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Abstract

Inspired by the physiology of neuronal systems in the brain, artificial neural networks have become an invaluable tool

for machine learning applications. However, their biological realism and theoretical tractability are limited, resulting in

sometimes slow and awkward parameter fitting to training data. We have recently shown that biological neuronal firing

rates in response to distributed inputs are largely independent of size, meaning that neurons are typically responsive to

the proportion, not the absolute number, of their inputs that are active. Here we introduce such a normalisation, where the

strength of a neuron’s afferents is divided by their number, to various sparsely-connected artificial networks. The learning

performance is dramatically increased. The resulting machine learning tools are universally applicable and biologically

inspired, rendering them more stable and better understood.
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Introduction 1

Artificial neural networks have had a huge impact over the last couple of decades, enabling substantial advances 2

in machine learning for fields such as image recognition (Krizhevsky et al, 2012), translation (Sutskever et 3

al, 2014), and medical diagnosis (Ardila et al, 2019). The inspiration for these tools comes from biological 4

neuronal networks, where learning arises from changes in the strength of synaptic connections between neurons 5

through a number of different plasticity mechanisms (McCulloch & Pitts, 1943; Hebb, 1949; Hopfield et al, 6

1983). The growth of neural networks away from the limitations of biological networks, for example the use 7

of global backpropagation algorithms that have access to information unavailable to real synaptic connections 8

(Rumelhart et al, 1986), has meant that state-of-the-art artificial intelligence algorithms differ fundamentally from 9

the biological function of the brain. Nevertheless, a number of biophysical principles have been successfully 10

reintroduced, using salient features of real neuronal networks to make advances in the field of artificial neural 11

networks (LeCun et al, 1990; Maass, 1997; Gütig & Sompolinsky, 2006; Gütig, 2016; Kim & Chow, 2018; Krotov & 12
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Hopfield, 2019). Here we show how the dendritic morphology of a neuron, which influences both its connectivity 13

and excitability, produces a weight normalisation that improves learning in such networks. 14

Real neurons receive synaptic contacts across an extensively branched dendritic tree. Dendrites are leaky core 15

conductors, where afferent currents propagate along dendritic cables whilst leaking across the cell membrane 16

(Rall, 1962). Larger dendrites increase the number of potential connections a cell can receive, meaning that more 17

afferent currents can contribute to depolarisation (Chklovskii, 2004). Conversely, larger cells typically have 18

lower input resistances, due to the increased spatial extent and membrane surface area, meaning that larger 19

synaptic currents are necessary to induce the same voltage response and so bring a neuron to threshold (Rall, 20

1957; Mainen & Sejnowski, 1996). It has recently been shown by Cuntz et al (2019) that these two phenomena 21

cancel each other exactly: the excitability of neurons receiving distributed excitatory synaptic inputs is largely 22

invariant to changes in size and morphology. In addition, neurons possess several active mechanisms to help 23

maintain firing-rate homeostasis through both synaptic plasticity regulating inputs (Abbott & Nelson, 2000; 24

Royer & Paré, 2003) and changes in membrane conductance regulating responses (Gorur-Shandilya et al, 2019). 25

These results imply a consistent biophysical mechanism that contributes to stability in neuronal activity despite 26

changes in scale and connectivity. 27

Changing connectivity has traditionally not played much of a role in artificial neural networks, which typically 28

used fully-connected layers where each neuron can receive input from all cells in the preceding layer. Sparsely- 29

connected layers have however long been used as alternatives in networks with a variety of different architectures 30

(LeCun et al, 1990). Sparse connectivity more closely resembles the structure of real neuronal networks and a 31

number of recent studies have demonstrated that larger, but sparsely-connected, layers can be more efficient 32

than smaller fully-connected layers both in terms of total parameter numbers and training times (Louizos et 33

al, 2017; Mocanu et al, 2018). The advantage in efficiency comes from the ability to entirely neglect synaptic 34

connections that do not meaningfully contribute to the function of the network. Sparse networks are also less 35

likely to be overfitted to their training data as sparse representations of inputs are forced to focus on essential 36

features of the signal instead of less-informative noise. 37

To produce an appropriate sparse connectivity a number of regularisation techniques have been suggested; 38

