Expanding the Genetic Architecture of Nicotine Dependence and its Shared Genetics with

Multiple Traits: Findings from the Nicotine Dependence GenOmics (iNDiGO) Consortium

Bryan C. Quach¹, Michael J. Bray², Nathan C. Gaddis¹, Mengzhen Liu³, Teemu Palviainen⁴, Camelia C. Minica⁵, Stephanie Zellers³, Richard Sherva⁶, Fazil Aliev^{7,8}, Michael Nothnagel^{9,10}, Kendra A. Young¹¹, Jesse A. Marks¹, Hannah Young³, Megan U. Carnes¹, Yuelong Guo^{1,12}, Alex Waldrop¹, Nancy Y.A. Sey¹³, Maria T. Landi¹⁴, Daniel W. McNeil^{15,16}, Dmitriy Drichel^{9,10}, Lindsay A. Farrer^{6,17,18,19,20}, Christina A. Markunas¹, Jacqueline M. Vink²¹, Jouke-Jan Hottenga⁵, William G. Iacono³, Henry R. Kranzler^{22,23}, Nancy L. Saccone^{24,25}, Michael C. Neale^{26,27}, Pamela Madden², Marcella Rietschel²⁸, Mary L. Marazita²⁹, Matthew McGue³, Hyejung Won¹³, Georg Winterer and the German Nicotine Cohort Study³⁰, Richard Grucza³¹, Danielle M. Dick^{7,32,33}, Joel Gelernter^{34,35,36,37}, Neil E. Caporaso³⁸, Timothy B. Baker³⁹, Dorret I. Boomsma⁵, Jaakko Kaprio^{4,40}, John E. Hokanson¹¹, Scott Vrieze³, Laura J. Bierut², Eric O. Johnson^{1,41}, and Dana B. Hancock¹

- 1. GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina, USA;
- 2. Department of Psychiatry, Washington University, St. Louis, Missouri, USA;
- 3. Department of Psychology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA;
- 4. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland;
- 5. Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands;
- 6. Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA;
- 7. Department of Psychology, Virginia Commonwealth University, Richmond, Virginia, USA;
- 8. Faculty of Business, Karabuk University, Turkey;
- 9. Cologne Center for Genomics, University of Cologne, Cologne, Germany
- 10. University Hospital Cologne, Cologne, Germany
- 11. Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
- 12. GeneCentric Therapeutics, Research Triangle Park, North Carolina, USA;
- 13. Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
- 14. Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States department of Health and Human Services, Bethesda, Maryland, USA;
- 15. Department of Psychology, West Virginia University, Morgantown, West Virginia, USA;
- 16. Department of Dental Practice and Rural Health, West Virginia University, Morgantown, West Virginia, USA;

- 17. Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA;
- 18. Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA;
- 19. Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA;
- 20. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA;
- 21. Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands;
- 22. Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
- 23. VISN 4 MIRECC, Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA;
- 24. Department of Genetics, Washington University, St. Louis, Missouri, USA;
- 25. Division of Biostatistics, Washington University, St. Louis, Missouri, USA
- 26. Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA;
- 27. Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA;
- 28. Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany;
- 29. Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- 30. Experimental & Clinical Research Center, Department of Anesthesiology and Operative Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany;
- 31. Departments of Family and Community Medicine and Health and Clinical Outcomes Research, Saint Louis University, St. Louis, Missouri, USA
- 32. College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, Virginia, USA;
- 33. Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA;
- 34. Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA;
- 35. Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- 37. Department of Psychiatry, VA CT Healthcare Center, West Haven, Connecticut, USA;
- 38. Occupation and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, USA
- 39. Center for Tobacco Research and Intervention, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA;

- 40. Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland;
- 41. Fellow Program, Behavioral Health Research Division, RTI International, Research Triangle Park, North Carolina, USA;

