. Select all patients to be displayed from Patient list 

b. Click group colors and choose preferred colors  
c. Click Review/Edit under Variables and enter values for each patient. Note: 

alternatively, variables can be added more easily within Matlab, in the Lead 
group file: M.clinical.vars   

d. Under Stimulation Parameters, specify active contacts and amplitudes for all 
patients 

e. Choose subcortical atlas (DISTAL or any other atlas) from the drop-down 
menu 

 
 

2. Figure 2: 2D Visualization of electrodes as point clouds, colored by group 
 

 

a. In the visualization options, select “show active contacts” (additionally “show 
passive contacts”, if preferred) 

b. Under 2D options – settings, choose the 7T Ex vivo 100um Brain Atlas (Edlow 
et al., 2019) as Backdrop 

c. Press Visualize 2D 
 

 
3. Figure 3 left: 3D visualization as point clouds 

a. Same setup as for Figure 2, now under 3D options select Point-Clouds and 
press Visualize 3D 

b. Together with the electrode scene, the slice control figure pops up (bottom 
left), where the 7T template can be chosen as background. 

c. Click Edit- Current Object Properties…to manually adapt the plot by clicking at 
the respective objects, e.g. the STN. The edge color, transparency etc. can be 
edited 

  
d. In the function ea_showelectrode.m, the size of the Point-Clouds can be 

edited in line 206-212 (e.g. ms=15) 
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4. Figure 3 right: 3D visualization as electrodes 
 
Same as previous figure, instead of Point-Clouds select Electrodes 

 
5. Figure 4: Clinical regressors 

For Figure 4, the two outputs from figures 5C and 5D were imported in 3D slicer and 
overlaid on the 7T Template. 
 

6. Figure 5A: Point Clouds, colored by regressor 
 
Same as Figure 3 left, but check the box “color by regressor” in the 3D options. This 
box can only be checked if Point-Clouds are selected. 

 
7. Figure 5B: map regressor as interpolated point mesh 

a. Under Visualization Options check the box “Map regressor to Coords” 
b. Uncheck the box “Show Active Contacts” 
c. In 3D options, same as for previous figure and select “Visualize regressor as: 

Interpolated point mesh” 
 

8. Figure 5C: regressor mapped as isosurface 
a. Same as previous figure, but select “Visualize regressor as: isosurface” 
b. In the group folder you can then find the resulting surfaces as nifti files (used 

for figure 4), named after the regressor and one for each hemisphere 
 

9. Figure 5D: Map regressor to VAT 
a. Under Visualization Options, instead of “Map regressor to Coords”, select 

“Map regressor to VAT” 
b. Together with the plot, a window appears, which allows to change the 

threshold, alpha and smoothing of the regressor 

                    
c. The output, provided for the left hemisphere, can be found in the group 

folder under statvat_results-models 
 
 

10. Figure 6: Distance to target 
a. Same as figure 3, only that “Highlight active contacts” is checked under 

Visualization Options 
b. The table on the right side is based on the result produced by the option 

“Generate target report” under DBS stats. This will render two boxes, one 
showing the distance from each contact to the closest (!) voxel of the target 
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structure, the other displaying a binary table, indicating whether each contact 
lies “within” the target, based on a chosen threshold. Careful: Since it’s 
always the distance to the closest voxel of a target, even if the electrode 
contact is in the middle of the target structure, the distance to the shell of the 
target will be listed. Thus, a visual check of the contact positions is 
recommended! 

                   
 

11. Figure 7: VTA intersections 
 
Plots of the correlations and group comparisons can be generated under “Analyze 
Intersections with local structures”. Depending on the chosen atlas under General 
settings, subcortical regions can be chosen. Clinical variables/groups need to be 
selected, respectively. 
 

12. Figure 8: correlation with connected structures 
 
Same (as Fig.7) applies for the correlation/group comparison with fibercounts to 
connected structures, under “Analyze relationships with connected structures”. 
Here, the regions available depend on the selected brain parcellation. Apart from the 
correlation plots, the rest of Figure 9 was created outside of Lead DBS. 
 

13. Figure 9: Discriminative fibers 
a. Under 3D Options, select “Show discriminative fibers” 
b. Under “Discriminative fiber setting” adaptations can be made, e.g. only show 

positive prediction, thresholds and whether the binary VTA or the E-field 
model should be used 

c. “Visualize 3D” and the fibers will be selected, which may take a while when 
executed for the first time. When finished, a control window pops up, which 
allows you to change the thresholds. 

  
d. In the toolbar you’ll find “Add objects”, where you can add regions of interest 

to the figure, like the HMAT parcellation in blue 
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