L1- and L0-regularisations (Tibshirani, 1996; Louizos et al, 2017) both penalise (the latter more explicitly) the 39

number of connections between neurons during training. Mocanu et al (2018), building on previous work 40

(McDonnell & Waagen, 1993; Stanley & Miikkulainen, 2002; Whiteson & Stone, 2006), have recently introduced 41

an evolutionary algorithm to reshape sparse connectivity, with weak connections being successively excised 42

and randomly replaced. This procedure causes sparse artificial networks to develop small-world and scale-free 43

topologies similar to biological neuronal circuits (Bassett & Bullmore, 2017) and has comparable performance to 44

fully-connected layers despite having many fewer parameters to optimise. 45

Normalisation is another feature that has previously been shown to enhance learning in neural networks. 46

In particular Ioffe & Szegedy (2015) introduced batch normalisation, where the inputs over a given set of 47

training data are normalised, and Salimans & Kingma (2016) introduced L2-normalisation, where afferent 48

synaptic weights are normalised by their total magnitude. The latter is reminiscent of heterosynaptic plasticity, 49
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where afferent synapses across a neuron depress in response to potentiation at one contact in order to maintain 50

homeostasis (Royer & Paré, 2003). Both techniques have been applied in fully-connected networks and both work 51

to keep neuronal activities in the region where they are most sensitive to changes in inputs. The normalisation 52

that arises from the relationship between a real neuron’s morphology and connectivity sits in this context 53

and provides a particularly powerful, and biologically realistic, way to normalise sparse inputs. Dividing the 54

magnitude of individual synaptic weights by their number distributes activity across neurons whilst keeping 55

each cell sensitive to changes in inputs; neurons therefore encode signals from the proportion of presynaptic 56

partners that are active, providing a simple and broadly applicable technique to ensure faster convergence to 57

optimal solutions. 58

Methods and Models 59

Network architectures 60

We first consider a simple ANN with one hidden layer to demonstrate the utility of our approach. The size of the 61

input layer for both the MNIST and MNIST-Fashion datasets is 784, as each image is a 28× 28 pixel greyscale 62

picture. The hidden layer consists of M neurons, each neuron i receiving a number ni contacts from the previous 63

layer. In Figure 1, M = 30, 100, and 300. In Figures 2 and 3, M = 100. Neuronal activation in the input and 64

hidden layers as a function of input zi is controlled by a sigmoid function σ(zi) 65

σ(zi) =
1

1 + e−zi
(1)

where zi is the weighted input to neuron i, given by 66

zi = bi +
∑
ni

wk,iak (2)

Here bi is the bias of each neuron i, wk,i is the synaptic weight from neuron k in the previous layer to neuron i, 67

and ak = σ(zk) is the activation of presynaptic neuron k. The set of all wk,i for a given postsynaptic neuron i 68

form an afferent weight vector wi. 69

Both datasets have ten classes and the output of the ANN is a probability distribution assigning confidence to 70

each possible classification. Neurons in the output layer are represented by softmax neurons where the activation 71

function σs(zi) is given by 72

σs(zi) =
ezi∑10
i=1 e

zi
(3)

The cost function C is taken to be the log-likelihood 73

C = −log(aCorrect) (4)

where aCorrect is the activation of the output neuron corresponding to the correct input. 74
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Fig 1. Dendritic normalisation improves learning in sparse artificial neural networks A, Schematic of a sparsely-connected

artificial neural network. Input units (left) correspond to pixels from the input. Hidden units (centre) receive connections from

some, but not necessarily all, input units. Output units (right) produce a classification probability (Eq 4). B, Schematic of dendritic

normalisation. A neuron receives inputs across its dendritic tree (dark grey). In order to receive new inputs, the dendritic tree must

expand (light grey), lowering the intrinsic excitability of the cell through increased membrane leak and spatial extent. C, Example

28× 28 pixel greyscale images from the MNIST (left) and MNIST-Fashion (right) datasets. The MNIST images are handwritten

digits from 0 to 9 and the MNIST-Fashion images have ten classes, respectively: T-shirt/top, trousers, pullover, dress, coat, sandal,

shirt, sneaker, bag, and ankle boot. D, Learning improvement with dendritic normalisation (orange) compared to the unnormalised

case (blue). Top row: Log-likelihood cost on training data (Eq 4). Bottom row: Classification accuracy on test data. From left

to right: digits with M = 30 hidden neurons, fashion with M = 30, digits with M = 100, fashion with M = 100, digits with

M = 300, fashion with M = 300. Solid lines show the mean over 10 trials and shaded areas the mean ± one standard deviation.