1 Abstract

2	Cigarette smoking is the leading cause of preventable morbidity and mortality.
3	Knowledge is evolving on genetics underlying initiation, regular smoking, nicotine dependence
4	(ND), and cessation. We performed a genome-wide association study using the Fagerström Test
5	for ND (FTND) in 58,000 smokers of European or African ancestry. Five genome-wide
6	significant loci, including two novel loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416)
7	were identified, and loci reported for other smoking traits were extended to ND. Using the
8	heaviness of smoking index (HSI) in the UK Biobank (N=33,791), rs2714700 was consistently
9	associated, but rs1862416 was not associated, likely reflecting ND features not captured by the
10	HSI. Both variants were cis-eQTLs (rs2714700 for MAGI2-AS3 in hippocampus, rs1862416 for
11	TENM2 in lung), and expression of genes spanning ND-associated variants was enriched in
12	cerebellum. SNP-based heritability of ND was 8.6%, and ND was genetically correlated with 17
13	other smoking traits (r_g =0.40–0.95) and co-morbidities. Our results emphasize the FTND as a
14	composite phonotype that expands constic knowledge of smoking including losi specific to ND

14 composite phenotype that expands genetic knowledge of smoking, including loci specific to ND.

15 Introduction

Cigarette smoking remains the leading cause of preventable death worldwide,¹ despite the 16 well-known adverse health effects. Smoking causes more than 7 million deaths annually from a 17 18 multitude of diseases including cancer, chronic obstructive pulmonary disease (COPD), and heart disease.^{1,2} Cigarette smoking is a multi-stage process consisting of initiation, regular 19 20 smoking, nicotine dependence (ND), and cessation. Each step has a strong genetic component 21 (for example, twin-based heritability estimates up to 70% for the transition from regular smoking to ND^{3,4}), and partial overlaps are expected among the sets of sequence variants correlating with 22 the different stages,³ as evidenced by findings of the GWAS and Sequencing Consortium of 23

Alcohol and Nicotine use (GSCAN) with sample sizes up to 1.2 million individuals.⁵ GSCAN 24 identified 298 genome-wide significant loci associated with initiation (ever vs. never smoking), 25 age at initiation, cigarettes per day (CPD), and/or cessation (current vs. former smoking); 259 of 26 the loci harbored significant associations with initiation.⁵ 27 In comparison to other stages of smoking, known loci for ND are limited. Only six 28 29 reproducible, genome-wide significant loci have been identified: CHRNB3-CHRNA6 (chr8p11), DBH (chr9q34), CHRNA5-CHRNA3-CHRNB4 (chr15q25), DNMT3B and NOL4L (chr20q11), 30 and CHRNA4 (chr20q13).⁶ A more complete understanding of the genetics underlying ND is 31 32 needed, as it could help to predict the likelihood of quitting smoking, withdrawal severity, response to treatment, and health-related consequences.⁷⁻¹⁰ The Fagerström Test for ND (FTND), 33 also called the Fagerström Test for Cigarette Dependence,¹¹ provides a composite phenotype that 34 captures multiple behavioral and psychological features of ND among smokers.¹² While CPD is 35 associated with key markers of ND, such as cessation likelihood¹³, the FTND conveys additional 36 valuable information by including 5 items in addition to CPD. FTND is meaningfully associated 37 with tobacco use diagnostic criteria from the Diagnostic and Statistical Manual of Mental 38 Disorders^{14,15} and is more highly associated with withdrawal severity than is CPD.⁷ Its validity 39 40 may be due to the inclusion of the time-to-first-cigarette in the morning (TTFC) item, which appears to be especially strongly associated with relapse likelihood¹⁶⁻¹⁸ and may be an especially 41 informative measure of heritability of ND.¹⁹ Thus, the FTND provides somewhat different 42 43 information than CPD alone and has been relatively understudied from a genetic perspective because of its more limited availability across datasets. 44 45 The FTND score, based on totaling responses to the 6 items that constitute the FTND,

46 ranges from 0 (no dependence) to 10 (highest dependence level).^{12,20} In the present study, we

47	categorized FTND scores as mild (scores 0–3), moderate (scores 4–6), or severe (scores 7–10),
48	as done before in studies comprising our Nicotine Dependence GenOmics (iNDiGO)
49	Consortium. ^{21,22} We expand upon our prior analyses and report findings from the largest GWAS
50	meta-analysis for ND (N=58,000; 46,213 European [EUR] and 11,787 African American [AA]
51	ancestry participants from 23 studies) to identify novel genetic loci associated with ND, assess
52	genetic correlations between ND and other phenotypes and gene expression patterns, and test
53	GSCAN-identified loci ⁵ for effects on ND.

