
 1

Predicting transcription factor binding in single cells 

through deep learning 

Laiyi Fu1,2, Lihua Zhang3,5, Emmanuel Dollinger3,4,5,6, Qinke Peng1, Qing Nie3,4,5,6*, 

Xiaohui Xie2,5,6* 

1 Systems Engineering Institute, School of Electronic and Information Engineering, Xi'an Jiaotong 
University, Xi’an, Shannxi, 710049, China 2 Department of Computer Science, 3 Department of 
Mathematics, 4 Department of Developmental and Cell Biology, 5 NSF-Simons Center for Multiscale Cell 
Fate Research, 6 Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA 
*: co-corresponding authors: qnie@uci.edu, xhx@uci.edu  

Abstract 

Characterizing genome-wide binding profiles of transcription factor (TF) is essential for 

understanding many biological processes. Although techniques have been developed to 

assess binding profiles within a population of cells, determining binding profiles at a 

single cell level remains elusive. Here we report scFAN (Single Cell Factor Analysis 

Network), a deep learning model that predicts genome-wide TF binding profiles in 

individual cells. scFAN is pre-trained on genome-wide bulk ATAC-seq, DNA sequence 

and ChIP-seq data, and utilizes single-cell ATAC-seq to predict TF binding in individual 

cells. We demonstrate the efficacy of scFAN by studying sequence motifs enriched 

within predicted binding peaks and investigating the effectiveness of predicted TF peaks 

for discovering cell types. We develop a new metric "TF activity score" to characterize 

each cell, and show that the activity scores can reliably capture cell identities. The 

method allows us to discover and study cellular identities and heterogeneity based on 

chromatin accessibility profiles.  
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Introduction 
 
Transcription factors (TFs) bind to accessible or "open" promoter and enhancer regions 

and play a pivotal role in regulating gene expression by aiding or inhibiting binding of 

RNA polymerase(1-3). Different binding events lead to heterogeneity of gene 

expression across a population of cells, which may result in distinct cellular identities. 

Therefore, characterizing TF profiles of transcription factor is critical for understanding 

gene regulatory mechanisms and differentiating heterogenous cells. 

 

Chromatin accessibility assays such as DNase-seq(4), Formaldehyde-Assisted Isolation 

of Regulatory Elements (FAIRE-seq)(5) and Assay for Transposase-Accessible 

Chromatin sequencing (ATAC-seq)(6) provide a way to study TF binding activity across 

the whole genome(7). Of these methods, ATAC-seq is gaining popularity due to its 

comparative cost-efficiency and simplicity. ATAC-seq profiles are generally designed to 

identify open chromatin regions, which can be used to infer TF binding events where 

these regions overlap with protein binding sites. Indeed, methods such as FactorNet(8) 

and deepATAC(9) leverage a deep learning-based approach to identify open chromatin 

regions and infer TF binding locations using bulk chromatin accessibility data. However, 

both of these methods are only applicable to bulk data, and therefore do not take into 

account heterogeneity within cellular populations.     

 

Recent advances of single cell epigenomic sequencing permit characterization of 

chromatin accessibility at a single cell level(10). For example, probing chromatin 

accessibility within single cells by scATAC-seq has become possible(11-13), enabling 
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the identification of cis- and trans-regulators and the study of how these regulators 

coordinate in different cells to influence cell fate(13-15). Unfortunately, as with all single 

cell transcriptomics, scATAC-seq data are sparse and noisy due to not only technical 

constraints such as shallow sequencing(11) but also biological realities such as cellular 

heterogeneity(16). 

