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Abstract 

Gene expression and gene connectivity describe two different functional aspects 

of a gene. These two different measures reveal different information about the 

involvement of genes in disorders. Previous case-control gene expression studies have 

often focused on expression level of individual genes. Correlated expression relationships 

among genes, measured as gene connectivity, have obtained limited attention. We 

developed a comprehensive method, TRIple Differentiation (TRID), to assess these two 

measures, both separately and jointly. We applied TRID to gene expression data in 

hippocampus tissue samples from three Alzheimer’s disease (AD) microarray datasets. 

Following TRID, comparisons among the three datasets showed poor consistency for 

disease-associated individual genes but reproducible changes of disease-associated 

biological pathways annotated for functional protein-protein interaction (PPI) modules 

identified from network analysis. Our results suggest that changes of gene expression in 

hippocampus of AD patients are highly heterogeneous at the individual gene level, while 

biological pathways annotated for PPI modules identified based on TRID weights 

demonstrate consistency among the three datasets.  

 

Key words: gene expression; gene connectivity; Alzheimer’s disease; protein-protein 

interaction network; functional module.  
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1. Introduction 

Investigating change of gene expression level (inner trait of a gene) in patients in 

contrast to healthy controls is the conventional approach to identify disease-associated 

gene.  However, differential expression does not capture change with respect to gene 

relationship (inter trait of a gene) between cases and controls. To study change of gene 

relationship, Horvath and colleagues developed Weighted Gene Co-expression Network 

Analysis (WGCNA) a decade ago. In common practice, WGCNA identifies clusters of 

co-expressed genes based on correlated expression. Differential expression between cases 

and controls is then evaluated for eigengene of each module, which represent the 

expression level of an entire module (Langfelder and Horvath, 2008; Zhang and Horvath, 

2005). Therefore, WGCNA still examines change of expression level in nature; the 

concept of gene relationship only applied to the construction of co-expression network.  

To supplement WGCNA, Fuller et al. introduced the concept and calculation of 

gene connectivity (Fuller et al., 2007). Gene connectivity was defined as the summed co-

expression levels of a specific gene with all other genes (Fuller et al., 2007). Gene 

connectivity can be calculated in cases and controls separately and then compared to 

assess differential connectivity of individual genes (Fuller et al., 2007). Differential 

connectivity has been applied successfully (Doering et al., 2012; Fuller et al., 2007).  

However, analyzing either differential expression or differential connectivity 

alone may miss genes whose changes are not significant uni-dimensionally but stand out 

if and when assessed jointly. It is desirable to investigate disturbance of genes with 

regards to differential expression and differential connectivity simultaneously to avoid 

the missed opportunity. 
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In this study, we developed a new method TRIple Differentiation (TRID), which 

includes three analyses: differential expression, differential connectivity and a fusion 

analysis of both differential expression and differential connectivity. The fusion analysis 

was termed Differential COnnectivity and Differential Expression (DiCODE). We 

comprehensively assessed changes of genes in hippocampus of Alzheimer’s disease (AD) 

patients and identified highly consistent biological processes or pathways among multiple 

datasets by TRID. 

2. Methods 

2.1. AD hippocampus expression data collection and quality control 

Microarray expression data regarding hippocampus of AD patients were retrieved 

from Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) by searching with the 

keywords “Alzheimer” and “hippocampus”. To reduce uncontrollable bias, only 

microarray datasets with consistent assay platform were included. After manual 

inspection and filtration, three datasets containing hippocampus expression data, 

GSE5281 (10 AD cases and 13 controls), GSE28146 (22 AD cases and 8 controls) and 

GSE48350 (19 AD cases and 43 controls), were retained for analysis. 

Robust multichip average (RMA) normalization was performed on the three 

microarray datasets using R package affy (version 1.57.0). 

2.2. Gene weighting strategies 

To apply TRID to the three datasets, we began with the classical differential 

expression analysis between cases and controls, which was termed as the differential 

expression test in TRID. Welch’s t-test was used to assess differential expression levels 

of individual genes between cases and controls (Doering et al., 2012). Absolute value of 
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the t-statistic, denoted by |����|, was used to represent the differential expression (DE) 

weight of the ith gene, where a higher absolute t-statistic value corresponds to a greater 

differential expression level.  

For the differential connectivity (DC) test in TRID, connectivity levels of 

individual genes in cases and controls were calculated respectively by using ���������� �

∑ 	
��	
	
�
�  and ����	������� � ∑ 	
��	

	
�
� , where the pij denotes the Pearson correlation 

coefficient between the ith and jth genes. To facilitate the comparison of connectivity 

level of the ith gene between cases and controls, connectivity level of the ith gene in 

cases and controls were standardized through z-score transformation such that �������� �

������������	�������

��������
 and ���	������ �

�������	�������	��������	�

���������	�
. ������ � �������� �

���	������ was defined as differential connectivity of the ith gene and |������| as the 

differential connectivity weight of the ith gene, as defined by Fuller et al (Fuller et al., 

2007).  

For the combined Differential COnnectivity and Differential Expression 

(DiCODE) test in TRID, in order to fuse differential expression and differential 

connectivity weights calculated for the ith gene, the differential expression weight |����| 

and differential connectivity weight |������| were standardized through z-score 

transformation such that ���������� �
|����|����	�|����|�

��|����|�
 and ������������ �

|��������|����	�|��������|�

��|��������|�
. ��������� � ���������� � ������������ was defined as the 

DiCODE weight of the ith gene. 