54 **Results**

55 Cross-ancestry GWAS meta-analysis finds two novel SNP associations with ND

56 Our cross-ancestry ND GWAS meta-analysis (λ =1.034, **Supplementary Figure 1A**) 57 identified five genome-wide significant loci (**Figure 1**). Associations of the lead SNPs (single 58 nucleotide polymorphisms) from each of these five loci are shown in **Table 1**. All genome-wide 59 significant SNP/indel associations from the cross-ancestry meta-analysis are provided in

60 Supplementary Table 1.

Three of the genome-wide significant loci have known associations with ND from our 61 prior GWAS and others⁶: chr15q25²¹⁻²³ (smallest P=1.6×10⁻³⁹ for rs16969968, a well-established 62 functional missense [D398N] CHRNA5 SNP²⁴), chr20q13²¹ (smallest P=1.2×10⁻¹² for 63 rs151176846, an intronic CHRNA4 SNP), and chr9q34²² (smallest P=1.1×10⁻⁸ for rs13284520, 64 65 an intronic DBH SNP). In the EUR-specific GWAS meta-analysis, the loci spanning nicotinic acetylcholine receptor genes (CHRNA5-A3-B4 and CHRNA4), but no novel loci, were identified 66 at genome-wide significance (λ =1.036, Supplementary Figures 1B and 2A). No genome-wide 67 significant loci were found in the GWAS meta-analysis among AAs (λ =1.032, Supplementary 68 Figures 1C and 2B). 69

70	Two genome-wide significant loci from the cross-ancestry meta-analysis represent novel
71	associations with ND. On chr7q21, the most significant SNP ($P=2.3\times10^{-9}$) was rs2714700, a SNP
72	between the MAGI2 and GNAI1 genes (Supplementary Figures 3A-B). The most significant
73	SNP on chr5q34, rs1862416 (P=1.5x10 ⁻⁸), sits within an intron for <i>TENM2</i> (Supplementary
74	Figures 3C–D). Both SNPs imputed well: sample size-weighted mean estimated r^2 values were
75	0.97 for rs2714700 and 0.92 for rs1862416. Further, both SNPs were common, and their
76	associations with ND were observed across EURs and AAs (Table 1) and were largely
77	consistent across studies (Supplementary Figure 4A-B): rs2714700-T being associated with
78	reduced risk (meta-analysis odds ratio [OR] and 95% confidence interval [CI]=0.96 [0.94-0.97])
79	and rs1862416-T being associated with increased risk (meta-analysis OR [95% CI]=1.08 [1.05-
80	1.11]) for severe vs. mild ND. These comparisons of dissimilar categories were derived from the
81	GWAS regression coefficients (i.e., $OR=exp[2 \times \beta]$ for severe vs. mild ND, with $OR>1$
82	corresponding to an increased risk of severe ND) to contextualize the magnitude of the observed
83	effect sizes. Neither SNP showed evidence for heterogeneity, based on the I ² index ²⁵ , across
84	studies (P=0.83 for rs2714700 and 0.75 for rs1862416). Leave-one-study-out analyses
85	(Supplementary Table 2) revealed some variability in p-values ($P=3.1\times10^{-7}-7.4\times10^{-9}$ for
86	rs2714700 and P= 5.6×10^{-9} - 3.9×10^{-6} for rs1862416), likely due to fluctuating statistical power
87	given the significant correlation between N and p-value across iterations: $r=-0.65$, $P=8.6\times10^{-5}$.
88	However, there was little variation in the effect sizes (range of β values corresponding to the OR
89	for severe vs. mild ND = 0.95–0.96 for rs2714700-T and 1.07–1.08 for rs1862416-T).
90	We compared the novel ND-associated SNPs with results reported for other smoking
91	traits by GSCAN. ⁵ European ancestry participants from 8 iNDiGO studies were included in
92	GSCAN (Supplementary Table 3). Both the MAGI2/GNAI1 SNP rs2714700 and the TENM2