 

In order to address these challenges, we present a deep learning-based framework 

called single cell Factor Analysis Network (scFAN). scFAN pipeline consists of a “pre-

trained model”, which is trained on bulk data, and is then used to predict TF binding at a 

cellular level using a combination of DNA sequence, aggregated similar scATAC-seq 

data and mapability data(17). This approach alleviates the intrinsic sparsity and noise 

constraints of scATAC-seq. scFAN provides an effective tool to predict different TF 

profiles across individual cells and can be used for analyzing single cell epigenomics 

and predicting cell types.  
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Results 
 

scFAN overview 
 

We start with a brief overview of scFAN (Fig. 1a). scFAN is a deep learning model, 

receiving ATAC-seq, DNA sequence and DNA mapability data at a given genomic 

region as input, and predicting the probability of a TF binding to this region. scFAN is 

trained using publicly available “bulk” datasets, which contain genome-wide ATAC-seq 

and ChIP-seq profiles collected from multiple cell types measured at a population level. 

The data inputs (i.e. input feature vectors) are 200 bp bins composed of bulk ATAC-seq 

data, DNA sequence and mapability data for that bin. The feature vectors are fed into a 

3-layer convolutional neural network (CNN), which is then linked to 2 fully connected 

layers and a final sigmoid layer to make predictions. The ground-truth outputs are binary 

labels indicating TF binding, annotated based on ChIP-seq peaks. 

 

Once the model is fully trained, scFAN predicts TF bindings in each individual cell 

based on scATAC-seq profiles measured in that cell. Due to the intrinsic sparsity of 

current scATAC-seq technology, we first impute the signal of scATAC-seq at individual 

bases of each cell by aggregating scATAC-seq data from similar cells. For each single 

cell, we calculated similarity scores between it and other cells and aggregated 

chromatin accessibility signals of its similar neighbors to boost chromatin accessibility 

coverage and used the aggregated data as inputs to our model. This approach allows 

us to increase the chromatin accessibility coverage while retaining cellular specificity. 
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The input vectors in the prediction step are the aforementioned aggregated scATAC-

seq data, DNA regions called by scATAC-seq, and mapability data. 

 

Validation of scFAN accuracy on bulk data 
 

We trained scFAN on three bulk ATAC-seq datasets, GM12878, H1-ESC and K562, in 

which ChIP-seq data for a number of TFs are also available from the ENCODE 

consortium (with 33, 31 and 60 TFs in each dataset respectively), and generated three 

pre-trained scFAN models – one for each dataset. We then validated the accuracy of 

the trained models on test datasets (hold-out chromosome regions not used during 

training). Similar to the TF binding annotations in the training data, the ground-truth 

labels of the TF binding in the testing data are also based on ChIP-seq peaks. The 

prediction accuracy was measured by the Area Under the ROC Curve (AUC), the Area 

Under the Precision-Recall curve (AUPR) and the Recall value corresponding to each 

TF (Fig 1b, Supplementary Fig S3, S4). Our trained model captured most of the TF 

binding information correctly: all the TF prediction AUC values are over 0.80 and nearly 

half of the TF AUPR values are over 0.8 (Supplementary Table S1). What is more, we 

and others have reported that convolutional neural networks could capture TF binding 

motifs information(8, 18). We used the same heuristic from FactorNet and visualized TF 

kernels of SPI1, CREB1, JUND and MAFK from the trained model based on cell line 

GM12878. These kernels were first converted to position weight matrices and then 

aligned with motifs from JASPAR(19) using TOMTOM(20). All these kernels 

successfully matched the TFs that were identified by known database like JASPER with 

matched E-values all less than 10-3, e.g. 9.02*10-4 for TF SPI1 (Fig. 2b).  
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We then compared two other state-of-the-art bulk TF binding profile prediction methods 

to scFAN, FactorNet(8) and deepATAC(9). Similar to FactorNet and deepATAC, scFAN 

uses convolutional neural nets as its basic building structure but simplifies the model 

structure to include fewer convolution layers with fewer parameters.  A key difference 

between scFAN and the previous two models is scFAN’s ATAC-seq signal is continuous, 

as opposed to the binarized signal used by FactorNet and deepATAC. Binarizing the 

data may result in loss or change of ATAC-seq signal depending upon how the data are 

binarized. To make the comparison fair, all three models were trained and tested on the 

same datasets. Encouragingly, scFAN more accurately predicted bulk TF binding than 

either FactorNet or deepATAC, based on mean values of AUC, auPR and Recall in 

three cell lines (Fig. 2a). Per the GM12878, K562 and H1ESC cell lines, 85% (61%), 90% 

