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37 Abstract: 

38 The robust estimate and forecast capability of random forests (RF) has been widely recognized, 

39 however this ensemble machine learning method has not been widely used in mosquito-borne 

40 disease forecasting. In this study, two sets of RF models were developed for the national and 

41 departmental levels in Colombia to predict weekly dengue cases at 12-weeks ahead. A national 

42 model based on artificial neural networks (ANN) was also developed and used as a comparator 

43 to the RF models. The various predictors included historic dengue cases, satellite-derived 

44 estimates for vegetation, precipitation, and air temperature, population counts, income inequality, 

45 and education. Our RF model trained on the national data was more accurate for department-

46 specific weekly dengue cases estimation compared to a local model trained only on the 

47 department’s data. Additionally, the forecast errors of the national RF model were smaller to 

48 those of the national ANN model and were increased with the forecast horizon increasing from 

49 one-week ahead (mean absolute error, MAE: 5.80; root mean squared error, RMSE: 11.10) to 

50 12-weeks ahead (MAE: 13.38; RMSE: 26.82). There was considerable variation in the relative 

51 importance of predictors dependent on forecast horizon. The environmental and meteorological 

52 predictors were relatively important for short-term dengue forecast horizons while socio-

53 demographic predictors were relevant for longer-term forecast horizons. This study showed the 

54 potential of RF in dengue forecasting with also demonstrating the feasibility of using a national 

55 model to forecast at finer spatial scales.  Furthermore, sociodemographic predictors are important 

56 to include to capture longer-term trends in dengue. 

57
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60 Author summary: 

61 Dengue virus has the highest disease burden of all mosquito-borne viral diseases, infecting 390 

62 million people annually in 128 countries. Forecasting is an important warning mechanism that 

63 can help with proactive planning and response for clinical and public health services. In this 

64 study, we compare two different machine learning approaches to dengue forecasting: random 

65 forest (RF) and neural networks (NN). National and local (departmental-level) models were 

66 compared and used to predict dengue cases in the future. The results showed that the counts of 

67 future dengue cases were more accurately estimated by RF than by NN. It was also shown that 

68 environmental and meteorological predictors were more important for forecast accuracy for 

69 shorter-term forecasts while socio-demographic predictors were more important for longer-term 

70 forecasts. Finally, the national model applied to local data was more accurate in dengue 

71 forecasting compared to the local model. This research contributes to the field of disease 

72 forecasting and highlights different considerations for future forecasting studies.
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82 Introduction

83 Dengue virus is most prevalent of the mosquito-borne viral diseases, infecting 390 

84 million people annually in 128 countries with four different virus serotypes [1]. Rising incidence 

85 and large-scale outbreaks are largely due to inadequate living conditions, naïve populations, 

86 global trade and population mobility, climate change, and the adaptive nature of the principal 

87 mosquito vectors Aedes aegypti and Aedes albopictus [2, 3]. The direct and indirect costs of 

88 dengue are substantial and impose enormous burdens on low- and middle-income tropical 

89 countries, with a global estimate of US$8.9 billion in costs per year [4].

90 Human and financial costs of dengue can be alleviated when response systems, such as 

91 intervention strategies, health care services, supply chain management, receive timely warnings 

92 of future cases through forecasting models [5]. A number of dengue forecasting models have 

93 been developed and these models can be generally classified into two methodological categories:   

94 time-series and machine learning [6, 7]. The majority of existing dengue forecasting models used 

95 time-series methods and typically Autoregressive Integrated Moving Average (ARIMA), in 

96 which lagged meteorological factors (e.g. temperature and precipitation) act as covariates in 

97 conjunction with historical dengue data for one- to 12-week ahead forecasting [8-13]. Many 

98 studies reported that conventional time-series models such as ARIMA are insufficient to meet 

99 complex forecasting requirements [14-16], as multiple trends and outliers present in the time-

100 series reduce the forecasting accuracy [17]. 

