Expanding the Genetic Architecture of Nicotine Dependence and its Shared Genetics with

Multiple Traits: Findings from the Nicotine Dependence GenOmics (iNDiGO) Consortium

Bryan C. Quach<sup>1</sup>, Michael J. Bray<sup>2</sup>, Nathan C. Gaddis<sup>3</sup>, Mengzhen Liu<sup>4</sup>, Teemu Palviainen<sup>5</sup>, Camelia C. Minica<sup>7</sup>, Stephanie Zellers<sup>4</sup>, Richard Sherva<sup>6</sup>, Fazil Aliev<sup>8</sup>, Michael Nothnagel<sup>9</sup>, Kendra A. Young<sup>10</sup>, Jesse Marks<sup>1</sup>, Hannah Young<sup>4</sup>, Yuelong Guo<sup>11,12</sup>, Alex Waldrop<sup>3</sup>, Nancy Sey<sup>13</sup>, Maria T. Landi<sup>14</sup>, Daniel W. McNeil<sup>15,16</sup>, Lindsay A. Farrer<sup>6,17,18,19,20</sup>, Christina A. Markunas<sup>1</sup>, Jacqueline Vink<sup>21</sup>, Jouke-Jan Hottenga<sup>7</sup>, William G. Iacono<sup>4</sup>, Henry R. Kranzler<sup>22,23</sup>, Nancy L. Saccone<sup>24</sup>, Michael C. Neale<sup>25,26</sup>, Pamela Madden<sup>2</sup>, Marcella Rietschel<sup>27</sup>, Mary L. Marazita<sup>28</sup>, Matthew McGue<sup>4</sup>, Hyejung Won<sup>13</sup>, Georg Winterer<sup>29</sup>, Richard Grucza<sup>2</sup>, Danielle Dick<sup>8,30,31</sup>, Joel Gelernter<sup>32,33,34,35</sup>, Neil E. Caporaso<sup>14</sup>, Timothy B. Baker<sup>36</sup>, Dorret I. Boomsma<sup>7</sup>, Jaakko Kaprio<sup>5,37</sup>, John E. Hokanson<sup>10</sup>, Scott Vrieze<sup>4</sup>, Laura J. Bierut<sup>2</sup>, Eric O. Johnson<sup>1,38</sup>, and Dana B. Hancock<sup>1</sup>

- 1. Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, RTI International, Research Triangle Park, North Carolina, USA;
- 2. Department of Psychiatry, Washington University, St. Louis, Missouri, USA;
- 3. Research Computing Division, RTI International, Research Triangle Park, North Carolina, USA;
- 4. Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA;
- 5. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland;
- 6. Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA;
- 7. Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands;
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia, USA;
- 9. Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany;
- 10. Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
- 11. Center for Genomics in Public Health and Medicine, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina, USA;
- 12. GeneCentric Therapeutics, Research Triangle Park, North Carolina, USA;
- 13. Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- 14. Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States department of Health and Human Services, Bethesda, Maryland, USA;
- 15. Department of Psychology, West Virginia University, Morgantown, West Virginia, USA;

- 16. Department of Dental Practice and Rural Health, West Virginia University, Morgantown, West Virginia, USA;
- 17. Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA;
- 18. Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA;
- 19. Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA;
- 20. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA;
- 21. Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands;
- 22. Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
- 23. VISN 4 MIRECC, Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA;
- 24. Department of Genetics, Washington University, St. Louis, Missouri, USA;
- 25. Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA;
- 26. Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA;
- 27. Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany;
- 28. Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- 29. Experimental & Clinical Research Center, Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Germany;
- 30. College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, Virginia, USA;
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA;
- 32. Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA;
- 34. Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- 35. Department of Psychiatry, VA CT Healthcare Center, West Haven, Connecticut, USA;
- 36. Center for Tobacco Research and Intervention, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA;
- 37. Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland;
- 38. Fellow Program, Behavioral Health Research Division, RTI International, Research Triangle Park, North Carolina, USA;

#### 1 Abstract

| 2  | Cigarette smoking is the leading cause of preventable morbidity and mortality.                     |
|----|----------------------------------------------------------------------------------------------------|
| 3  | Knowledge is evolving on genetics underlying initiation, regular smoking, nicotine dependence      |
| 4  | (ND), and cessation. We performed a genome-wide association study using the Fagerström Test        |
| 5  | for ND (FTND) in 58,000 smokers of European or African ancestry. Five genome-wide                  |
| 6  | significant loci, including two novel loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416)           |
| 7  | were identified, and loci reported for other smoking traits were extended to ND. Using the         |
| 8  | heaviness of smoking index (HSI) in the UK Biobank (N=33,791), rs2714700 was consistently          |
| 9  | associated, but rs1862416 was not associated, likely reflecting ND features not captured by the    |
| 10 | HSI. Both variants were cis-eQTLs (rs2714700 for MAGI2-AS3 in hippocampus, rs1862416 for           |
| 11 | TENM2 in lung), and expression of genes spanning ND-associated variants was enriched in            |
| 12 | cerebellum. SNP-based heritability of ND was 8.6%, and ND was genetically correlated with 13       |
| 13 | other smoking traits ( $r_g$ =0.40–0.95) and co-morbid diseases. Our results emphasize the FTND as |
| 14 | a composite phenotype that expands genetic knowledge of smoking, including loci specific to        |
| 15 | ND.                                                                                                |

#### 16 Introduction

Cigarette smoking remains the leading cause of preventable death worldwide,<sup>1</sup> despite the well-known adverse health effects. Smoking causes more than 7 million deaths annually from a multitude of diseases including cancer, chronic obstructive pulmonary disease (COPD), and heart disease.<sup>1,2</sup> Cigarette smoking is a multi-stage process consisting of initiation, regular smoking, nicotine dependence (ND), and cessation. Each step has a strong genetic component (for example, twin-based heritability estimates up to 70% for the transition from regular smoking to ND<sup>3,4</sup>), and partial overlaps are expected among the sets of sequence variants correlating with

| 24 | the different stages, <sup>3</sup> evidenced by findings of the GWAS and Sequencing Consortium of           |
|----|-------------------------------------------------------------------------------------------------------------|
| 25 | Alcohol and Nicotine use (GSCAN) with sample sizes up to 1.2 million individuals. <sup>5</sup> GSCAN        |
| 26 | identified 298 genome-wide significant loci associated with initiation (ever vs. never smoking),            |
| 27 | age at initiation, cigarettes per day (CPD), and/or cessation (current vs. former smoking); 259 of          |
| 28 | the loci harbored significant associations with initiation. <sup>5</sup>                                    |
| 29 | In comparison to other stages of smoking, known loci for ND are limited. Only six                           |
| 30 | reproducible, genome-wide significant loci have been identified: CHRNB3-CHRNA6 (chr8p11),                   |
| 31 | DBH (chr9q34), CHRNA5-CHRNA3-CHRNB4 (chr15q25), DNMT3B and NOL4L (chr20q11),                                |
| 32 | and CHRNA4 (chr20q13). <sup>6</sup> A more complete understanding of the genetics underlying ND is          |
| 33 | needed, as it could help to predict the likelihood of quitting smoking, withdrawal severity,                |
| 34 | response to treatment, and health-related consequences. <sup>7-10</sup> The Fagerström Test for ND (FTND),  |
| 35 | also called the Fagerström Test for Cigarette Dependence, <sup>11</sup> provides a composite phenotype that |
| 36 | captures multiple behavioral and psychological features of ND. <sup>12</sup> Expanding upon our prior       |
| 37 | analyses of studies comprising our Nicotine Dependence GenOmics (iNDiGO) Consortium, <sup>13,14</sup>       |
| 38 | we report findings from the largest GWAS meta-analysis for ND (N=58,000; 46,213 European                    |
| 39 | [EUR] and 11,787 African American [AA] ancestry participants from 23 studies) to identify                   |
| 40 | novel genetic loci associated with ND, assess genetic correlations between ND and other                     |
| 41 | phenotypes and gene expression patterns, and test GSCAN-identified loci <sup>5</sup> for effects on ND.     |