SET hyperparameters are ε = 0.2 and ζ = 0.15.

For Figure 3, we generalise our results to deeper architectures and threshold-linear neuronal activations. In 75

Figures 3a and 3c we expand the above to include 2 and 3 sparse hidden hidden layers, each with M = 100 76

sigmoid neurons. In Figures 3b and c we consider a simple convolutional neural network (LeCun et al, 2009) 77

with 20 5× 5 features and 2× 2 maxpooling. In Figure 3d we return to the original architecture with M = 100, 78

but replace the sigmoid activation function σ(z) for the hidden neurons with a non-saturating threshold-linear 79

activation function τ(z) defined by 80

τ(zi) = max(0, z) (5)

In all cases traditional stochastic gradient descent (Robbins & Monro, 1951; LeCun et al, 1998) is used with a 81
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minibatch size of 10 and a learning rate η of 0.05. 82

Sparse evolutionary training (SET) 83

Connections between the input and hidden layers are established sparsely (Figure 1a) using the sparse evolution- 84

ary training algorithm introduced by Mocanu et al (2018). Briefly, connections are initiated uniformly randomly 85

with probability ε to form an Erdős-Rényi random graph (Erdős & Rényi, 1959). After each training epoch, a 86

fraction ζ of the weakest contacts are excised and an equal number of new random connections are formed. New 87

connections are distributed normally with mean 0 and standard deviation 1. 88

MNIST and MNIST-Fashion datasets 89

The ANN is trained to classify 28 × 28 pixel greyscale images into one of ten classes. Two distinct datasets 90

are used. The MNIST, introduced by LeCun et al (1998), consists of handwritten digits which must be sorted 91

into the classes 0 to 9 (Figure 1b, left). The MNIST-Fashion dataset was introduced by Xiao et al (2017) as a 92

direct alternative to the original MNIST and consists of images of clothing. The classes here are defined as 93

T-shirt/top, trousers, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot (Figure 1b, right). Each 94

dataset contains 60, 000 training images and 10, 000 test images. State-of-the-art classification accuracy for the 95

original MNIST dataset is as high as 99.77% (Cireşan et al, 2012), which likely exceeds human-level performance 96

due to ambiguity in some of the images. For the newer MNIST-Fashion dataset state-of-the art networks can 97

achieve classification accuracies of 96%. Such performance is achieved with deep network architectures, which 98

we do not reproduce here, rather showing an improvement in training between comparable, and comparatively 99

simple, artificial neural networks. 100

Code and data availability 101

All code is written in Python 3.6 and is freely available for download (see Supplementary File 1) alongside the 102

MNIST and MNIST-Fashion datasets. These can also be downloaded from various places, including at the time 103

of writing yann.lecun.com/exdb/mnist/ and github.com/zalandoresearch/fashion− mnist respectively. The 104

convolutional network in Figures 3b and d makes use of Keras with a TensorFlow backend (keras.io). 105

In addition, we applied dendritic normalisation in Keras with TensorFlow for immediate inclusion in Keras-based 106

deep learning models. The normalisation requires a custom layer, constraint, and optimiser. This is included as 107

Supplementary File 2. 108

Results 109

Dendritic normalisation and stochastic gradient descent 110

Let wi be the input weight vector to a given neuron i. Then the dendritic normalisation can be written as 111

wi =
s

‖vi‖0
vi (6)
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where vi is a vector of the same size as wi, ‖v‖0 is the L0-norm of vi (the number of non-zero elements), and s is 112

a scalar that determines the magnitude of the vector wi. This normalisation arises from the fact that, for real 113

neurons, increased synaptic connectivity is balanced by the additional leak conductance and spatial extent of 114

the new dendritic cables required to collect the inputs (Figure 1b). The parametrisation here differs from that 115

introduced by Salimans & Kingma (2016) for fully-connected networks with Euclidean normalisation in two 116

fundamental ways. Firstly, the magnitude parameter s is the same across all neurons as it reflects a conserved 117

relationship between connectivity and excitability. If a network were to include distinct classes of artificial 118

neurons with distinct synaptic integration properties, different values of s may be appropriate for each class, but 119

should not differ between neurons of the same class. Secondly, the L0-norm ‖vi‖0 is distinct from the Euclidean 120