(55%) and 81% (71%) of TF predictions have better recall values compared with 

deepATAC (FactorNet). The improvements are statistically significant for two 

comparisons (two-tailed t-test, p < 0.05).  

 

Single cell TF predictions are consistent with enrichment analysis 
 

Next, we evaluated scFAN's predictive performance at a single cell level. We ran scFAN 

TF binding prediction on a scATAC-seq dataset consisting of 2210 cells with a mixture 

of cell types ranging from the chronic myelogenous leukemia cell line K562 of drug 

treated and untreated to lymphoblastoid cell lines (LCLs; GM12878) (including 

replicates), human embryonic stem cells (H1ESC), fibroblasts (BJ), erythroblasts (TF-1), 

promyeloblast (HL60), acute myeloid leukemia (AML) patients, lymphoid-primed 
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multipotent progenitors (LMPPs), and monocytes cells from Corces et al(11, 21).  For 

each individual cell, we ran TF binding prediction using each of the three pre-trained 

scFAN models and then concatenated these predictions (See Methods) to generate the 

binding profiles of 88 TFs in each of the 2210 cells.  

 

Unlike the bulk data, TF information in ChIP-seq at a single-cell level is not possible at 

this stage due to technical constraints. Hence, we cannot evaluate the accuracy of our 

single-cell TF binding predictions by directly comparing to a ground-truth label as in the 

case of the bulk data. To assess the quality of our predictions, we instead use two 

indirect approaches.  

 

First, we verified whether there are sequence motifs enriched within the predicted TF 

regions and whether these motifs match known binding profiles of the TFs. For this 

purpose, we used the software Homer to discover and evaluate the enrichment of motifs 

with scFAN predicted peaks(22). The result showed that TFs of five active TFs 

predicted by scFAN in six cell types were all significantly enriched in Homer (p < 10-10, 

Fig. 2c). Intriguingly, TFs critical to monocyte differentiation such as SPI1 (a.k.a. PU.1), 

EGR, CREB and YY1 were highly enriched in monocyte cells (p-value < 1e-5)(23, 24).  

To further explore whether each of these TF binding prediction matches the known 

motifs, we implemented TF prediction in all the candidate peaks in the monocyte cell 

using scFAN, then selected those peaks that were predicted to bind with each one of 

these TFs, and finally performed de novo enrichment analysis using Homer. For each 

TF result, we used the one of the most enriched de novo assembled motifs to match 
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with corresponding TF motifs, and we found that the de novo assembled motifs from 

scFAN closely matched known motifs from Homer (Fig. 2d).  

 

Using single cell TF prediction to cluster cell types 
 

Next, we studied whether the predicted TF binding profiles can be used to differentiate 

cell types. We reasoned that if the TF binding predictions are accurate, it should be able 

to use them to cluster cells into different groups that share similar cell identifies. 

Fortunately, the cell types of individual cells in the scATAC-seq datasets are known. We 

can therefore assess the quality of the cell clusters derived from TF binding profiles by 

comparing them to true cell type labels.  

 

To explore scFAN's ability to cluster cell types based on the TF binding predictions, we 

developed a new metric called “TF activity scores” to characterize the state of single 

cells. The TF’s activity score of a cell summarizes the intensity of its predicted 

occurrences across the genome in the cell – the higher the score, the more active the 

TF is (See Methods). Overall the state of each cell is characterized by a TF activity 

vector of dimension 88, one component for each TF (all three pre-trained models were 

used to generate TF activity scores, merged together with 88 components. See 

Methods).  The 2210 cells are clustered using K-means clustering based on Euclidean 

distances between the TF activity vectors, shown in tSNE plots (Fig. 4a).  