#### 42 **Results**

### 43 Cross-ancestry GWAS meta-analysis finds two novel SNP associations with ND

44 Our cross-ancestry ND GWAS meta-analysis (λ=1.034, Supplementary Figure 1A)
45 identified five genome-wide significant loci (Figure 1). Associations of the lead SNPs from each

| 46 | of these five loci are shown in Table 1. All genome-wide significant SNP/indel associations                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------|
| 47 | from the cross-ancestry meta-analysis are provided in <b>Supplementary Table 5</b> .                                                |
| 48 | Three of the genome-wide significant loci have known associations with ND from our                                                  |
| 49 | prior GWAS and others <sup>6</sup> : chr15q25 <sup>13-15</sup> (smallest $P=1.6 \times 10^{-39}$ for rs16969968, a well-established |
| 50 | functional missense [D398N] CHRNA5 SNP <sup>16</sup> ), chr20q13 <sup>13</sup> (smallest P=1.2×10 <sup>-12</sup> for                |
| 51 | rs151176846, an intronic CHRNA4 SNP), and chr9q34 <sup>14</sup> (smallest P= $1.1 \times 10^{-8}$ for rs13284520,                   |
| 52 | an intronic DBH SNP). The loci spanning nicotinic acetylcholine receptor genes (CHRNA5-A3-                                          |
| 53 | B4 and CHRNA4), but no novel loci, were identified at genome-wide significance in the EUR-                                          |
| 54 | specific GWAS meta-analysis ( $\lambda$ =1.036, <b>Supplementary Figures 1B</b> and <b>2A</b> ). No genome-wide                     |
| 55 | significant loci were found in the AA-specific GWAS meta-analysis ( $\lambda$ =1.032, <b>Supplementary</b>                          |
| 56 | Figures 1C and 2B).                                                                                                                 |
| 57 | Two genome-wide significant loci from the cross-ancestry meta-analysis represent novel                                              |
| 58 | associations with ND. On chr7q21, the most significant SNP ( $P=2.3\times10^{-9}$ ) was rs2714700, a SNP                            |
| 59 | between the MAGI2 and GNAI1 genes (Supplementary Figures 3A-B). The most significant                                                |
| 60 | SNP on chr5q34, rs1862416 (P=1.5x10 <sup>-8</sup> ), sits within an intron for <i>TENM2</i> (Supplementary                          |
| 61 | <b>Figures 3C–D</b> ). Both SNPs imputed well: sample size-weighted mean estimated r <sup>2</sup> values were                       |
| 62 | 0.97 for rs2714700 and 0.92 for rs1862416. Further, both SNPs were common, and their                                                |
| 63 | associations with ND were observed across EURs and AAs (Table 1) and were largely                                                   |
| 64 | consistent across studies (Supplementary Figure 4A–B): rs2714700-T being associated with                                            |
| 65 | reduced risk (meta-analysis OR [95% CI]=0.96 [0.94–0.97]) and rs1862416-T being associated                                          |
| 66 | with increased risk (meta-analysis OR [95% CI]=1.08 [1.05–1.11]) for severe vs. mild ND.                                            |
| 67 | Neither SNP showed evidence for heterogeneity, based on the I <sup>2</sup> index <sup>17</sup> , across studies (P=0.83             |
| 68 | for rs2714700 and 0.75 for rs1862416). Leave-one-study-out analyses (Supplementary Table 6)                                         |

| 69 | revealed some variability in p-values (P= $3.1 \times 10^{-7}$ – $7.4 \times 10^{-9}$ for rs2714700 and P= $5.6 \times 10^{-9}$ – |
|----|-----------------------------------------------------------------------------------------------------------------------------------|
| 70 | $3.9 \times 10^{-6}$ for rs1862416), likely due to fluctuating statistical power given the significant                            |
| 71 | correlation between N and p-value across iterations: $r=-0.65$ , $P=8.6\times10^{-5}$ . However, there was                        |
| 72 | little variation in the effect sizes (range of $\beta$ values corresponding to the OR for severe vs. mild                         |
| 73 | ND = 0.95–0.96 for rs2714700-T and 1.07–1.08 for rs1862416-T).                                                                    |
| 74 | We compared the novel ND-associated SNPs with results reported for other smoking                                                  |
| 75 | traits by GSCAN. <sup>5</sup> Both the MAGI2/GNAI1 SNP rs2714700 and the TENM2 SNP rs1862416                                      |
| 76 | were nominally associated at P<0.05 with ever vs. never smoking and rs2714700 with CPD in                                         |
| 77 | consistent directions with ND; neither SNP was associated with age at initiation or smoking                                       |
| 78 | cessation (Supplementary Table 7). Because rs1862416 was located within the boundaries of a                                       |
| 79 | genome-wide significant locus for ever smoking (chr5:164,596,435-168,114,971), we used                                            |
| 80 | GCTA to assess the independence of association signals via conditional modeling. All 6 lead                                       |
| 81 | SNPs in this GSCAN-identified locus were in low LD with rs1862416 (maximum $r^2=0.0047$                                           |
| 82 | [Supplementary Figure 5], maximum D'=0.46), and three were nominally associated with ND                                           |
| 83 | at P<0.05 (Supplementary Table 8). Among our iNDiGO studies, rs1862416 remained                                                   |
| 84 | associated with ND in models conditioned on each GSCAN lead SNP individually ( $P=7.9\times10^{-8}$ -                             |
| 85 | $1.8 \times 10^{-8}$ ) and with all 6 SNPs taken together (P= $2.2 \times 10^{-7}$ ). Rs2714700 was located >1 MB away            |
| 86 | from any GSCAN-identified locus, so conditional modeling was not necessary. These results                                         |
| 87 | suggest that the novel rs2714700 and rs1862416 associations with ND are independent of any                                        |
| 88 | GSCAN-identified loci.                                                                                                            |
| 89 | For independent testing, we analyzed the two novel SNPs (rs2714700 and rs1862416) for                                             |
| 90 | association with HSI in the UK Biobank. Results are shown in Supplementary Table 9. The                                           |

91 MAGI2/GNAI1 SNP, rs2714700, was associated with HSI at P=0.014, which surpassed

| 92  | Bonferroni correction for two SNP tests, and meta-analysis of all discovery studies with UK                      |
|-----|------------------------------------------------------------------------------------------------------------------|
| 93  | Biobank (total N=91,791) supported rs2714700-T being associated with milder ND (P= $7.7 \times 10^{-10}$         |
| 94  | <sup>9</sup> ). The <i>TENM2</i> SNP, rs1862416, was not associated with HSI in the UK Biobank (P=0.39).         |
| 95  | To determine the factors of ND that drove the novel genome-wide associations, we                                 |
| 96  | returned to the iNDiGO studies, tested SNP associations with each specific FTND item, and                        |
| 97  | combined results via cross-ancestry meta-analyses. For rs2714700, we observed the lowest p-                      |
| 98  | values for the two items that comprise the HSI (Figure 2A): TTFC ( $P=5.3 \times 10^{-4}$ ) and CPD              |
| 99  | (P= $1.1 \times 10^{-3}$ ). Rs2714700 was also associated at P< $0.05$ with difficult in refraining from smoking |
| 100 | in forbidden places (P=0.025) and the cigarette most hated to give up (P=0.030). Rs1862416 was                   |
| 101 | associated with TTFC (P=0.018) and two items that are not captured by the HSI: the cigarette                     |
| 102 | most hated to give up (P=0.015) and smoking when ill (P=0.023) (Figure 2B).                                      |

#### 103 GWAS findings for other smoking traits extend to ND

We assessed whether genome-wide significant SNPs identified for smoking traits in 104 105 GSCAN extended to ND using results from the cross-ancestry GWAS meta-analysis. We 106 focused on the 55 genome-wide significant SNPs from 40 loci associated with CPD, given that it 107 displayed the best genetic correlation with ND (Figure 3). After applying Bonferroni correction 108 for the 53 SNPs that were available in our meta-analysis ( $P < 9.4 \times 10^{-4}$ ), 17 SNPs had a 109 statistically significant and directionally consistent association with ND (Table 2). These SNPs 110 span six loci reported at genome-wide or nominal significance in prior GWAS of ND (CHRNA5-111 A3-B4 [chr15], CHRNA4 [chr20], DBH [chr9], CHRNB3 [chr8], CYP2A6 [chr19], and NOL4L [near DNMT3B, chr20])<sup>6</sup> and three loci not reported in prior ND GWAS—DRD2 (chr11), 112 C16orf97 (chr16), and CHRNB2 (chr1). 113

#### 114 *ND* is genetically correlated with 13 other phenotypes

We estimated the heritability explained by common SNPs of ND at  $h_q^2$  (standard error) = 115 0.086 (0.012), using LDSC<sup>18</sup> and the EUR-specific GWAS meta-analysis results. We also found 116 statistically significant genetic correlations of ND with 13 phenotypes (Bonferroni-corrected 117 118 P<0.0011; Figure 3 and Supplementary Table 3). Positive correlations indicate that the genetic 119 predisposition to higher ND risk was correlated with genetic risks for other smoking traits (smallest P= $3.1 \times 10^{-70}$  for higher CPD [r<sub>g</sub>=0.95], followed by P= $3.2 \times 10^{-16}$  for current smoking 120  $[r_g=0.54]$  and P=3.2×10<sup>-16</sup> for ever smoking  $[r_g=0.40]$ ). We repeated LDSC, after removing all 121 122 chr15q25 variants between 78.5 and 79.5 MB and found only negligible differences in these 123 correlations ( $r_g=0.94$  for higher CPD,  $r_g=0.51$  for current smoking, and  $r_g=0.42$  for ever smoking). Beyond the smoking traits, with all SNPs included, higher ND was genetically 124 correlated with higher risks of alcohol dependence, neuroticism, psychiatric diseases (major 125 depressive disorder and its symptoms and schizophrenia), and smoking-related consequences 126 (lung cancer and coronary artery disease). Among these positively correlated traits, rg values 127 ranged from 0.16 (schizophrenia) to 0.77 (squamous cell lung cancer). Higher risk of ND was 128 genetically correlated with lower age of smoking initiation ( $r_g$ =-0.55) and fewer years of 129 schooling ( $r_g$ =-0.33). 130

# Gene expression data implicates target genes for novel ND-associated SNPs and identifies ND heritability enrichment in cerebellum