101 In the last two decades, machine learning (ML) methods have been used in many 

102 disciplines, such as geography, environment, and epidemiology, to yield meaningful findings 

103 from highly heterogeneous data. Machine learning statistical regression methods are promising 

104 approaches for disease forecasting as they facilitate the inclusion of a large number of correlated 
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105 variables, enable the modeling of complex interactions between variables, and can fit complex 

106 models without strong parametric assumptions that are often untestable in traditional statistical 

107 approaches [18, 19]. Decision trees, support vector machine, artificial neural network, K-nearest 

108 neighbor, gradient boosting, and naive Bayes are frequently used ML approaches in dengue-

109 forecasting studies [7, 20-23]. Compared to the above ML methods, random forests (RF) have 

110 shown to be more accurate in forecasting given its ability to overcome the common problem of 

111 over-fitting through the use of bootstrap aggregation [24-28]. 

112 Random forests have been used to forecast dengue risk in several countries including 

113 Costa Rica [29], Philippines [30, 31] Pakistan [32], Peru and Puerto Rico [33]. However, time or 

114 seasonal variables were not always included in the models nor were sociodemographic 

115 predictors, which have been found to improve forecast accuracy in HIV [34] and Ebola [35] 

116 epidemic models. Furthermore, dengue models, regardless of the use of the time series or ML 

117 approaches, have been developed for predicting dengue cases in individual administrative areas 

118 such in a city or a province [9-12, 20-23]. Universal dengue prediction models that are effective 

119 across different administrative regions remain absent. 

120 Historically, Colombia is one of the countries most affected by dengue, with the Aedes 

121 mosquito being widely distributed throughout all departments at elevations below 2,000 meters 

122 [36, 37]. The objective of this study was to evaluate the potential of RF forecasting models at the 

123 department and national level in Colombia. We compared the accuracy of the department and 

124 national RF models to understand the feasibility of using a national model to predict dengue 

125 cases for individual departments. We also compared errors of the national RF models with those 

126 of Artificial Neural Network (ANN), another classic and widely used ML approach. Finally, we 

127 estimated the change in importance of different predictors according to forecast horizon.
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128 Data and methods

129 Data

130 Various data were used to develop the forecasting models, which included: dengue cases 

131 from surveillance data, environmental indicators from remoting sensing data, and 

132 sociodemographic indicators such as population, income inequity, and education coverage (Table 

133 1). The dengue case surveillance data were extracted from an electronic platform, SIVIGILA, 

134 created by the Colombia national surveillance program and was available at the department level. 

135 The national surveillance program receives weekly reports from all public health facilities that 

136 provide services to cases of dengue. The dengue cases reported by SIVIGILA were a mixture of 

137 probable and laboratory confirmation. Laboratory confirmation for dengue is based on a positive 

138 result from antigen, antibody, or virus detection and/or isolation [38]. Confirmation of probable 

139 cases is largely based on clinical diagnosis plus at least one serological positive immunoglobulin 

140 M test or an epidemiological link to a confirmed case 14 days prior to symptom onset. 

141

142 Table 1. Summary of study indicators and data sources 

Indicator Source Temporal  
granularity

Format

Dengue cases The national surveillance program in Colombia Weekly Tabular
Rainfall CMORPH precipitation data from NOAA’s CPC Daily Gridded

EVI MOD13C1 from NASA’s LP DAAC 16-day Gridded
Temperature MOD11C2 from NASA’s LP DAAC 8-day Gridded
Population Colombian National Administrative Department of Statistics Yearly Tabular
Gini index Colombian National Administrative Department of Statistics Yearly Tabular

Education coverage Colombian National Administrative Department of Statistics Yearly Tabular
143 CMORPH, Climate Prediction Center morphing method; CPC, Climate Prediction Center; EVI, 
144 enhanced vegetation index; LP DAAC, Land Processes Distributed Active Archive Center; 
145 NASA, National Aeronautics and Space Administration; NOAA, National Oceanic and 
146 Atmospheric Administration.
147

148 Precipitation, air temperature, and land cover type have been shown to be three important 

149 determinants of Aedes mosquito abundance and are often used as predictors in dengue 
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150 forecasting [9, 11, 21, 39]. In this study, precipitation data was obtained from the CMORPH 

151 (Climate Prediction Center morphing method) daily estimated precipitation dataset [40]. The 

152 land surface temperatures were extracted from the MODIS Terra Land Surface Temperature 8-

153 day image products. Enhanced vegetation index (EVI) estimates were obtained from the MODIS 

154 Terra Vegetation Indices 16-Day image products. Several studies have shown that socio-

155 demographic factors may influence dengue transmission and incidence as significantly as 

156 environmental factors [41-43]. Given this, we included population, Gini index (a measure of 

157 income inequity), and education coverage as potential predictors, which were retrieved from the 

158 Colombian National Administrative Department of Statistics. The study was approved by the 

159 Sciences and Health Ethical Committee of the University of Montreal (CERSES-19-018D), and 

160 all data were provided at the aggregate level and are publicly available.