 

To validate the clustering result, we evaluated the clustering performance of scFAN by 

comparing the predicted clusters to ground-truth cell type labels. The performance of 
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scFAN was benchmarked against several other popular methods that cluster cells on 

chromatin accessibility data – scABC(25), cisTopic(26), SCALE(27), Cicero(28), 

Brockman(29) and ChromVAR(14). We performed the same filtering procedure for all 

the cells and used the same parameter settings (Supplementary Fig S2).  We used 

three common metrics to quantitatively measure the clustering performance of scFAN 

and other compared methods: Adjusted Rand Index (ARI)(30), Normalized Mutual 

Information (NMI)(31) and V-measure score(32). Our model had the highest metric 

scores among all these methods with ARI, NMI, and V-measure score equaling 0.470, 

0.674, and 0.674 respectively (Fig. 3b). These results indicate that clustering cell types 

based on TF activity scores is consistently better than previous methods based on 

peak-cell matrix or chromatin accessibilities. 

 

Having demonstrated that TF activity scores are effective in differentiating cell types, we 

explored the contribution of individual TFs in defining cell identifies. For this purpose, we 

plotted the activity scores of three TFs (EGR1, CEBPB and SPI1) across the 2210 cells 

on top of the cluster tSNE plots (Fig 4a). A couple of observations are notable from 

these plots. First, individual TF shows considerable amount of variations in its activity 

scores across different cell types. For instance, EGR1 is highly active in LMPP cells 

with a mean activity score of 1.879, higher than any other cell type, suggesting its 

prominent role in the transcriptional regulation of LMPP cells. And so is CEBPB in BJ 

cells (Fibroblast), which has the highest mean activity score of 3.136 over other cells.  

Second, there is also large heterogeneity among different TFs in their involvement in 

different cell types. SP1 is more active than EGR1 in monocyte cells, with EGR1 mean 
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activity score value higher in AML cells than monocyte cells and the converse for SPI1. 

These observations seemed to be consistent with previously published studies which 

not only indicate that EGR1 is highly enriched in LMPP cells(33), but also show that 

CEBPB is more involved in Fibroblast cell development(34) and so does SPI1 in LMPP 

cells(35).  

 

Using scFAN and TF activity score-based clustering can potentially help alleviating 

single cell sparsity and improve clustering performance. When only raw scATAC-seq 

data without aggregation was used to predict TF and clustered cells, scFAN 

subclustered nominally genetically identical H1ESCs (Fig 4b,4c). However, when we 

adopted the aggregated scATAC-seq data as our input, scFAN managed to drag the 

two subclusters back together into one cluster. It showed that the aggregation of the 

scATAC-seq signals probably helped to recover chromatin accessibility signals of 

H1ESC cells, which made the model prediction be more accurate. The heatmap plots of 

TF prediction on one H1ESC cell across all the peaks using raw scATAC-seq data and 

the aggregated scATAC-seq data showed that the TF prediction results of scFAN 

contain higher probability on some TFs compared with the heatmap without scATAC-

seq aggregation, which has brighter color in the figure (Fig 4d). Furthermore, we 

randomly selected the regions in chromosome 1 to visualize the chromatin accessibility 

signals (Supplementary Fig S5-S6). And we found some regions that are lack of signal 

became dense after borrowing information from neighboring cells, which might be 

helpful for the further TF prediction in those separated H1ESC cells.  From the 

improvement on ARI and NMI metric values we could indirectly infer that scFAN 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2020. ; https://doi.org/10.1101/2020.01.14.905232doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.905232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

potentially has the ability to help alleviate the data sparsity and find some missing signal 

in scATAC-seq data within some low coveraged single cells and thus provide a better 

performance on TF prediction across the genome. 