Rs2714700, an intergenic SNP, is not a significant *cis*-eQTL with any gene-level
expression in GTEx (v8), but it was implicated as a *cis*-eQTL for the *MAGI2-AS3* transcript in
hippocampus from BrainSeq<sup>19</sup> (N=551; P=8.5×10<sup>-4</sup>). The protective allele for ND (rs2714700-T)
was associated with higher expression of the *MAGI2-AS3* transcript ENST00000414797.5.

| 137 | Rs1862416 is annotated to enhancer histone marks in brain (specifically, germinal matrix                               |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 138 | during fetal development and the developed prefrontal cortex, anterior caudate, and cingulate                          |
| 139 | gyrus tissues) and several other tissues in HaploReg. <sup>20</sup> It is also located in the promoter of <i>CTB</i> - |
| 140 | 77H17.1, which is a novel antisense RNA transcript encoded within a TENM2 intron. In GTEx,                             |
| 141 | rs1862416 was reported as a significant lung-specific cis-eQTL SNP TENM2. The ND risk-                                 |
| 142 | conferring allele (rs1862416-T) was associated with decreased gene-level TENM2 expression in                           |
| 143 | lung. CTB-77H17.1 was too lowly expressed across GTEx tissues to test its expression levels by                         |
| 144 | rs1862416.                                                                                                             |
| 145 | To assess the enrichment of the EUR-specific ND GWAS meta-analysis results to                                          |
| 146 | specific gene expression patterns, we applied LDSC-SEG <sup>21</sup> with reference to 205 tissues/cell                |
| 147 | types with publicly available gene expression data. We observed statistically significant                              |
| 148 | enrichment in one tissue (cerebellum) at Bonferroni-corrected P<2.4×10 <sup>-4</sup> (Supplementary                    |
| 149 | Table 4), indicating that genes spanning ND-associated SNPs are enriched for specific                                  |
| 150 | expression in the cerebellum relative to other tissues/cell types.                                                     |
| 151 | Discussion                                                                                                             |

We expanded current knowledge of ND in this largest GWAS to date, by identifying two 152 153 novel genome-wide significant loci as well as 3 known loci, extending associations of additional 154 loci implicated for other smoking phenotypes, and detecting significant genetic correlations of 155 ND with 13 other complex phenotypes and with gene expression in cerebellum. The top novel 156 SNPs between MAGI2 and GNAI1 (chr7q21) and in TENM2 (chr5q34) were independent of previously reported GWAS signals for any smoking trait. Three of our genome-wide significant 157 158 loci were known: (1) CHRNA5-CHRNA3-CHRNB4 (chr15q25) is irrefutably associated with 159 ND, as driven largely by CPD.<sup>6</sup> (2) Our initial GWAS meta-analysis of 5 studies (now part of the

| 160 | iNDiGO consortium) <sup>13</sup> identified CHRNA4 (chr20q13) at genome-wide significance. Subsequent     |
|-----|-----------------------------------------------------------------------------------------------------------|
| 161 | associations were found with heavy vs. never smoking in the UK Biobank <sup>22</sup> and with initiation, |
| 162 | CPD, and cessation in GSCAN. <sup>5</sup> (3) <i>DBH</i> (chr9q34) was first identified as genome-wide    |
| 163 | significant for smoking cessation but later associated with ND in our meta-analysis of 15 studies         |
| 164 | (now part of the iNDiGO consortium) <sup>14</sup> and with CPD and cessation in GSCAN. <sup>5</sup>       |
| 165 | The novel ND-associated locus with lead SNP rs2714700 is intergenic between MAGI2                         |
| 166 | (membrane associated guanylate kinase, WW and PDZ domain containing 2) and GNAII (G                       |
| 167 | protein subunit alpha i1). We identified rs2714700 at genome-wide significance for its                    |
| 168 | association with ND, which was driven by CPD (unlike rs1862416), TTFC, and other FTND                     |
| 169 | items, indicating that this SNP association may reflect both primary and secondary features of            |
| 170 | ND. Rs2714700 was also associated with HSI in the independent UK Biobank. The cis-eQTL                    |
| 171 | evidence for rs2714700 in the hippocampus suggests that it may influence expression of the long           |
| 172 | noncoding RNA MAGI2-AS3 (MAGI2 antisense RNA 3). MAGI2-AS3 has been mainly studied                        |
| 173 | for its role in the progression of cancer, including glioma in the brain. <sup>23</sup> No genome-wide    |
| 174 | significant associations have been reported within 1MB of rs2714700 in the GWAS catalog. Our              |
| 175 | evidence of genome-wide significance for rs2714700 points to a novel locus that has not been              |
| 176 | associated with smoking or any related trait, and its functional relevance merits further                 |
| 177 | investigation.                                                                                            |
| 178 | We also observed a genome-wide significant association of ND with rs1862416, a lung-                      |
| 179 | specific cis-eQTL for TENM2. TENM2 encodes teneurin transmembrane protein 2, a cell surface               |
| 180 | receptor that plays a fundamental role in neuronal connectivity and synaptogenesis. <sup>24</sup> With    |

rs1862416 residing in the promoter of *CTB-77H17.1*, it could influence this antisense RNA,

182 which in turn could dysregulate its sense transcript, *TENM2*. As an illustrative example, the

autism-associated SNP rs4307059 is annotated to and acts as a promoter region *cis*-eQTL for the
antisense RNA *MSNP1AS* (moesin pseudogene 1, antisense) that influences regulation of its
sense transcript, *MSN*.<sup>25</sup> However, while rs1862416 is generally indicated for its potential
regulatory role (i.e., enhancer and promoter annotations and *cis*-eQTL evidence), its specific
effect on either *CTB-77H17.1* or *TENM2* regulation in brain tissue was not evident in currently
available data.

Further, independent association testing using HSI in the UK Biobank did not yield 189 statistical significance for rs1862416. This lack of association may be due to rs1862416 190 191 influencing components of ND that are not fully captured by the two FTND items that comprise the HSI (TTFC and CPD), as suggested by the specific FTND item association testing among the 192 iNDiGO studies. Rs1862416 was suggestively associated (P<0.05) with TTFC, "Which cigarette 193 194 would you hate most to give up?" (the first one in the morning vs. all others), and "Do/did you smoke if you are so ill that you are in bed most of the day?" (yes/no). These item responses 195 reflect withdrawal symptoms that are indicative of secondary features of ND (smoking based on 196 relief of negative effects or situation), as compared with primary (or core) features of ND that are 197 necessary and sufficient for habit formation (heaviness of smoking [tolerance], automaticity, loss 198 of control, and craving).<sup>26-29</sup> Having the composite ND phenotype may have enhanced our power 199 for discovering TENM2, but its detection in the UK Biobank may have been limited by the 200 reliance on the HSI. 201

Beyond our discovery of rs1862416 with ND, SNPs across the *TENM2* gene have been identified at genome-wide significance, as presented in the GWAS catalog<sup>30</sup>, for educational attainment,<sup>31</sup> smoking initiation (ever vs. never smoking),<sup>5,32-34</sup> age of smoking initiation,<sup>5</sup> smoking cessation (current vs. former smoking),<sup>5</sup> alcohol consumption (drinks per week),<sup>5</sup> lung

| 206 | function, <sup>34,35</sup> height, <sup>34</sup> number of sexual partners, <sup>32</sup> depression, <sup>36,37</sup> risk taking tendency, <sup>32</sup> body |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 207 | mass index, <sup>34</sup> menarche (age at onset) <sup>38</sup> , and regular attendance at a religious group <sup>39</sup> . All                               |
| 208 | TENM2 SNPs in the GWAS catalog have very low r <sup>2</sup> values with our novel SNP, rs1862416                                                                |
| 209 | (Supplementary Figure 5), and we found that rs1862416 was associated with ND                                                                                    |
| 210 | independently from other TENM2 SNPs implicated in GSCAN. These results suggest that                                                                             |
| 211 | TENM2 has pleiotropic effects on ND, traits that are genetically correlated with ND, and other                                                                  |
| 212 | traits.                                                                                                                                                         |