161 Random forests

162 Random forests (RF) is an ensemble decision tree approach [44]. A decision tree is a 

163 simple representation for classification in which each internal node corresponds to a test on an 

164 attribute, each branch represents an outcome of a test, and each leaf (i.e. terminal node) holds a 

165 class label. Decision trees can also be used for regression when the target or outcome variable is 

166 continuous. Bootstrap aggregation, commonly known as bagging, is the most distinctive 

167 technique used in RF and bagging requires training each decision tree with a randomly selected 

168 subsample of the entire training datasets. 

169 Data preprocessing

170 To ensure a consistent temporal granularity with the outcome variable, the daily 

171 precipitation data were aggregated to a weekly frequency. The 8-day land surface temperature 

172 and the 16-day EVI data were resampled to a weekly frequency using a spline interpolation [45]. 
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173 We assigned a given department the same population, Gini index, and education coverage values 

174 for all weeks within the same calendar year.

175 The archipelago of San Andrés, Providencia, and Santa Catalina (commonly known as 

176 San Andrés y Providencia) is a department consisting of two island groups and 775 km away 

177 from mainland Colombia. Due to the frequent cloud contamination over the small island areas, it 

178 was not possible to have high-quality MODIS images products for weekly temperature or EVI 

179 value estimation. Vaupés department had only 30 confirmed dengue cases scattered in 24 weeks 

180 during 2014 to 2018. Thus, the departments of San Andrés y Providencia and Vaupés were 

181 excluded from this study, and data from the other 30 departments were used to train our models.

182 Weekly dengue data from 2014-2017 was used to train the RF models and the data from 

183 2018 was used to evaluate the models. To simulate ‘real life’ forecasting, we did not include the 

184 2018 data for the socio-demographic variables given that they are only produced annually 

185 whereas the remote sensing data are more readily available. Exponential smoothing approach 

186 based on historical (2010-2017) time-series data to estimate the values for 2018. 

187 Development of RF models

188 We first developed RF models for each department (referred to as local level). Let the 

189 “current” week be k and the number of confirmed dengue cases be y. Referring to the RF 

190 streamflow forecasting model developed by Papacharalampous and Tyralis [46], we used the 

191 numbers of current and previous 11 weeks dengue cases (i.e. yk, yk-1, ..., yk-10, yk-11) of a 

192 department to predict one-week ahead dengue cases (i.e. yk+1) for each department. The current 

193 and previous 11 weeks of rainfall, land surface temperature, EVI, population, Gini index, and 

194 education coverage were also included as predictors. These values were selected as previous 

195 studies demonstrated that the optimal lags of meteorological variables used for dengue 
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196 forecasting are usually not larger than 12 weeks [47-52]. In addition, the ordinal number of the 

197 forecast week (1–52 for the year of 2015, 2016, 2017, and 2018 and 1–53 for 2014) as well as 

198 year (2014–2018) were treated as two predictor variables to account for seasonality and long-

199 term changing trend of dengue occurrence [53,54]. 

200 We then developed RF models at the national scale. To train a national-scale RF model 

201 for forecasting n-week ahead dengue cases (where n ≤12), we used the same predictor and target 

202 variables as those used in the local n-week ahead forecasting models. The difference between the 

203 local and the national models was that the local n-week ahead models were trained using 209-n 

204 (209 =53+52+52+52) samples while the national model was trained using 6270-30n [i.e. (209-n) 

205 ×30] samples.

206 Model evaluation

207 Model accuracy was evaluated and compared by two metrics: mean absolute error (MAE) 

208 and root mean squared error (RMSE). The MAEs and RMSEs reported in this study were 

209 calculated by the actual and the predicted numbers of dengue cases for the 52 weeks in 2018. 