 

Performance and sensitivity 
 

Since we've shown that scFAN can cluster cells accurately, we wanted to characterize 

how sensitive the clustering is to different parameters. We started by varying the 

number of top predicted TFs per cell the clustering takes into account. scFAN by default 

uses the top 2 predicted TFs per cell. We compared the original clustering result to 

clustering based on the activity scores of only the most active TF and also the top 5 

most active TFs. There is a slight improvement in the NMI and v-measure when 

choosing the top 5 TFs, but top2 yields the highest ARI score, overall the clustering is 

robust to the chosen number of most active TFs (Fig. 5a).  

 

We also predicted clustering with just raw scATAC-seq data. As before, the pre-trained 

model was the same in both the default case but just used scATAC-seq data without 

imputing signal. We found that including similar single cell ATAC-seq data to alleviate 

the data sparsity drastically improves clustering performance over only using scATAC-

seq data (Fig 5a, 5c), probably due to the aformentioned sparsity and noisiness of 

scATAC-seq. 
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Discussion 
 

Here we developed what is, to our knowledge, the first pipeline to predict TF binding at 

a cellular level. scFAN is a deep learning-based single cell analysis pipeline which 

mitigates the fundamental difficulties in analyzing scATAC-seq by leveraging bulk 

ATAC-seq data. We found that scFAN can predict TF binding motifs accurately. scFAN 

robustly identifies cellular identities, even in cells that are genetically similar. Detecting 

cellular identities at a chromatin accessibility level may enable more faithful and 

identification of distinct cell types.  

 

Since the limited number of datasets used in this study lack full coverage of all TFs in 

humans, some TF activities may be missing. With availability of more TF related data 

covering more TFs across multiple cell types, merging such TF related single cell 

information into one dataset could lead to better prediction of TF binding and avoid 

calibration on prediction results, which is also a further expectation of implementing 

scFAN to more data. The pre-processing time, e.g. binning the peaks, was found to be 

variant based on the number of peaks: for instance, two minutes were needed to bin a 

cell with over 10,000 peaks. The pre-processing time makes the total time from pre-

processing to final prediction highly variable for different cells, and parallelizing such 

pre-processing of each cell will speed up the prediction. The speed of training for the 

pre-trained model usually is less critical because the trained model can be reused on 

different datasets. Since scFAN is the first method of such kink, a lack of other single 

cell TF binding profile prediction methods or established benchmarks makes validation 

more challenging. While comparing predicted motifs to previously known ones or 
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clustering cells based on TF activity can provide validation to some degree, 

experimental validations need to be carried out,  for instance, using single cell ChIP-

seq(36) for further confirmation on the predictions made by scFAN. Last but not the 

least, more and effective downstream analyses, such as psuedotime analysis, can also 

be further expanded and refined in scFAN.    

 

Overall, scFAN is a highly promising tool for single cell analysis, not only for predicting 

TF binding and TF motifs but also for determining cellular identities. Being able to 

correlate open chromatin regions and binding activity of transcript factors in individual 

cells enables better understanding of cellular dynamics and regulations. This study 

shows that the deep learning technique can significantly improve our capability of 

utilizing single-cell data to discern cell fate decisions.  
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Materials and Methods 
 

Data processing. DNA sequence. The sequence data was processed as in Quang et 

al(8). The genome was segmented into 200 bp bins, containing both the forward and 

reverse strands, with 50 bp intervals. Bins that overlapped with a known TF binding site 

were considered "bound" bins, whereas bins that overlapped with the blacklist region(37)  

were labeled "unbound" bins. Bins that overlapped with neither region were discarded. 

The bins were then expanded to 1000 bp, centered around the middle of each bin locus.   