The genetics of smoking behaviors, more broadly, has rapidly evolved with the GSCAN 213 214 consortium having amassed a very large sample size and identified 298 genome-wide significant loci for smoking traits representing single components: ever vs. never smoking, age of smoking 215 initiation, CPD, and current vs. former smoking.<sup>5</sup> We observed significant genetic correlations of 216 217 each of these smoking traits with ND, yet despite the nearly complete sharing between ND and CPD specifically, our two novel ND-associated loci were not identified at genome-wide 218 significance by GSCAN (smallest P=0.033 for rs1862416-T; smallest P=0.016 for rs2714700-T), 219 suggesting that these loci are specific to ND. These observations resemble previously reported 220 patterns of genetic correlation between alcohol dependence and alcohol consumption that 221 suggested shared yet distinct genetics underlying specific measures and composite phenotypes.<sup>40</sup> 222 223 Similarly, the majority of GSCAN-identified loci were trait-specific (191 of the 298 loci), where 224 the other 107 loci were pleiotropic with associations identified for two or more of the smoking traits.<sup>5</sup> In our evaluation of GSCAN-identified loci, we corroborated associations of several 225 previously implicated loci for ND (e.g., nicotine acetylcholine receptors genes CHRNA5-A3-B4 226 227 and CHRNA4) and three additional loci (DRD2, C16orf97, and CHRNB2) that have not been 228 reported in prior ND GWAS. Of these loci, DRD2 is notable as a long-studied addiction

candidate gene<sup>4</sup> and its recent identification as genome-wide significant for alcohol use disorder 229 for rs4936277<sup>41</sup>, which is correlated ( $r^2$ =0.94 in 1000G EUR, 0.82 in 1000G AFR) with 230 rs7125588, the top SNP identified for CPD in GSCAN and associated with ND in iNDiGO; these 231 results support a shared genetic effect of DRD2 underlying addiction. Notably, rs7125588 is not 232 correlated (r<sup>2</sup>=0.04 in 1000G EUR, 0.01 in 1000G AFR) with the DRD2 variant rs1800497 233 234 (Taq1A), which is not significantly associated with ND in iNDiGO (P=0.24). Other GSCAN loci were detected for the single component smoking traits but show no 235 evidence for association in our study (Supplementary Table 10), suggesting that these loci 236 237 influence stages of smoking other than ND, or they exert weak effects on ND that we were underpowered to detect. We expect that additional GSCAN-identified loci are associated with 238 ND, but their detection will require a larger sample size. These results demonstrate the utility of 239 240 studying the genetics of the composite ND phenotype and comparing with GWAS of other smoking traits to tease apart loci that are specific to one stage (i.e., initiation, regular smoking, 241 ND, cessation) vs. loci that influence multiple stages to better understand the full spectrum of 242 smoking behaviors. 243

Beyond the smoking traits, we observed significant genetic correlations between ND and 244 245 alcohol dependence, years of schooling, neuroticism, comorbid psychiatric traits (major depression and schizophrenia), and smoking-related health consequences (lung cancer and 246 247 coronary artery disease). Some of these observations corroborate prior findings (for example, alcohol dependence<sup>40</sup> and schizophrenia<sup>42,43</sup> with ND), whereas the other correlations extend to 248 ND prior observations for the single component smoking traits (for example, CPD with years of 249 schooling<sup>5</sup>, neuroticism<sup>5</sup>, major depression<sup>5</sup>, coronary artery disease<sup>5</sup>, and lung cancer<sup>44</sup>). The 250 251 genetic correlation between ND and gene expression in cerebellum is a notable observation

252 consistent with cerebellum-specific cis-eQTL effects observed for the ND-associated DNMT3B SNP rs910083<sup>14</sup> and the age of smoking initiation-associated CHRNA2 SNP rs11780471<sup>44</sup>, both 253 of which are also associated with lung cancer. These findings add to the evidence that the 254 cerebellum may be important for ND risk,<sup>45,46</sup> in addition to the other addiction-relevant brain 255 tissues. However, since the cerebellum contains a higher neuronal concentration than other brain 256 tissues,<sup>21,47</sup> future studies are needed to decipher whether the cerebellar gene regulatory effects in 257 the etiology of ND are due to neuronal activity. Additionally, although genetic correlation 258 between ND and another trait suggest shared genetics underlying the phenotypes, multiple 259 260 mechanisms can produce significant correlations (i.e., unmeasured intermediary phenotypes, correlated risk variants, mediation).<sup>48-50</sup> Identifying the true mechanistic explanation requires 261 further investigations. 262

263 The present ND GWAS meta-analysis follows two prior waves of data assembly by the iNDiGO consortium (Ns=17,074<sup>13</sup>, 38,602<sup>14</sup>, and now 58,000) and is the largest to date for the 264 field. Despite still having substantially smaller sample sizes than the GSCAN GWAS, at each 265 wave, increasing sample size for diverse ancestry groups (EURs and AAs) has illuminated ND-266 associated loci, some of which are shared with other stages of smoking while others are specific 267 268 to ND. Our present findings underscore the complexity even within the ND phenotype, as our novel loci displayed patterns of association with specific FTND items that reflect primary or 269 secondary ND features, e.g., the TENM2 SNP influenced secondary features that are not captured 270 271 simply by heaviness of smoking. Understanding genetic differences that underlie primary vs. secondary ND may better inform treatment strategies, e.g., changing environmental cues for 272 individuals whose smoking is driven solely by primary ND features vs. treating withdrawal for 273 individuals whose ND is augmented with secondary features.<sup>28</sup> Studying the genetics of ND 274

| 275 | alongside other smoking traits (e.g., initiation and cessation) is key to gaining a better  |
|-----|---------------------------------------------------------------------------------------------|
| 276 | understanding of the neurobiological perturbations that influence the trajectory of smoking |

277 behaviors and their treatment implications.

#### 278 Methods

We assembled 58,000 participants from 23 iNDiGO consortium studies with genome-279 wide single nucleotide polymorphism (SNP) genotypes and FTND phenotype data available for 280 281 ever smokers to perform ND GWAS meta-analyses. Fifteen of the studies were included from our prior GWAS using their original or updated sample sizes (total N increased from 38,602<sup>14</sup> to 282 46,098 in the current analysis), while 8 studies were added for the current study (total 283 N=11,902). Participant characteristics are provided in **Supplementary Table 1**, and details of 284 285 the study designs, genotyping, quality control, 1000 Genomes (1000G) phase 3 imputation (unless otherwise stated), and statistical analyses are provided in the Supplementary Methods. 286 287 Institutional review boards at the respective sites approved the study protocols, and all 288 participants provided written informed consent.

#### 289 ND GWAS meta-analysis

The FTND is a well-validated, widely used 6-item questionnaire that assesses 290 psychologic dependence on nicotine, with scores ranging from 0 (no dependence) to 10 (highest 291 dependence level).<sup>12,51</sup> As done before,<sup>13,14</sup> we categorized FTND scores as mild (scores 0–3), 292 293 moderate (scores 4–6), or severe (scores 7–10). FTND data reflected current smoking behaviors at the time of interview (i.e., current FTND) or the period of heaviest smoking among ever 294 smokers (i.e., lifetime FTND). We previously found only small differences in genetic association 295 results due to any measurement variance when using current vs. lifetime FTND.<sup>52</sup> Two studies 296 also included low-intensity smokers, who reported <10 CPD but had no data available on other 297

FTND items; these smokers were defined as mildly dependent, given minimal phenotype 298 misclassification when comparing these FTND and CPD thresholds.<sup>14</sup> The other FTND items 299 were always required to define moderately and severely dependent smokers. See 300 Supplementary Methods for further details on the ND phenotype data by study. 301 For each study, genome-wide SNP/indel associations with the 3-level categorical ND 302 303 outcome were tested within an ancestry group using linear regression. Covariates included age, sex, principal component eigenvectors, and study-specific covariates where warranted. For 304 studies that included relatives, relatedness was accounted for in the regression modeling. See the 305 306 Supplementary Methods for additional study-specific details. GWAS results were combined using fixed-effect inverse variance-weighted meta-307 analyses in METAL.<sup>53</sup> Prior to performing meta-analyses, we applied genomic control to results 308 309 from one study, deCODE, to adjust for inflation due to relatedness among participants ( $\lambda$ =1.12); all other studies had low inflation ( $\lambda$ =0.99–1.04) (Supplementary Table 1). We removed 310 SNPs/indels with minor allele frequency (MAF) <1% in the 1000G phase 3 reference panel for 311 the analyzed ancestry group (1000G European or African superpopulations) and SNPs/indels 312 available in only one study. All variant annotations correspond to the National Center for 313 Biotechnology Information (NCBI) build 37. As before<sup>14</sup>, the threshold of genome-wide 314 significance was set at  $P = 5 \times 10^{-8}$ . Regional association plots of novel genome-wide significant 315 loci were constructed using LocusZoom<sup>54</sup> with references of either 1000G European or African 316 317 panels to estimate linkage disequilibrium of the lead SNP (based on smallest meta-analysis Pvalue) and surrounding SNPs. The lead SNP for each novel locus was tested for association with 318 319 each of the specific FTND items (Supplementary Methods).

| 320 | For any ND-associated SNPs located within the bounds of loci identified by GSCAN (1                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 321 | MB surrounding the lead SNP), <sup>5</sup> conditional models were analyzed using our GWAS summary                      |
| 322 | statistics and the Genome-wide Complex Trait Analysis (GCTA) tool, adjusted for the lead SNPs                           |
| 323 | in GSCAN. <sup>55,56</sup> To contextualize the magnitude of the observed effect sizes, we calculated odds              |
| 324 | ratios (ORs) using the $\beta$ estimate from the single SNP linear regression model (OR=exp[2× $\beta$ <sub>SNP</sub> ] |
| 325 | for severe vs. mild ND, with OR>1 corresponding to an increased risk of severe ND) and                                  |
| 326 | compared these values across studies and ancestries using the Forest Plot Viewer. <sup>57</sup>                         |

#### 327 Independent testing using heaviness of smoking index in the UK Biobank

328 Novel, genome-wide significant SNPs from our ND GWAS meta-analysis were tested in the UK Biobank. Although all 6 items of the FTND were not collected in the UK Biobank, two 329 330 items (CPD and time-to-first-cigarette [TTFC]) were collected among current smokers. These 331 two items together form the heaviness of smoking index (HSI), which is highly correlated with the full-scale FTND (e.g., r=0.7 among nondaily smokers and 0.9 among daily smokers).<sup>58</sup> We 332 333 derived HSI scores, ranging from 0 (no dependence) to 6 (highest dependence level), and 334 categorized them as follows: mild (scores 0–2), moderate (scores 3–4), and severe (scores 5–6). 335 These HSI categories were highly concordant (89.3%) with our routinely used FTND categories 336 using the COGEND study, which was ascertained specifically for ND (Supplementary Methods and Supplementary Table 2). The final analysis dataset included 33,791 current 337 smokers (18,063 mildly, 13,395 moderately, and 2,333 severely dependent, as defined by HSI). 338 339 Our linear regression model included covariates for age, sex, and principal component eigenvectors (Supplementary Methods). 340