We then extracted top 5% high ranking DE, DC and DiCODE weighted genes of 

the three datasets respectively. For each weighting strategy, venn diagram was used to 
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show the shared and specific top 5% high ranking genes among the three datasets. 

The R package TRID can be downloaded from GitHub 

(https://github.com/shannjiang/TRID). 

2.3. TRID weight-based functional PPI module identification and gene ontology (GO) 

annotation 

DE, DC and DiCODE weights were termed TRID weights in this study. 

Cytoscape plugin jActiveModules was used to identify significantly enriched functional 

PPI modules based on TRID weights of genes (Ideker et al., 2002). In this study, we used 

PPI information from the IntAct and MINT databases, which detail molecular 

interactions in well-studied organisms such as S. cerevisiae and Homo sapiens, to 

construct a combined background PPI network (Cline et al., 2007; Hermjakob et al., 2004; 

Zanzoni et al., 2002).  

DAVID was then used to annotate the functions of identified PPI modules (Huang 

et al., 2009). 

3. Results 

3.1. TRID weights of each gene generated from hippocampus microarray datasets 

For TRID weights of individual genes generated from GSE5281, GSE28146 and 

GSE48350 microarray datasets, please refer to supplementary Table 1, 2 and 3 

respectively.  

For DE, DC and DiCODE weighting strategies, venn diagrams of shared and 

specific top 5% high ranking weighted genes among the three datasets were shown in Fig. 

1. For DE weighting strategy, 19 genes were shared among the three datasets (Fig. 1A). 

For both DC and DiCODE weighting strategy, only 3 genes were shared among the three 
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datasets (Fig. 1B and 1C). 

3.2. TRID weights-based functional PPI module identification and GO annotation 

TRID weights-based functional PPI modules were identified for individual 

datasets. For the network graphs of functional PPI modules of individual datasets 

identified based on DE, DC and DiCODE weights, please refer to Supplementary Figures 

1, 2, and 3 respectively. For detailed GO annotations of these identified functional PPI 

modules of individual datasets based on DE, DC and DiCODE weights, please refer to 

Supplementary Table 4, 5 and 6 respectively. Venn diagrams of shared and specific 

significantly enriched GO terms among the three datasets based on DE, DC and DiCODE 

weights were shown in Fig. 2A, 2B and 2C respectively. Nearly 30 to 50% of the 

significantly enriched GO terms were shared among the three datasets based on each 

weight of TRID. For detailed significant GO terms shared among the three datasets 

please refer to Supplementary Tables 7, 8 and 9 for DE, DC and DiCODE weighting 

strategies respectively. Cell nucleus-associated biological processes, cell components and 

molecular functions were highly shared for individual weighting strategies of TRID. 

Nuclear lamins are fibrous proteins providing structural function and transcriptional 

regulation in the cell nucleus (Dechat et al., 2008). Dysfunctions of and mutations in the 

genes encoding A or B-type lamins, or termed laminopathy, were associated to 

neurodegeneration recently (Frost, 2016; Frost et al., 2016). 

4. Discussion 

In this study we developed a new method called TRID, which includes 

differential expression analysis, differential connectivity analysis and DiCODE analysis 

for individual genes. With DiCODE analysis, we can detect genes with changes that 
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could be missed in conventional differential expression analysis, emphasizing the 

combined effects instead of either one alone.  

Only less than 2% of top 5% high TRID-weighted genes were shared among the 

three datasets (Fig. 1), which suggests heterogeneity among samples. More than 90% of 

disease-associated SNPs are located in non-coding regions of the genome (Hindorff et al., 

2009), suggesting the potential regulatory nature of these SNPs. The International 

Genomics of Alzheimer’s Project (IGAP) GWAS meta-analysis identified 20 loci 

associated with AD (Lambert et al., 2013). In this study, most of the AD hits lie outside 

of gene coding regions. At least some of them may contribute to changes in gene 

expression (Knight, 2003). Variable combinations of risk alleles at different non-coding 

SNP loci in patients contribute to expression profile heterogeneity in AD. Moreover, 

environment, including social and psychological factors (Read et al., 2004), can 

potentially influence gene expression. Some research have implied that epigenetic 

modifications largely influence regulations of genes in AD (Kwok, 2010; Rao et al., 

2012), which could further contribute to AD heterogeneity or individual differences of 

expression profiles.  

In contrast to the high heterogeneity at individual gene level, we observed very 

robust findings of biological processes or signaling pathways from functional PPI module 

identification and annotation, even though all datasets used in this study had relatively 

small sample sizes. It indicates that different genes responsible for the underlying 

etiology of AD involve in the same pathways or PPI modules. Methodologically, by 

coupling to TRID weighting, functional PPI module identification and annotation could 

be an effective way to uncover pathways involved in AD progression. 
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In summary, our study revealed that (1) TRID can weight genes effectively and 

comprehensively; (2) coupling PPI module analyses with TRID weighting may help to 

detect the converged changes in AD; and (3) AD is heterogeneous at individual gene 

level, but many differential genes are involved in the same nucleus-associated pathways 

and disease regulatory modules. 
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Figure Legends 

Fig. 1. Venn diagrams of shared and specific top 5% high ranking weighted genes among 

the three hippocampus microarray datasets based on TRID DE (A), DC (B) and DiCODE 

(C) weighting strategies. 

 

Fig. 2. Venn diagrams of shared and specific GO term annotations for identified 

functional PPI modules based on TRID DE (A), DC (B) and DiCODE (C) weights. 
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Figure 1 
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Figure 2 
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