 

Chromatin accessibility. We processed the raw bulk ATAC-seq files by trimming with 

cutadapt(38) mapped to the human genome(hg19) using Bowtie2, and discarded the 

redundancy read pairs using Picard. We processed the scATAC-seq data with the 

ENCODE ATAC-seq pipeline protocol (https://github.com/ENCODE-DCC/ATAC-seq-

pipeline) to obtain the filtered reads and called peaks using MACS2. The filtered bam 

files from both scATAC-seq and bulk ATAC-seq were converted into normalized bigwig 

files using deepTools2(39). When we aggregated similar neighbor scATAC-seq signals, 

we adopted the bigWigMerge tool from UCSC website and then converted the 

bedGraph file into bigwig file using customed script.  

Bulk ATAC-seq and 35bp uniqueness mapability signal values were also binned to 

1000bp with loci consistent with each ChIP-seq region. 

 

Data preparation for machine learning. Bulk data. The bulk data is prepared as 

follows. Each bin is one-hot encoded in a 4 � 1000 feature vector �. The feature vector 

�  is concatenated with the 2 � 1000   ATAC-seq feature vector �  and the 2 � 1000 
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mapability feature vector �, which refers to the uniqueness of a 35bp subsequence on 

the positive strand starting at a particular base, to form the input feature vector �����.  

 

Single cell data. The single cell input feature vector ���  is prepared similarly. The 

feature matrix � is now composed of a bin called by scATAC-seq data. We define the 

feature vector ���, which is the aggregated(40)scATAC-seq input data, ��� is a feature 

vector identical to � in the pre-trained model. The mapability feature vector � remains 

the same. 

 

Aggregate scATAC-seq data. The aggregated scATAC-seq data is computed via 

calculating cell-cell similarity using scATAC-seq binarized cell-peak count matrix. We 

adopted cisTopic to calculate low dimensional cell-topic latent feature and used cosine 

similarity to calculate similarity between it and other cells. For each cell, we considered 

its most 100 similar neighbor cells and aggregated their signals together as its 

aggregated scATAC-seq data (Supplementary Fig S7). 

 

Training and prediction. Calibration on the TF binding prediction. To train our pre-

trained models, we chose datasets from three different cell lines. For the TFs that are 

only present in the dataset from one cell line, those TF outputs were directly used to 

represent the final TF prediction. If the same TF appeared in multiple cell lines, we 

calculated the probability of intersecting peaks between called peaks in the single cell 

dataset and called peaks of each bulk dataset separately. scFAN predicted these TFs 

on all the three models but only chose one model result whose corresponding cell line 
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has the highest matched probability to the single cell and used its result to represent TF 

binding. 

 

Deep learning calculations. We input the input feature vectors, ����� for the pre-trained 

model or ��� for single cell prediction, to a three layer 2D convolutional neural network 

to extract the feature map. Two fully connected layers are connected to the output 

feature map, the output of which is passed to a sigmoid function to obtain the prediction 

of TF binding. Three different pre-trained models were trained on bulk data �����  from 

three different cell lines (GM12878, K562 and H1ESC). Each model was optimized 

using the Adam algorithm(41), and then individually used to predict TF binding on the 

single cell data ���. The overall deep learning framework is shown in Fig S1. After that, 

all the TF binding predictions were merged using a calibrated method. For TF exists in 

multiple cell lines, the most similar cell line was selected and its TF prediction result was 

chosen, for TF appears only in one unique cell line, its result was used as final result 

(see details in Supplementary Fig S8).  

 

Our convolution calculation can be defined as follows: 

		  �  ��_�����������������	��
�� 

	�  �  ��_�������������������		��  
	�  �  ��_�������������������	��� 

�	 � ������	 � 	��
 

�,�,� �  �����!��� � �	� 
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where �
  is either �����  or ���  and 		 ,  	� ,  	� ,  �	  denote the feature maps of each 

convolutional layer and the output of the first fully-connected layer. �	 ,  ��  refer to 

weight matrix of the two fully-connected layers. The final output of the network is the 

probability � of TF " binding to a peak � in each cell �, i.e.  �,�,�, where " #  1 $ %, % is 

total number of TFs of each cell from the pre-trained model and � #  1 $ & with & being 

the total number of peaks per cell. 