341

1 Genetic correlations of ND with other complex phenotypes and with gene expression

| 342 | Summary statistics from the EUR-specific meta-analyses were used as input into linkage                         |
|-----|----------------------------------------------------------------------------------------------------------------|
| 343 | disequilibrium (LD) score regression (LDSC) <sup>18</sup> with reference to the 1000G EUR panel to             |
| 344 | estimate the SNP heritability $(h_g^2)$ of ND and its genetic correlations with 45 other complex               |
| 345 | phenotypes, including other smoking, drug, and alcohol use and dependence traits, smoking-                     |
| 346 | related health consequences (e.g., cancer, COPD, and coronary heart disease), psychiatric and                  |
| 347 | neurologic disorders, cognitive and educational traits, and brain volume metrics. The full list of             |
| 348 | phenotypes and GWAS datasets, as obtained from LD Hub <sup>59</sup> or shared by the original study            |
| 349 | investigators, are provided in Supplementary Table 3.                                                          |
| 350 | Similarly, EUR-specific GWAS meta-analysis summary statistics were input into                                  |
| 351 | stratified LDSC, as applied to specifically expressed genes (LDSC-SEG), <sup>21</sup> with reference to 205    |
| 352 | tissues and cell types from two sources-RNA-sequencing data on 53 tissues/cell types in the                    |
| 353 | Genotype-Tissue Expression [GTEx (latest data available on version 7)] resource <sup>60</sup> and array-       |
| 354 | based data on 152 tissues/cell types made available in Gene Expression Omnibus <sup>61,62</sup> (see full list |
| 355 | in <b>Supplementary Table 4</b> ). Similarly to the initial application of LDSC-SEG, <sup>21</sup> these two   |
| 356 | sources were selected because their expression data included a wide range of ND-relevant and                   |
| 357 | other tissues and cell types in humans, as opposed to focused information on a particular tissue.              |
| 358 | LDSC-SEG involved comparing expression of each gene in each tissue/cell type with that in                      |
| 359 | other tissues/cell types, selecting the top 10% of differentially expressed genes, annotating SNPs             |
| 360 | from the GWAS summary statistics that lie within 100kb windows of the selected genes, and                      |
| 361 | using the stratified LDSC method to estimate the enrichment in SNP heritability for ND for the                 |
| 362 | given gene set compared to the baseline LDSC model with all genes. For each analysis, a                        |
| 363 | Bonferroni correction was applied to assess statistical significance: P<0.0011 ( $\alpha$ =0.05/45             |
| 364 | phenotypes) for LDSC and P<2.4×10 <sup>-4</sup> ( $\alpha$ =0.05/205 tissues/cell types) for LDSC-SEG.         |
|     |                                                                                                                |

#### 365 cis-eQTL assessment of novel ND-associated SNPs

| 366 | To assess evidence for SNP-gene associations, novel SNPs were queried against GTEx                     |
|-----|--------------------------------------------------------------------------------------------------------|
| 367 | (version 8) cis-expression quantitative trait loci (cis-eQTL) results derived from SNP genotype        |
| 368 | and RNA-sequencing data across 44 tissues (N=126–209 for the 13 brain tissues). <sup>60</sup> The GTEx |
| 369 | portal (https://gtexportal.org/home/) presents significant single-tissue cis-eQTLs, based on a         |
| 370 | false discovery rate (FDR) <5%.                                                                        |
| 371 | We also assessed single-tissue cis-eQTL evidence from the BrainSeq consortium that                     |
| 372 | includes larger sample sizes with SNP genotype and RNA-sequencing data available in two brain          |
| 373 | tissues, dorsolateral prefrontal cortex (N=453) and hippocampus (N=447). <sup>19</sup> Of the 551      |
| 374 | individuals with data available in at least one brain tissue, 286 were schizophrenia cases;            |
| 375 | case/control status was included as a covariate for adjustment in the cis-eQTL analysis, as            |
| 376 | described elsewhere. <sup>63</sup> Significant <i>cis</i> -eQTLs at FDR <10% are available at          |
| 377 | http://eqtl.brainseq.org/phase2/eqtl/.                                                                 |
| 378 | Data Availability                                                                                      |
| 379 | The prior meta-analysis summary statistics <sup>14</sup> are available via dbGaP:                      |
| 380 | https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001532.v1.p1.The               |
| 381 | summary statistics generated from the current study will be included under version 2 of this           |
| 382 | dbGaP study, or are available upon request to the corresponding author (D.B.H.).                       |

#### 383 Conflicts of Interest

L.J.B. and the spouse of N.L.S. are listed as inventors on U.S. Patent 8,080,371, 'Markers for Addiction' covering the use of certain SNPs in determining the diagnosis, prognosis and treatment of addiction. Y.G. is an employee of GeneCentric Therapeutics. Although unrelated to this research, H.R.K. has been a consultant or advisory board member for Lundbeck and Indivior

| 388 | and is a member of the American Society of Clinical Psychopharmacology's Alcohol Clinical     |
|-----|-----------------------------------------------------------------------------------------------|
| 389 | Trials Initiative, which was supported in the last 3 years by AbbVie, Alkermes, Ethypharm,    |
| 390 | Indivior, Lilly, Lundbeck, Otsuka, Pfizer, Arbor and Amygdala Neurosciences. H.R.K. and J.G.  |
| 391 | are named as inventors on PCT patent application #15/878,640 entitled: "Genotype-guided       |
| 392 | dosing of opioid agonists," filed January 24, 2018. J.K. consulted for Pfizer in 2012–2015 on |
| 393 | ND. All other authors declare no conflict of interest.                                        |

#### 394 Acknowledgements

We are grateful to the many study participants, who made this work possible. The meta-

analysis was supported by the National Institute on Drug Abuse grant numbers R01 DA042090

397 (PI: DBH) and R01 DA036583 (PI: LJB). The authors thank deCODE Genetics / Amgen and its

398 investigators (Gunnar W. Reginsson, Thorgeir E. Thorgeirsson, and Kari Stefansson) for

399 contributing and analyzing their data for inclusion in the meta-analysis. Their work was

400 supported in part by NIDA R01 DA017932 (PI: Kari Stefansson). Acknowledgments for all

401 other ND studies, contributed by the authors and/or made publicly available, are included in the

402 Supplementary Information. This research also leveraged the UK Biobank Resource under

403 Application Number 24603.

404

### 405 **References**

 Organization, W.H. WHO report on the global tobacco epidemic, 2017: monitoring tobacco use and prevention policies. (Geneva, 2017).
 Services, U.S.D.o.H.a.H. *The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General*, (Atlanta (GA), 2014).
 Sullivan, P.F. & Kendler, K.S. The genetic epidemiology of smoking. *Nicotine Tob Res* 1 Suppl 2,

411 S51-7; discussion S69-70 (1999).

412 4. Agrawal, A. *et al.* The genetics of addiction-a translational perspective. *Transl Psychiatry* **2**, e140 413 (2012).

4145.Liu, M. *et al.* Association studies of up to 1.2 million individuals yield new insights into the415genetic etiology of tobacco and alcohol use. Nat Genet **51**, 237-244 (2019).