L2-norm in that it is almost surely constant with respect to vi: Connections are not created or destroyed by 121

stochastic gradient descent. 122

The gradients of the cost function C with respect to vi and s can be written as 123

∇vi
C =

s

‖vi‖0
∇wi

C ,
∂C

∂s
=

∑
wi

vi

‖vi‖0
∇wi

C (7)

where ∇wiC is the usual gradient of C with respect to the full weight vector wi and the sum in the second 124

equation is over all weight vectors in the network. An interesting consequence of these equations is that neurons 125

with more afferent connections will have smaller weight updates, and so be more stable, than those with fewer 126

afferent connections. 127

Dendritic normalisation improves learning in neural networks 128

We consider the performance of sparse neural networks with and without dendritic normalisation on the MNIST 129

and MNIST-Fashion datasets (Figure 1). For sparse networks using sparse evolutionary training (SET) with one 130

hidden layer consisting of 30, 100, and 300 neurons, with connection probability ε = 0.2 and SET excision rate 131

ζ = 0.15, the normalised network consistently learns faster than the unnormalised control network (orange lines 132

against blue lines). This result holds across both the cost on the training sets and the accuracy on the test sets for 133

both datasets and across all network sizes, indicating a robust improvement in performance. In addition, the 134

variability between different independent training regimes (shaded areas in Figure 1d show mean plus or minus 135

one standard deviation over 10 independently initiated training regimes) is reduced, dendritic normalisation 136

therefore also makes training more robust and reliable. 137

Evolution of connectivity 138

It is possible to visualise the connection structure that results from training the control and normalised networks 139

on the MNIST data (Figure 2). Figure 2a shows how the number of efferent connections from each input neuron 140

(organised as pixels) changes with the number of training epochs. Initially, the connections are randomly 141

distributed and have no spatial structure, but the SET algorithm gradually imposes a heavier weighting on 142

the central input neurons as training progresses. This feature was shown before by Mocanu et al (2018) as 143

central pixels are likely to be more informative over the relevant datasets. Comparing the control (left, blue) and 144
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normalised (right, orange) networks, it is interesting to note that the bias towards central pixels is less strong in 145

the normalised case: Input neurons over a relatively broad area are strongly connected to the hidden layer. 146

Fig 2. Evolution of synaptic weights. A, Number of efferent contacts from each input neuron (pixel) to neurons in the hidden

layer as the weights evolve. The left panels (blue) show the unnormalised case and the right (orange) the normalised case. B,

Afferent contacts for the unnormalised (blue) and normalised (orange) cases. From left to right: Distribution of the number of

afferent contacts arriving at each hidden neuron, weights, and mean weighted input to each hiddden neuron over the test set.

All panels show the average over 10 trials on the original MNIST dataset with hyperparameters M = 100, ε = 0.2, and ζ = 0.15.

Dashed lines show where the vertical axis has been truncated to preserve the scale.

Postsynaptically, the number of contacts received by each hidden neuron is less variable in the normalised case 147

(Figure 2b, left column), the weights of these contacts are typically smaller in absolute value and less dispersed 148

(Figure 2b, central column); the resultant weighted inputs over the test data to hidden neurons are therefore 149

more consistent (Figure 2b, right column). The normalisation appears to make better use of neural resources 150

by distributing connections and weights more evenly across the available cells, whilst keeping expected inputs 151

closer to 0, the steepest part of the activation function, where responses are most sensitive to inputs. In addition, 152

the smaller connection weights suggest that normalised networks may be even more robust to overfitting than 153

the equivalent unnormalised sparse network. This is supported by the increased improvement in the case of 154

more complex networks, both in terms of more hidden units and more layers, as well as the greater improvement 155

in evaluation accuracy compared to training cost (Figures 1 and 3). 156

Improved training in deeper networks 157

The improvement in learning performance generalises to deeper networks with multiple hidden layers (Figure 158