 

Partition choice. Our pre-trained model was restricted to the same dataset partition 

choice as in Quang et al(8) for H1-ESC and K562: chromosomes 1, 8, and 21 were 

used for testing, chromosome 11 was used for evaluation and the remaining 

chromosomes were used for training (chromosome Y was excluded). The DREAM 

Challenge dataset for GM12878 cells didn't include chromosomes 1, 8 and 21, so 

chromosome 11 was used for both evaluation and testing.   

 

TF activity score. Here we select the top two potential predicted TF motifs of each peak 

and aggregate all the predicted TFs of all the peaks in each cell, then we normalize the 

value by calculating the probability across all peaks within a cell, which can be defined 

as the activity score ��,� for TF " in cell �, it was shown as follows:  

'�,�,����� , �,�,����� , … , �,�,��* � +� �+,��,�,�� 

�,�,� � -0, �,�,� . �,�,�����1, �,�,� / �,�,����� 0
 

�,� � 1 �,�,�
�

��	
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��,� � �,�∑ �,��
��	

 

 

Cell clustering. The activity score is then used to cluster cells. For clustering 

convenience, we simply concatenated all the TFs activity score results by column from 

all three models for all the cells, we did not cut those columns that had repetitive TFs 

shared by the three models to reduce processing time because dimensionality reduction 

could perform the same procedure. KNN clustering was then performed and t-SNE plot 

was drawn using the concatenated feature. To filter the low-quality cells, we set the 

threshold of the fraction of total read counts per total number of peaks per cell to be 

0.05 and also set the threshold of total read counts of each cell to be at least 1000 

(Supplementary Fig S2). The scFAN pipeline is shown in Figure 1a. 

 

Methods comparison. There are several recently published models, scABC(25), 

cisTopic(26), Cicero(28), SCALE(27), Brockman(29) and ChromVAR(14) that are also 

designed to cluster single cells based on scATAC-seq data. The first four methods all 

work with peak-by-cell binarized read count matrix. For example, scABC uses the read 

count matrix to cluster cells via a weighted K-medoids clustering algorithm. cisTopic 

adopts Latent Dirichlet Allocation (LDA) to convert the read count matrix into a topic-cell 

low dimensional matrix, which is further used to clustering cells. Cicero applies Latent 

Semantic Indexing (LSI) to reduce the high-dimensional matrix into low-dimensional 

matrix similar to cisTopic. SCALE is a VAE based deep learning model that utilizes 

gaussian mixture model to initialize and model the cell clusters using binarized peak-cell 

matrix and uses the latent features to cluster the cells.  ChromVAR is based on 
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scATAC-seq read counts and motifs in every peak: single cell-read count matrix and 

corrected peak-motif matched binary matrix are combined to calculate bias-corrected 

deviation and z-score matrix. The "corrected" z-score matrix is used to cluster each 

individual cell. Brockman uses adopted peaks to calculate k-mer frequency within each 

sample cell, generating over 1000 kinds of k-mer frequency vectors of each cell and 

uses the combined matrix to cluster the cells. We also adopted raw binarized matrix to 

directly cluster the cells as benchmark. We used Adjusted Rand Index (ARI), 

Normalized Mutual Information (NMI) and V-measure score to quantitatively measure 

the clustering performance of these methods. We determined every cell labels from 

each method using Euclidean distance and Aggregative clustering based on t-SNE 

projections of each method, which are the low dimensional t-SNE embedding matrices 

from scABC, cisTopics, Cicero, and SCALE, k-mer t-SNE embedding matrix from 

Brockman, the motif correlation t-SNE embedding matrix from chromVAR, and the TF 

appearance probability t-SNE embedding matrix from our model. 

 

Availability of Data and Materials.  
 