| 416        | 6.  | Hancock, D.B., Markunas, C.A., Bierut, L.J. & Johnson, E.O. Human Genetics of Addiction: New                        |
|------------|-----|---------------------------------------------------------------------------------------------------------------------|
| 417        |     | Insights and Future Directions. Curr Psychiatry Rep 20, 8 (2018).                                                   |
| 418        | 7.  | Baker, T.B. et al. Are tobacco dependence and withdrawal related amongst heavy smokers?                             |
| 419        |     | Relevance to conceptualizations of dependence. J Abnorm Psychol <b>121</b> , 909-21 (2012).                         |
| 420        | 8.  | Zelman, D.C., Brandon, T.H., Jorenby, D.E. & Baker, T.B. Measures of affect and nicotine                            |
| 421        |     | dependence predict differential response to smoking cessation treatments. J Consult Clin                            |
| 422        |     | Psychol <b>60</b> , 943-52 (1992).                                                                                  |
| 423        | 9.  | Gu, F. et al. Time to smoke first morning cigarette and lung cancer in a case-control study. J Natl                 |
| 424        |     | Cancer Inst <b>106</b> , dju118 (2014).                                                                             |
| 425        | 10. | Guertin, K.A. et al. Time to First Morning Cigarette and Risk of Chronic Obstructive Pulmonary                      |
| 426        |     | Disease: Smokers in the PLCO Cancer Screening Trial. PLoS One <b>10</b> , e0125973 (2015).                          |
| 427        | 11. | Fagerstrom, K. Determinants of tobacco use and renaming the FTND to the Fagerstrom Test for                         |
| 428        |     | Cigarette Dependence. <i>Nicotine Tob Res</i> <b>14</b> , 75-8 (2012).                                              |
| 429        | 12. | Heatherton, T.F., Kozlowski, L.T., Frecker, R.C. & Fagerstrom, K.O. The Fagerstrom Test for                         |
| 430        |     | Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. <i>Br J Addict</i> <b>86</b> ,           |
| 431        |     | 1119-27 (1991).                                                                                                     |
| 432        | 13. | Hancock, D.B. <i>et al.</i> Genome-wide meta-analysis reveals common splice site acceptor variant in                |
| 433        | 15. | CHRNA4 associated with nicotine dependence. <i>Transl Psychiatry</i> <b>5</b> , e651 (2015).                        |
| 434        | 14. | Hancock, D.B. <i>et al.</i> Genome-wide association study across European and African American                      |
| 434        | 14. | ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. <i>Mol Psychiatry</i> <b>23</b> ,        |
|            |     |                                                                                                                     |
| 436        | 4 5 | 1911-1919 (2018).                                                                                                   |
| 437        | 15. | Thorgeirsson, T.E. <i>et al.</i> A variant associated with nicotine dependence, lung cancer and                     |
| 438        | 4.6 | peripheral arterial disease. <i>Nature</i> <b>452</b> , 638-42 (2008).                                              |
| 439        | 16. | Bierut, L.J. <i>et al.</i> Variants in nicotinic receptors and risk for nicotine dependence. <i>Am J Psychiatry</i> |
| 440        |     | <b>165</b> , 1163-71 (2008).                                                                                        |
| 441        | 17. | Huedo-Medina, T.B., Sanchez-Meca, J., Marin-Martinez, F. & Botella, J. Assessing heterogeneity                      |
| 442        |     | in meta-analysis: Q statistic or I2 index? <i>Psychol Methods</i> <b>11</b> , 193-206 (2006).                       |
| 443        | 18. | Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat                    |
| 444        |     | Genet <b>47</b> , 1236-41 (2015).                                                                                   |
| 445        | 19. | BrainSeq, A.H.B.G.C.E.a.d.l.o. & BrainSeq, A.H.B.G.C. BrainSeq: Neurogenomics to Drive Novel                        |
| 446        |     | Target Discovery for Neuropsychiatric Disorders. Neuron 88, 1078-1083 (2015).                                       |
| 447        | 20. | Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and                      |
| 448        |     | regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40, D930-                |
| 449        |     | 4 (2012).                                                                                                           |
| 450        | 21. | Finucane, H.K. et al. Heritability enrichment of specifically expressed genes identifies disease-                   |
| 451        |     | relevant tissues and cell types. Nat Genet 50, 621-629 (2018).                                                      |
| 452        | 22. | Wain, L.V. et al. Novel insights into the genetics of smoking behaviour, lung function, and                         |
| 453        |     | chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank.                       |
| 454        |     | Lancet Respir Med <b>3</b> , 769-781 (2015).                                                                        |
| 455        | 23. | Chen, X.D., Zhu, M.X. & Wang, S.J. Expression of long non-coding RNA MAGI2AS3 in human                              |
| 456        |     | gliomas and its prognostic significance. <i>Eur Rev Med Pharmacol Sci</i> <b>23</b> , 3455-3460 (2019).             |
| 457        | 24. | Silva, J.P. <i>et al.</i> Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity             |
| 458        | ۲.  | transsynaptic receptor pair with signaling capabilities. <i>Proc Natl Acad Sci U S A</i> <b>108</b> , 12113-8       |
| 459        |     | (2011).                                                                                                             |
| 459        | 25. | Kerin, T. <i>et al.</i> A noncoding RNA antisense to moesin at 5p14.1 in autism. <i>Sci Transl Med</i> <b>4</b> ,   |
| 460<br>461 | 25. | 128ra40 (2012).                                                                                                     |
|            | 26  |                                                                                                                     |
| 462        | 26. | Piper, M.E. <i>et al.</i> Refining the tobacco dependence phenotype using the Wisconsin Inventory of                |
| 463        |     | Smoking Dependence Motives. <i>J Abnorm Psychol</i> <b>117</b> , 747-61 (2008).                                     |
|            |     |                                                                                                                     |

| 464 | 27.               | Piasecki, T.M., Piper, M.E. & Baker, T.B. Refining the tobacco dependence phenotype using the                    |
|-----|-------------------|------------------------------------------------------------------------------------------------------------------|
| 465 |                   | Wisconsin Inventory of Smoking Dependence Motives: II. Evidence from a laboratory self-                          |
| 466 |                   | administration assay. J Abnorm Psychol <b>119</b> , 513-23 (2010).                                               |
| 467 | 28.               | Piasecki, T.M., Piper, M.E. & Baker, T.B. Tobacco Dependence: Insights from Investigations of                    |
| 468 |                   | Self-Reported Smoking Motives. Curr Dir Psychol Sci 19, 395-401 (2010).                                          |
| 469 | 29.               | Piasecki, T.M., Piper, M.E., Baker, T.B. & Hunt-Carter, E.E. WISDM primary and secondary                         |
| 470 |                   | dependence motives: associations with self-monitored motives for smoking in two college                          |
| 471 |                   | samples. Drug Alcohol Depend <b>114</b> , 207-16 (2011).                                                         |
| 472 | 30.               | Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic                  |
| 473 |                   | Acids Res <b>42</b> , D1001-6 (2014).                                                                            |
| 474 | 31.               | Lee, J.J. et al. Gene discovery and polygenic prediction from a genome-wide association study of                 |
| 475 |                   | educational attainment in 1.1 million individuals. <i>Nat Genet</i> <b>50</b> , 1112-1121 (2018).                |
| 476 | 32.               | Karlsson Linner, R. et al. Genome-wide association analyses of risk tolerance and risky behaviors                |
| 477 |                   | in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet                 |
| 478 |                   | <b>51</b> , 245-257 (2019).                                                                                      |
| 479 | 33.               | Erzurumluoglu, A.M. <i>et al.</i> Meta-analysis of up to 622,409 individuals identifies 40 novel                 |
| 480 |                   | smoking behaviour associated genetic loci. <i>Mol Psychiatry</i> (2019).                                         |
| 481 | 34.               | Kichaev, G. <i>et al.</i> Leveraging Polygenic Functional Enrichment to Improve GWAS Power. <i>Am J</i>          |
| 482 | •                 | Hum Genet <b>104</b> , 65-75 (2019).                                                                             |
| 483 | 35.               | Lutz, S.M. <i>et al.</i> A genome-wide association study identifies risk loci for spirometric measures           |
| 484 | 001               | among smokers of European and African ancestry. <i>BMC Genet</i> <b>16</b> , 138 (2015).                         |
| 485 | 36.               | Nagel, M. <i>et al.</i> Meta-analysis of genome-wide association studies for neuroticism in 449,484              |
| 486 | 50.               | individuals identifies novel genetic loci and pathways. <i>Nat Genet</i> <b>50</b> , 920-927 (2018).             |
| 487 | 37.               | Wray, N.R. <i>et al.</i> Genome-wide association analyses identify 44 risk variants and refine the               |
| 488 | 57.               | genetic architecture of major depression. <i>Nat Genet</i> <b>50</b> , 668-681 (2018).                           |
| 489 | 38.               | Perry, J.R. <i>et al.</i> Parent-of-origin-specific allelic associations among 106 genomic loci for age at       |
| 490 | 50.               | menarche. Nature <b>514</b> , 92-97 (2014).                                                                      |
| 491 | 39.               | Day, F.R., Ong, K.K. & Perry, J.R.B. Elucidating the genetic basis of social interaction and                     |
| 492 | 001               | isolation. <i>Nat Commun</i> <b>9</b> , 2457 (2018).                                                             |
| 493 | 40.               | Walters, R.K. <i>et al.</i> Transancestral GWAS of alcohol dependence reveals common genetic                     |
| 494 |                   | underpinnings with psychiatric disorders. <i>Nat Neurosci</i> <b>21</b> , 1656-1669 (2018).                      |
| 495 | 41.               | Kranzler, H.R. <i>et al.</i> Genome-wide association study of alcohol consumption and use disorder in            |
| 496 |                   | 274,424 individuals from multiple populations. <i>Nat Commun</i> <b>10</b> , 1499 (2019).                        |
| 497 | 42.               | Reginsson, G.W. <i>et al.</i> Polygenic risk scores for schizophrenia and bipolar disorder associate with        |
| 498 |                   | addiction. Addict Biol (2017).                                                                                   |
| 499 | 43.               | Hartz, S.M. <i>et al.</i> Genetic correlation between smoking behaviors and schizophrenia. <i>Schizophr</i>      |
| 500 | 101               | Res (2017).                                                                                                      |
| 501 | 44.               | McKay, J.D. <i>et al.</i> Large-scale association analysis identifies new lung cancer susceptibility loci        |
| 502 |                   | and heterogeneity in genetic susceptibility across histological subtypes. <i>Nat Genet</i> <b>49</b> , 1126-     |
| 503 |                   | 1132 (2017).                                                                                                     |
| 504 | 45.               | Moulton, E.A., Elman, I., Becerra, L.R., Goldstein, R.Z. & Borsook, D. The cerebellum and                        |
| 505 | 45.               | addiction: insights gained from neuroimaging research. Addict Biol <b>19</b> , 317-31 (2014).                    |
| 506 | 46.               | Miquel, M. <i>et al.</i> Have we been ignoring the elephant in the room? Seven arguments for                     |
| 507 | 40.               | considering the cerebellum as part of addiction circuitry. <i>Neurosci Biobehav Rev</i> <b>60</b> , 1-11 (2016). |
| 508 | 47.               | Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the                           |
| 508 | 47.               | quantification of total cell and neuron numbers in the brain. J Neurosci <b>25</b> , 2518-21 (2005).             |
| 510 | 48.               | Timofeeva, M.N. <i>et al.</i> Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk           |
| 510 | - <del>1</del> 0. | of lung cancer in EPIC. Cancer Epidemiol Biomarkers Prev <b>20</b> , 2250-61 (2011).                             |
| 711 |                   | or rang cancer in Line. Cancer chaefinor biomarkers riev 20, 2230-01 (2011).                                     |