3a, as well as convolutional networks with a sparsely connected layer following the max pooling layer (Figure 159
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3b). In all cases, learning is improved by dendritic normalisation (orange versus blue lines in Figures 3c and 160

d for the MNIST-Fashion dataset) in a similar manner to that for the single-layered networks described above. 161

Indeed, the improvement seems to increase with the complexity of the architecture. Dendritic normalisation is 162

therefore applicable, and beneficial, as a universal technique for sparse layers in deep networks. 163

The improvement in performance is not limited to artificial neurons with a sigmoid activation function. When 164

neurons instead have non-saturating threshold linear activations (Eq 5) the dendritic normalisation again 165

improves learning (Figure 3e). 166

Fig 3. Improved training in deeper networks. A Schematic of a sparsely connected network with 3 hidden layers.

The output layer is fully connected to the final hidden layer, but all other connections are sparse. B Schematic of

a convolutional neural network with 20 5 × 5 features and 2 × 2 maxpooling, followed by a sparsely connected

layer with M = 100 neurons. C Learning improvement with dendritic normalisation (orange) compared to the

unnormalised control case (blue) for networks with 2 (top) and 3 (bottom, see panel A) sparsely-connected hidden

layers, each with M = 100 neurons. Top of each: Log-likelihood cost on training data (Eq 4). Bottom of each:

Classification accuracy on test data. D Improved learning in the convolutional network described in B for an

unnormalised (blue) and normalised (orange) sparsely-connected layer. Top: Log-likelihood cost on training data

(Eq 4). Bottom: Classification accuracy on test data. E Improved learning in a network with one hidden layer with

M = 100 threshold-linear neurons (Eq 5) for unnormalised (blue) and normalised (orange) sparsely-connected layers.

Top: Log-likelihood cost on training data (Eq 4). Bottom: Classification accuracy on test data. Solid lines show the

mean over 10 trials and shaded areas the mean ± one standard deviation. All results are on the MNIST-Fashion

dataset. Hyperparameters are ε = 0.2 and ζ = 0.15.

Discussion 167

We have shown that normalising afferent synaptic weights by their number (L0-normalisation), in a manner 168

similar to real neurons (Cuntz et al, 2019), improves the learning performance of sparse artificial neural networks 169

with a variety of different structures. Such dendritic normalisation constrains the weights and expected inputs to 170

be within relatively tight bands, potentially making better use of available neuronal resources. Neurons respond 171

more to the proportion of their inputs that are active and highly-connected neurons are relatively less excitable. 172
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We believe that such a normalisation procedure is robust and should be applied to improve the performance of 173

feedforward sparse networks. 174

Other results on normalisation (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016) have also demonstrated 175

improvements in training performance in fully-connected feedforward networks. Such approaches work by 176

keeping neurons relatively sensitive to changes in inputs and our results here can be seen as the sparse, and 177

biologically justified, analogue, with similarly simple and broad applicability to the L2-normalisation introduced 178

by Salimans & Kingma (2016). The comparison between the heterosynaptic plasticity-like L2-normalisation 179

and our dendritic L0-normalisation is particularly interesting. In real neurons the former relies on actively 180

re-weighting afferent contacts (Royer & Paré, 2003) whereas the latter arises purely from the passive properties 181

of dendritic trees. Neurons often display complementary functionality between passive structure and active 182

processes, for example in the equalisation of somatic responses to synaptic inputs at different locations both 183

dendritic diameter taper (Bird & Cuntz, 2016) and active signal enhancement (Rumsey & Abbott, 2006) play a 184

role. Synaptic normalisation is in a similar vein. The effects are, however, distinct in some ways: while both 185

normalisations keep neurons sensitive to inputs, the responses to learning differ. Heterosynaptic plasticity 186

enhances changes in the relative weighting of contacts, whereas dendritic normalisation increases the stability of 187

well-connected neurons while allowing faster learning in poorly connected cells (Eq 7). This makes dendritic 188

normalisation particularly suited to situations with evolving connectivity. 189

In the context of biological realism, the normalisation here has room for development. We sought a straightfor- 190

wardly demonstrable and quantifiable computational role for the dendritic normalisation described in Cuntz et 191

al (2019) and so used the most well-developed theories within artificial neural networks (Richards et al, 2019). 192