210 The accuracy comparison was performed at the local (department) and national scales. When the 

211 comparison for an n-week ahead prediction was conducted at the national scale, the predicted 

212 numbers of dengue cases by the 30 local RF models were additively combined and compared 

213 with the actual national values to calculate one MAE and one RMSE. When the comparison was 

214 implemented at the local scale, the national RF model was applied to each one of the 30 

215 departments and then the predicted values were compared with the actual numbers of dengue 

216 cases to compute 30 individual MAEs and 30 individual RMSEs.

217 Artificial Neural Network (ANN) is an early ML approach and has been previously used 

218 to predict dengue cases [7, 20, 21, 23]. We developed ANN models at the national scale and 
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219 compared their prediction accuracy with that of the RF models. The ANN was composed of one 

220 input layer, one hidden layer, and one output layer. The ANN models had the same 53 predictor 

221 variables as the RF models, resulting in 53 neurons in the input layer and one neuron in the 

222 output layer. The number of neurons in the hidden layer was determined by iterative attempts 

223 until the prediction accuracy cannot be further improved [55]. In this study, the optimal number 

224 of neurons in hidden layer varied by forecasting horizon and ranged between 38 to 50.

225 Percentage of increased mean squared error (%IncMSE) is a robust and informative 

226 indicator to quantitatively evaluate the importance of predictor variables in a random forests 

227 model [56]. Percentage of increased mean squared error indicates the increase in the mean 

228 squared error (MSE) of prediction as a result of an independent variable being randomly shuffled 

229 while maintaining the other independent variables as unchanged [44]. A larger %IncMSE of a 

230 predictor variable suggests greater importance of the variable on the model’s overall forecast 

231 accuracy and the %IncMSE was calculated for each predictor in each RF model. 

232 Results

233 An exceptionally large dengue outbreak occurred in Colombia during the study period. 

234 The counts of confirmed dengue cases reached more than 2,500 per week by the end of 2015 and 

235 the outbreak ended mid-year in 2016. Following this outbreak, the yearly dengue case peaks 

236 were drastically reduced in 2016 and 2017 but began increasing again in 2018 (Fig1). 

237
238 Fig 1. The weekly total counts of confirmed dengue cases over Colombia for 2014-2018 (A) and 
239 the predicted counts of dengue cases by the national one-, two-, four-, eight-, and twelve-week 
240 ahead models for 2018 (B). See Fig S1 for the predicted counts of dengue cases for all week 
241 ahead models.
242

243 For any of the n-week ahead (n≤12) forecasts, the performance of the national model was 

244 better than that of the local model, demonstrated by the smaller overall MAE and RMSE (Table 
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245 2). Moreover, in most cases, a department’s dengue cases were more accurately predicted by the 

246 national model than the local model (Fig 2). The errors of the national random forests model 

247 were mainly derived from under-estimation of cases which coincided with dramatic increases in 

248 cases towards the end of 2018. As expected, the under-estimation was more pronounced when 

249 predictions were made over a longer time period.

250

251 Table 2. Comparison of accuracy between the local and the national models
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

268 MAE, mean absolute error; RMSE, root mean squared error; RF, random forests; ANN, artificial 
269 neural network.

270 Fig 2. Accuracy comparison between the local and the national random forests models at the 
271 department scale for the one-week ahead, four-week ahead, eight-week ahead, and twelve-week 
272 ahead predictions with RMSE for 2018. See Fig S2-S4 in the supporting information on MAE 
273 and for all week ahead models.
274

275 The overall RMSE of the ANN model developed at the national scale was smaller than 

276 that of the local RF model at forecasting horizons of 5 weeks or less (Table 2). The RMSE grew 

277 for the ANN model with longer forecasting horizons compared to the local RF model. The MAE 

278 of the ANN model was consistently larger than that of the local RF model for each forecasting 