Data. The bulk ATAC-seq GM12878, H1-ESC and K562 datasets are available from 

GSE47753, GSE70482 and GSE85330, respectively. The scATAC-seq datasets are 

available from GSE65360 and GSE74310. The ChIP-seq GM12878 dataset and the 

K562 and H1-ESC dataset are available from the ENCODE-DREAM Challenge dataset 

and Li et al(42) respectively. The pre-processed datasets are available upon request. 
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Software. scFAN is implemented in Python 2.7 based on the Keras library and the 

model was trained on a NVIDIA TiTan Xp GPU. The code and pre-trained models are 

freely available at https://github.com/sperfu/scFAN. 
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Figures 

 

Figure 1: scFAN shows strong classification performance. a scFAN pipeline. Bulk 

ATAC-seq, mapability data and regions of DNA identified by ChIP-seq data is passed to 

the deep-learning “pre-trained model”. The trained model is then used to predict TF 

binding profiles based on regions of DNA called by scATAC-seq, mapability data, and a 

combination of scATAC-seq and bulk ATAC-seq. TF “activity scores” are calculated 

from the predictions by summing the number of times the top two most frequent TFs 

appear per cell. scFAN clusters cells from these activity scores. b Circular barplots 

showing AUC and auPR values of all the TFs from the pre-trained model, from 3 

different cell lines.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2020. ; https://doi.org/10.1101/2020.01.14.905232doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.905232
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

 

Figure 2: Validation on TF predictions. scFAN can predict both bulk and single cell 

TF binding. a Box plot of the performance of the pre-trained model and two other 

models predicting bulk cell TF binding on the same dataset. b Four convolutional 

kernels that matched with four known motifs derived from JASPAR database. The 

heatmap denotes the value of each nucleotide corresponding to above position. c 

Enrichment analysis of the 5 predicted mostly active TFs from 6 randomly chose cells. 

scFAN predicts the most likely TF per bin, adds up the number of times each TF is the 

highest predicted TF. Homer takes all the candidate peaks need to be predicted and 

generates the enrichment analysis. All these TFs were significantly enriched in all these 

peaks. d Separately selected regions predicted by scFAN whose most active TF are 

ATCF7/YY1/CREB1/MAfF/SPI were performed enrichment analysis, de novo matched 

motifs were compared to the known motifs from Homer.  
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Figure 3: Comparison of scFAN to 7 other count matrix based methods or open 

chromatin accessibility-based methods. a tSNEs of all seven different open 

chromatin-based or count matrix based clustering methods. b Comparison of 7 different 

clustering metrics of each method. ARI, NMI, and v-measure score were used to 

measure each method. The higher the score is, the better the clustering performance is.   
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Figure 4: H1 cells are well separated by TF activity scores. a TFs have varying 

activity scores across cell types, EGR1 is more involved in the LMPP cells, CEBPB is 

more involved in BJ(Fibroblast) cells, and SPI1 is more related to monocyte cells. b & c 

Separation of H1 embryonic stem cells (ESCs) colored red when using scATAC-seq as 

model input, the H1ESC cells clearly separated into two distinct groups (subcluster 1 

and 2). d Heatmap plot of all the TFs and across the whole chromosome from one 

H1ESC cell, left is using aggregated scATAC-seq data as input, right is using the raw 

scATAC-seq data as input. The left heatmap contains more TF prediction information 

than the right plot.  
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Figure 5: Clustering performance comparison when different thresholds and 

parameters are changed. a Sensitivity of clustering influenced by different ATAC-seq 

that is been used in the model and the Sensitivity of clustering to number of top TFs 

used. scFAN by default clusters cells on the combined ATAC-seq data and on the 

activity score of the top two most active TFs. b Clustering performance using 3 different 

pre-trained models adopting scATAC-seq data as input. c Clustering performance using 

3 different pre-trained models adopting aggregated ATAC-seq data as input.  
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