- Martin, J., Taylor, M.J. & Lichtenstein, P. Assessing the evidence for shared genetic risks across
  psychiatric disorders and traits. *Psychol Med* 48, 1759-1774 (2018).
- 50. Hjelmborg, J. *et al.* Lung cancer, genetic predisposition and smoking: the Nordic Twin Study of 515 Cancer. *Thorax* **72**, 1021-1027 (2017).
- 516 51. Conway, K.P. *et al.* Data compatibility in the addiction sciences: an examination of measure 517 commonality. *Drug Alcohol Depend* **141**, 153-8 (2014).
- 518 52. Glasheen, C. *et al.* Is the Fagerstrom test for nicotine dependence invariant across secular trends
  519 in smoking? A question for cross-birth cohort analysis of nicotine dependence. *Drug Alcohol*520 *Depend* 185, 127-132 (2018).
- 521 53. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide 522 association scans. *Bioinformatics* **26**, 2190-1 (2010).
- 523 54. Pruim, R.J. *et al.* LocusZoom: regional visualization of genome-wide association scan results. 524 *Bioinformatics* **26**, 2336-7 (2010).
- 525 55. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait 526 analysis. *Am J Hum Genet* **88**, 76-82 (2011).
- 52756.Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies528additional variants influencing complex traits. Nat Genet 44, 369-75, S1-3 (2012).
- 57. Boyles, A.L., Harris, S.F., Rooney, A.A. & Thayer, K.A. Forest Plot Viewer: a new graphing tool. *Epidemiology* 22, 746-7 (2011).
- 53158.DiFranza, J.R. *et al.* What aspect of dependence does the fagerstrom test for nicotine532dependence measure? *ISRN Addict* **2013**, 906276 (2013).
- 53359.Zheng, J. *et al.* LD Hub: a centralized database and web interface to perform LD score regression534that maximizes the potential of summary level GWAS data for SNP heritability and genetic535correlation analysis. *Bioinformatics* **33**, 272-279 (2017).
- 53660.Consortium, G.T. *et al.* Genetic effects on gene expression across human tissues. *Nature* 550,537204-213 (2017).
- 53861.Pers, T.H. *et al.* Biological interpretation of genome-wide association studies using predicted539gene functions. *Nat Commun* **6**, 5890 (2015).
- 540 62. Fehrmann, R.S. *et al.* Gene expression analysis identifies global gene dosage sensitivity in cancer.
  541 *Nat Genet* 47, 115-25 (2015).
- 63. Collado-Torres, L. *et al.* Regional Heterogeneity in Gene Expression, Regulation, and Coherence
  in the Frontal Cortex and Hippocampus across Development and Schizophrenia. *Neuron* 103,
  203-216 e8 (2019).

**Table 1.** Lead single nucleotide polymorphism (SNP) associations from the five genome-wide significant loci in the Nicotine

 Dependence GenOmics (iNDiGO) consortium cross-ancestry meta-analysis for nicotine dependence (ND). Ancestry-specific

 association results are also presented.

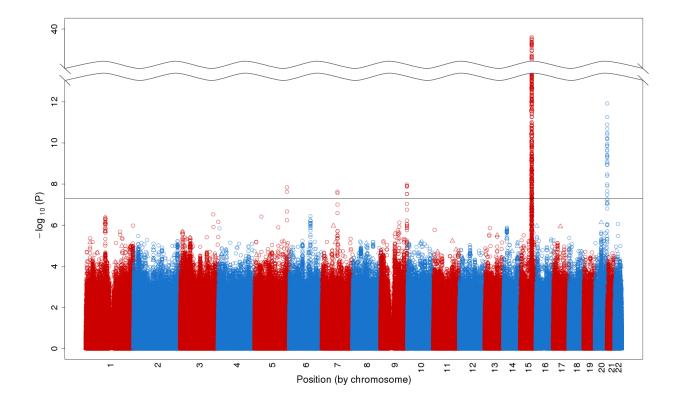
|              |                |               | European ancestry-specific<br>ND meta-analysis (total N = |          |                      | African American-specific<br>ND meta-analysis (total N = |          |                      | Cross-ancestry ND<br>meta-analysis |                      |
|--------------|----------------|---------------|-----------------------------------------------------------|----------|----------------------|----------------------------------------------------------|----------|----------------------|------------------------------------|----------------------|
|              |                |               | 46,213)                                                   |          |                      | 11,787)                                                  |          |                      | (total N = 58,000)                 |                      |
|              | Chr:position   | Gene /        | Effect                                                    |          |                      | Effect                                                   |          |                      |                                    |                      |
| SNP (effect  | (NCBI          | closest       | allele                                                    |          |                      | allele                                                   |          |                      |                                    |                      |
| allele)      | build 37)      | genes         | freq. <sup>a</sup>                                        | β (SE)   | Р                    | freq. <sup>a</sup>                                       | β (SE)   | Р                    | β (SE)                             | Р                    |
| Lead SNPs fr | om novel ND-as | sociated loci |                                                           |          | <u> </u>             |                                                          |          |                      |                                    |                      |
| rs1862416    | 5:167,394,595  | TENM2         | 0.88                                                      | 0.037    | 5.4×10 <sup>-7</sup> | 0.94                                                     | 0.049    | 6.6×10 <sup>-3</sup> | 0.039                              | 1.5×10 <sup>-8</sup> |
| (T)          |                |               |                                                           | (0.0074) |                      |                                                          | (0.0066) |                      | (0.0068)                           |                      |
| rs2714700    | 7:79,367,667   | MAGI2 /       | 0.47                                                      | -0.022   | 1.2×10 <sup>-6</sup> | 0.72                                                     | -0.026   | 5.5×10 <sup>-3</sup> | -0.023                             | 2.3×10 <sup>-8</sup> |
| (T)          |                | GNAII         |                                                           | (0.0045) |                      |                                                          | (0.0094) |                      | (0.0041)                           |                      |
| Lead SNPs fr | om known ND-a  | ssociated lo  | <u>ci</u>                                                 | 1        | I                    | 1                                                        |          | 1                    | 1                                  | <u> </u>             |

| rs13284520  | 9:136,502,572 | DBH    | 0.83 | 0.028    | 1.7×10 <sup>-6</sup>  | 0.56 | 0.029    | 1.7×10 <sup>-3</sup> | 0.029    | 1.1×10 <sup>-8</sup>  |
|-------------|---------------|--------|------|----------|-----------------------|------|----------|----------------------|----------|-----------------------|
| (A)         |               |        |      | (0.0059) |                       |      | (0.0092) |                      | (0.0050) |                       |
| rs16969968  | 15:78,882,925 | CHRNA5 | 0.37 | 0.061    | 4.9×10 <sup>-38</sup> | 0.02 | 0.049    | 7.1×10 <sup>-3</sup> | 0.060    | 1.6×10 <sup>-39</sup> |
| (A)         |               |        |      | (0.0047) |                       |      | (0.018)  |                      | (0.0046) |                       |
| rs151176846 | 20:61,997,500 | CHRNA4 | 0.92 | -0.067   | 1.2×10 <sup>-12</sup> | 1.00 | NA       | NA                   | 0.067    | 1.2×10 <sup>-12</sup> |
| (T)         |               |        |      | (0.0094) |                       |      |          |                      | (0.0094) |                       |

Abbreviations: NA, not available (due to monomorphism for rs151176846 among African Americans); NCBI, National Center for

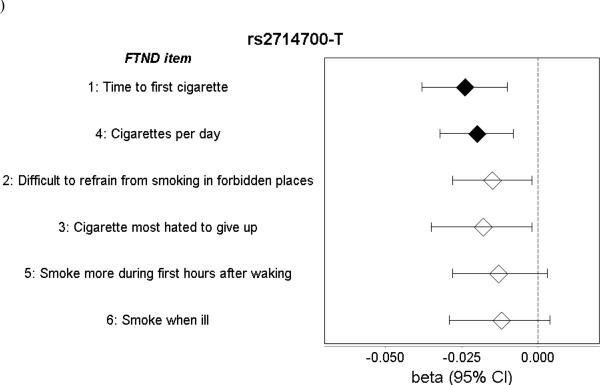
Biotechnology Information; SE, standard error.

<sup>a</sup> Frequencies correspond to 1000G European and African superpopulation reference panels.