Such networks have a number of features that are impossible to implement in the brain, so more investigation 193

into the benefits of size-invariant excitability in living systems is necessary. Firstly, a single artificial neuron can 194

form connections that both excite and inhibit efferent cells, a phenomenon which is not seen in the connectivity of 195

real neurons (Dale, 1935). It is possible to regard the mix of excitatory and inhibitory connections as a functional 196

abstraction of real connections mediated by intermediate inhibitory interneurons (Silberberg & Markram, 2007), 197

but a more satisfying picture may emerge by considering distinct inhibitory populations of cells. Secondly, we 198

train our networks using supervised backpropagation which employs global information unavailable to real 199

synaptic connections. A large number of studies have developed more plausible local algorithms for training 200

networks (Hopfield et al, 1983; Gütig & Sompolinsky, 2006; Kim & Chow, 2018; Krotov & Hopfield, 2019). Such 201

algorithms are a natural fit for our normalisation as it too is implemented biophysically through the morphology 202

of the dendritic tree; an immediate goal is to incorporate our result into algorithms on unsupervised and rein- 203

forcement learning. Thirdly, our networks are strictly feedforward whereas typical neuronal networks possess 204

recurrent connections. Many studies of such networks employ sparsity in recurrent excitatory connections (Lazar 205

et al, 2009; Kim & Chow, 2018) and this is another natural arena for our normalisation; here the two streams 206

of input would be in competition as more strongly recurrently connected cells would receive relatively weak 207

feedforward inputs and vice versa. This is a particularly interesting avenue to explore. Fourthly, the neurons here 208

are rate-based with either saturating or non-saturating outputs. Spiking networks can have different properties 209

properties (Maass, 1997) and spikes could be incorporated into any of the approaches described above. 210
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Dendrites in general have much more to offer in terms of artificial neural computations. Synaptic connections are 211

distributed spatially over branched dendritic trees, allowing for a number of putative computational operations 212

to occur within a single cell (London & Häusser, 2005). Dendrites are able to passively amplify signals selectively 213

based on their timing and direction (Rall, 1962) and actively perform hierarchical computations over branches 214

(Poirazi et al, 2003). Cuntz et al (2019) noted that while mean neuronal firing rates are size-independent, the 215

timing of individual spikes is not necessarily unaffected by morphology. This means that signals encoded by rates 216

are normalised whereas those encoded by spike timing may not be, implying that the two streams of information 217

across the same circuit pathways are differentially affected by changing connectivity. Dendrites additionally hold 218

continuous variables through their membrane potential and conductances that shape ongoing signal integration 219

(Gidon & Segev, 2012). Such properties have potential computational roles that, while sometimes intuitive, have 220

yet to be systematically studied at the level of neuronal circuits. 221

Overall, this study has two major consequences. The first is a practical normalisation procedure that drastically 222

improves learning in sparse artificial neural networks trained using backpropagation. The procedure can be 223

used effectively for any sparsely-connected layers in shallow or deep networks of any architecture. Given that 224

sparse layers can display better scalability than fully-connected layers (Mocanu et al, 2018), we believe that this 225

procedure could become standard in deep learning. Furthermore, the biological plausibility of the procedure 226

means that it is highly appropriate as a component of more physiologically realistic learning rules. Secondly, 227

we have taken the insights from Cuntz et al (2019) and demonstrated a previously unappreciated way that 228

the structure of dendrites, in particular their properties as leaky core conductors receiving distributed inputs, 229

contributes to the computational function of neuronal circuits. 230
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Symbol Interpretation

ai Activation of neuron i (Eqs 1 and 3)

bi Bias of neuron i (Eq 2)

C Log-likelihood cost function (Eqs 4 and 7)

ni Number of afferent contacts to neuron i (also written ‖vi‖0)

s
Constant of proportionality between normalised

and unnormalised inputs (Eq 6)

vi Unnormalised input to neuron i (Eq 6)

wi Normalised input to neuron i (Eq 6)

ε SET connection probability

ζ SET excision probability

η Learning rate for stochastic gradient descent

σ Sigmoid activation function (Eq 1)

σs Softmax activation function (Eq 3)

τ Threshold-linear activation function (Eq 5)

Table 1. Table summarising symbols and interpretations.
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