Local RF model National RF model National ANN modeln-week ahead MAE RMSE MAE RMSE MAE RMSE
1 8.01 14.74 5.80 11.10 8.81 13.02
2 9.10 17.05 6.76 13.43 10.59 15.86
3 10.14 19.24 7.64 14.79 11.72 18.17
4 11.05 21.67 8.52 16.20 12.70 19.89
5 12.14 24.14 9.23 17.76 14.13 22.15
6 12.86 25.80 10.08 18.89 15.12 27.15
7 13.50 27.25 10.77 20.55 16.73 28.07
8 13.94 28.04 11.46 22.19 18.06 28.27
9 14.36 29.09 11.95 23.50 18.62 28.99
10 14.67 29.66 12.51 24.82 20.34 32.38
11 14.91 30.15 12.93 25.90 21.25 33.14
12 15.21 30.66 13.38 26.82 21.93 33.89
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279 horizon. The RMSE and MAE of the national RF model were smaller than those of the national 

280 ANN model at any forecasting horizon.  

281 The relative importance of different predictor variables in the national RF model was 

282 varied (Table 3). Firstly, “current” and “near current” past dengue data were extremely important 

283 in predicting occurrence of dengue in the near future (e.g. one- to three-weeks ahead). However, 

284 with the predicted week increasingly further away from the “current” week, the importance of 

285 historical dengue data decreased while the “current” week of dengue cases remained one of the 

286 top three most important predictors in predicting the future dengue cases. Secondly, the 

287 environmental (EVI) and the meteorological predictors (rainfall and temperature) were more 

288 important than the socio-demographic predictors when dengue cases were predicted in the near 

289 future (one- to three-weeks ahead). Yet, with the predicted week increasingly far away from the 

290 “current” week, the three socio-demographic covariates (education, population, and Gini index) 

291 became increasingly important. Finally, the week predictor, which accounted for the seasonal 

292 pattern of dengue, was important across all forecasting horizons but relatively smaller in 

293 importance with smaller forecasting horizons (i.e. n ≤4)

294
295
296
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297 Table 3. The top ten most important predictor variables for predicting dengue cases in the national models, ordered from the 
298 largest to the smallest %IncMSEs

Rank 1 2 3 4 5 6 7 8 9 10
1-week ahead Denguek Denguek-1 Denguek-2 Denguek-3 Week Denguek-4 EVIk-11 Temperaturek-11 EVIk-10 EVIk-8
2-week ahead Denguek Denguek-1 Week Denguek-2 Denguek-3 Temperaturek-11 Denguek-4 EVIk-7 EVIk-5 EVIk-8
3-week ahead Denguek Denguek-1 Week Denguek-2 EVIk-8 EVIk-10 Temperaturek-10 Education Denguek-3 Denguek-4
4-week ahead Denguek Week Denguek-1 Education Denguek-2 Temperaturek-9 EVIk-8 Temperaturek-11 EVIk-7 Denguek-3
5-week ahead Denguek Week Denguek-1 Education Denguek-2 EVIk-10 Temperaturek-8 Temperaturek Gini EVIk-9
6-week ahead Denguek Week Denguek-1 Education Population Year Denguek-2 EVIk-8 EVIk-9 EVIk-10
7-week ahead Denguek Week Education Denguek-1 Year Denguek-2 Population Gini EVIk-10 EVIk-9
8-week ahead Denguek Week Population Education Denguek-1 Year Temperaturek-11 Temperaturek-5 Denguek-2 Gini
9-week ahead Denguek Week Population Education Year Denguek-1 Temperaturek-11 Denguek-11 Gini Temperaturek-3
10-week ahead Denguek Week Year Education Population Denguek-1 Gini Denguek-11 Temperaturek-4 Denguek-2
11-week ahead Year Week Denguek Population Education Gini Denguek-1 Temperaturek-11 Denguek-10 Temperaturek-4
12-week ahead Population Year Denguek Week Education Gini Denguek-11 Denguek-1 Denguek-10 Temperaturek-10

299 Dengue indicates historical dengue cases and EVI denotes enhanced vegetation index. %IncMSE, percentage of increased mean 
300 squared error.
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301 Discussion

302 In the current study, we developed a national model to predict counts of dengue cases 

303 across different departments of Colombia and found that for the majority of departments, the 

304 national model more accurately forecasted future dengue cases at the department level compared 

305 to the local model. This result indicates the similarity in importance of dengue drivers across 

306 different administrative regions of Colombia. Random forests is an unsupervised tree-based 

307 regression approach requiring a relatively large training sample for the repeated splitting of the 

308 dataset into separate branches, and thus the national model trained by a larger dataset had higher 

309 prediction accuracy compared to the local models. The national and the local models performed 

310 poorly in departments of Guainía and Vichada. The small population and consequently, the low 

311 counts of dengue cases resulted in the relatively large errors in the two departments.