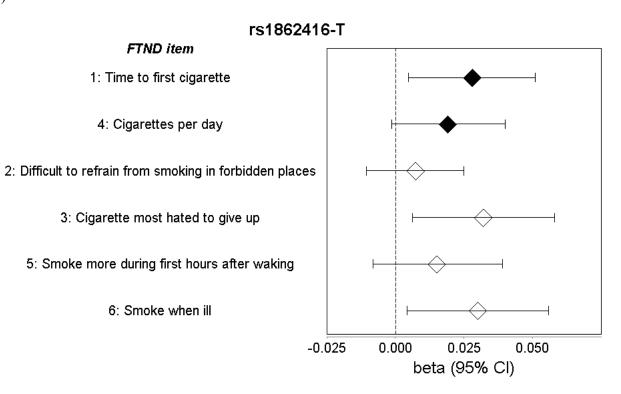

**Table 2**. Single nucleotide polymorphisms (SNPs) identified as genome-wide significant for cigarettes per day (CPD) by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium and associated with nicotine dependence (ND) at  $P<9.1\times10^{-4}$  ( $\alpha=0.05/55$  tests) in the cross-ancestry meta-analysis by the Nicotine Dependence GenOmics (iNDiGO) consortium. Results are sorted by novelty and then by iNDiGO p-values, and  $\beta$  values correspond to direction of association for the effect alleles.

|                     |                  |                        | GSCAN    | consorti | um meta-               | iNDiGO consortium meta-<br>analysis for ND (N=58,000) |        |                       |  |
|---------------------|------------------|------------------------|----------|----------|------------------------|-------------------------------------------------------|--------|-----------------------|--|
|                     | Chr:position     |                        | analysis | for CPD  |                        |                                                       |        |                       |  |
|                     | (NCBI build      |                        |          |          |                        |                                                       |        |                       |  |
| SNP (effect allele) | 37)              | Gene / nearest gene(s) | β SE P   |          | β                      | SE                                                    | Р      |                       |  |
| SNPs from loci not  | reported by prio | r GWAS of ND           |          |          |                        | <u> </u>                                              |        |                       |  |
| rs7125588 (G)       | 11:113,436,072   | DRD2 / TMPRSS5         | -0.014   | 0.0020   | 6.5×10 <sup>-12</sup>  | -0.016                                                | 0.0042 | 1.8×10 <sup>-4</sup>  |  |
| rs1592485 (A)       | 16:52,093,549    | C16orf97               | -0.013   | 0.0021   | 1.1×10 <sup>-10</sup>  | -0.015                                                | 0.0043 | 4.5×10 <sup>-4</sup>  |  |
| rs2072659 (G)       | 1:154,548,521    | CHRNB2                 | -0.025   | 0.0038   | 2.5×10 <sup>-13</sup>  | -0.026                                                | 0.0078 | 8.4×10 <sup>-4</sup>  |  |
| SNPs from loci rep  | orted by prior G | WAS of ND              |          |          |                        | <u> </u>                                              |        |                       |  |
| rs146009840 (T)     | 15:78,906,177    | CHRNA3                 | 0.030    | 0.0036   | 2.0×10 <sup>-17</sup>  | 0.060                                                 | 0.0046 | 2.6×10 <sup>-39</sup> |  |
| rs72740955 (T)      | 15:78,849,779    | PSMA4 / CHRNA5         | 0.040    | 0.0033   | 2.4×10 <sup>-34</sup>  | 0.058                                                 | 0.0045 | 1.5×10 <sup>-38</sup> |  |
| rs10519203 (A)      | 15:78,814,046    | НҮКК                   | -0.075   | 0.0021   | 3.1×10 <sup>-286</sup> | -0.050                                                | 0.0042 | 7.7×10 <sup>-32</sup> |  |

| rs8040868 (C)  | 15:78,911,181 | CHRNA3        | 0.022  | 0.0034 | 1.8×10 <sup>-10</sup> | 0.044  | 0.0041 | 7.3×10 <sup>-27</sup> |
|----------------|---------------|---------------|--------|--------|-----------------------|--------|--------|-----------------------|
| rs12438181 (A) | 15:78,812,098 | НҮКК          | -0.023 | 0.0037 | 5.0×10 <sup>-10</sup> | -0.039 | 0.0049 | 2.6×10 <sup>-15</sup> |
| rs3743063 (C)  | 15:79,065,171 | ADAMTS7       | -0.023 | 0.0035 | 1.5×10 <sup>-11</sup> | -0.030 | 0.0042 | 6.8×10 <sup>-13</sup> |
| rs28681284 (T) | 15:78,908,565 | CHRNA3        | -0.049 | 0.0030 | 2.1×10 <sup>-58</sup> | -0.035 | 0.0051 | 1.1×10 <sup>-11</sup> |
| rs2273500 (C)  | 20:61,986,949 | CHRNA4        | 0.031  | 0.0029 | 3.5×10 <sup>-26</sup> | 0.034  | 0.0058 | 4.0×10 <sup>-9</sup>  |
| rs3025383 (C)  | 9:136,502,369 | DBH           | -0.026 | 0.0026 | 9.8×10 <sup>-24</sup> | -0.025 | 0.0049 | 1.8×10 <sup>-7</sup>  |
| rs28438420 (T) | 15:78,836,288 | PSMA4         | 0.020  | 0.0028 | 1.3×10 <sup>-12</sup> | 0.020  | 0.0041 | 7.9×10 <sup>-7</sup>  |
| rs75596189 (T) | 9:136,468,701 | FAM163B / DBH | 0.035  | 0.0037 | 1.8×10 <sup>-20</sup> | 0.030  | 0.0066 | 8.1×10 <sup>-6</sup>  |
| rs4236926 (G)  | 8:42,578,059  | CHRNB3        | 0.028  | 0.0024 | 7.7×10 <sup>-33</sup> | 0.021  | 0.0048 | 1.6×10 <sup>-5</sup>  |
| rs56113850 (C) | 19:41,353,107 | СҮР2Аб        | 0.043  | 0.0021 | 4.0×10 <sup>-99</sup> | 0.018  | 0.0042 | 2.1×10 <sup>-5</sup>  |
| rs1737894 (G)  | 20:31,054,702 | NOL4L         | 0.014  | 0.0021 | 9.9×10 <sup>-12</sup> | 0.017  | 0.0043 | 1.1×10 <sup>-4</sup>  |

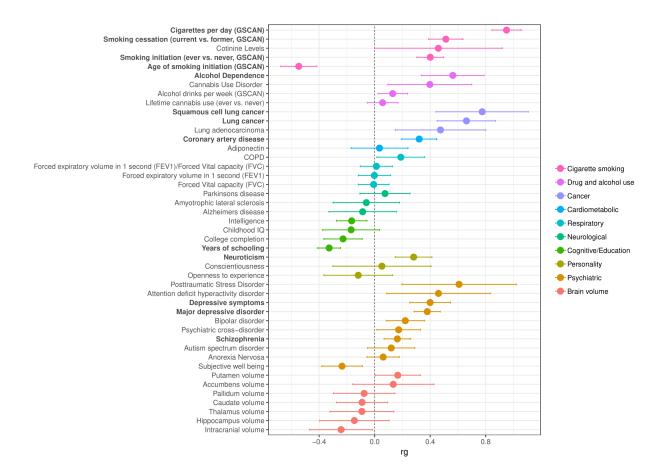

Abbreviations: NCBI, National Center for Biotechnology Information; SE, standard error.

**Figure 1.** Cross-ancestry nicotine dependence genome-wide association meta-analysis results, comprising 23 iNDiGO studies with total N = 58,000 European and African American ancestry ever smokers. The  $-\log_{10}$  meta-analysis p-values of single nucleotide polymorphisms (SNPs; depicted as circles) and insertions/deletions (indels; depicted as triangles) are plotted by chromosomal position. Five loci surpassed the genome-wide statistical significance threshold (P<5×10<sup>-8</sup>, as marked by the solid horizontal black line).




## Figure 2. Associations of novel single nucleotide polymorphisms (SNPs) with specific items of the Fagerström Test for Nicotine Dependence (FTND) across the iNDiGO studies. Associations are presented from cross-ancestry meta-analyses of the (A) *MAGI2/GNAI1* SNP allele rs2714700-T and (B) *TENM2* SNP allele rs1862416-T. Beta ( $\beta$ ) and corresponding 95% confidence interval (CI) estimates were taken from linear regression models for categorical FTND item responses (1 and 4, closed diamonds) or logistic regression models for binary FTND item responses (2, 3, 5, and 6, open diamonds).

(A)




(B)



#### Figure 3. Genetic correlations of nicotine dependence (ND) with 45 other phenotypes.

Correlations were calculated using linkage disequilibrium (LD) score regression with the iNDiGO European ancestry-specific GWAS meta-analysis results for ND (N=46,213), compared with results made available via LD Hub or study investigators (see Supplementary Table 3 for original references). Phenotypes were grouped by disease/trait or measurement category, as indicated by different colorings. Point estimates equate to genetic correlation ( $r_g$ ) values; error bars show the 95% confidence intervals; and the dotted vertical grey line corresponds to  $r_g=0$  (no correlation with ND). Phenotypes with significant correlations (P<0.0011,  $\alpha=0.05/45$  tested) are bolded.