312 We found that the meteorological and environmental variables were more important for 

313 prediction accuracy at smaller forecasting horizons compared to the socio-demographic 

314 variables, with socio-demographics being more important at larger forecasting horizons. This is 

315 likely due to the influence of meteorological and environmental conditions on Aedes mosquitoes 

316 and the lag effects are usually between 1 to 4 weeks for temperature and precipitation [57-59]. 

317 Poor quality housing and sanitation management with high population density are key risk 

318 factors for dengue transmission [60, 61], and are closely related to education and poverty [62, 

319 63]. These results demonstrate the complimentary nature of these different groups of predictor 

320 variables and the importance of their inclusion in dengue forecasting models. 

321 We used ANN models as comparators to our RF models. Artificial Neural Networks are 

322 brain-inspired systems that are intended to imitate the way that human learn. Theoretically, more 

323 complex correlations between predictor and target variables can be discerned by deeper (i.e. 
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324 more hidden layers) networks [64]. However, ANN cannot handle the problem of vanishing 

325 gradient which results in the failure of improving accuracy of ANN models by adding more 

326 hidden layers. Additionally, it is easy for ANN to suffer from over-fitting which leads to a 

327 network developed by a training dataset failing to predict the other observations accurately. In 

328 this study, the number of neurons in the hidden layer was required to be changed with each 

329 forecast horizon, demonstrating the poor universality of the ANN models. By contrast, RF solves 

330 the problem of over-fitting with the use of bootstrap aggregation. Hyperparameters (e.g. the 

331 number of decision trees) in RF are easy to be set and the RF models showed better universality 

332 for different forecast horizons.  

333 Despite the strengths of our study, an important limitation with our RF approach is that 

334 the considerable dependence on the current week of dengue leads the model to generate lags for 

335 forecasting rapid changes in dengue. Including a predictor of mosquito abundance from an 

336 entomological surveillance program may reduce such time lag errors [65]. However, this type of 

337 data is often difficult to obtain at the national level with sufficient temporal and spatial 

338 granularity. Additionally, RF, as a non-parametric black-box approach, cannot intuitively display 

339 quantitative relationships between the count of dengue cases and the heterogeneous predictor 

340 variables, although it is able to more flexibly and accurately model the possibly complex non-

341 linear and non-additive relationships among the variables. A more severe limitation of the RF 

342 model is the fact that RF cannot obtain values beyond the range of the variable in the training 

343 dataset. If an unprecedented dengue outbreak occurred in future, under-estimations will occur 

344 inevitably using the RF approach.

345

346
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347 Conclusions

348 This study highlights the potential of RF for dengue forecasting and also demonstrates 

349 the benefits of including socio-demographic predictors. Our findings also found that a national 

350 model, on average, performed better compared to the local models. Future studies should 

351 consider the inclusion of other arboviruses as predictors, such as chikungunya and Zika as well 

352 as examine the importance of other socio-economic factors. In addition, other promising ML 

353 methods should be tested including recurrent neural networks, which inherently account for time, 

354 have the ability to deal with a vanishing gradient, and are able to capture complicated non-linear 

355 and non-additive relationships between predictor and target variables [66].

356
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Support Information Legends

Fig S1. The weekly total counts of confirmed dengue cases over Colombia for 2014-2018 (A) 
and the predicted counts of dengue cases by the national model for one to twelve-week ahead for 
2018 (B). 

Fig S2. Accuracy comparison between the local and the national random forests models at the 
department scale for the one-week ahead, four-week ahead, eight-week ahead, and twelve-week 
ahead predictions with MAE for 2018. 

Fig S3. Accuracy comparison between the local and the national random forests models at the 
department scale for one to twelve-week ahead predictions with RSME for 2018. 

Fig S4. Accuracy comparison between the local and the national random forests models at the 
department scale for one to twelve-week ahead predictions with MAE for 2018. 
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