SNP rs1862416 were nominally associated at P<0.05 with ever vs. never smoking and rs2714700
with CPD in consistent directions with ND; neither SNP was associated with age at initiation or
smoking cessation (Supplementary Table 4).

96 For replication in an independent sample, we analyzed the two novel SNPs (rs2714700

97 and rs1862416) for association with the heaviness of smoking index (HSI) in the UK Biobank.

98 Results are shown in **Supplementary Table 6**. HSI is based on two items (CPD and TTFC) of

99 the 6 items that constitute the FTND; the HSI and full-scale FTND are highly correlated (e.g.,

100 r=0.7 among nondaily smokers and 0.9 among daily smokers).²⁶ The MAGI2/GNAI1 SNP,

101 rs2714700, was associated with HSI at P=0.014, which surpassed Bonferroni correction for two

102 SNP tests, and meta-analysis of iNDiGO studies with UK Biobank (total N=91,791) supported

103 rs2714700-T being associated with milder ND ($P=7.7\times10^{-9}$). The *TENM2* SNP, rs1862416, was

104 not associated with HSI in the UK Biobank (P=0.39).

To determine whether the novel genome-wide associations were driven by specific 105 FTND items or shared across items, we returned to the iNDiGO studies, tested SNP associations 106 with each specific FTND item, and combined results via cross-ancestry meta-analyses. For 107 rs2714700, we observed the lowest p-values for the two items that constitute the HSI (Figure 108 **2A**): TTFC ($P=5.3 \times 10^{-4}$) and CPD ($P=1.1 \times 10^{-3}$). Rs2714700 was also associated at P<0.05 with 109 difficult in refraining from smoking in forbidden places (P=0.025) and the cigarette most hated 110 to give up (P=0.030). Rs1862416 was associated with TTFC (P=0.018) and two items that are 111 112 not captured by the HSI: the cigarette most hated to give up (P=0.015) and smoking when ill (P=0.023) (Figure 2B). 113

114 GWAS findings for other smoking traits extend to ND

115	We assessed whether genome-wide significant SNPs identified for smoking traits in
116	GSCAN extended to ND using results from the cross-ancestry GWAS meta-analysis. We
117	focused on the 55 genome-wide significant SNPs from 40 loci associated with CPD, given that it
118	displayed the best genetic correlation with ND (Figure 3). After applying Bonferroni correction
119	for the 53 SNPs that were available in our meta-analysis (P< 9.4×10^{-4}), 17 SNPs had a
120	statistically significant and directionally consistent association with ND (Table 2). These SNPs
121	span six loci reported at genome-wide or nominal significance in prior GWAS of ND (CHRNA5-
122	A3-B4 [chr15], CHRNA4 [chr20], DBH [chr9], CHRNB3 [chr8], CYP2A6 [chr19], and NOL4L
123	[near DNMT3B, chr20]) ⁶ and three loci not reported in prior ND GWAS—DRD2 (chr11),
124	C16orf97 (chr16), and CHRNB2 (chr1).

125 Gene-based association analyses highlight known genetic loci

Using Hi-C coupled multi-marker analysis of genomic annotation (H-MAGMA)²⁷ on the 126 EUR-specific GWAS meta-analysis results from iNDiGO, 11 genes when using fetal brain tissue 127 and 13 genes when using adult brain tissue were associated with ND at P< 2.7×10^{-6} , based on 128 129 correction for testing 18,655 protein coding genes. See Supplementary Tables 7 and 8 for the 130 genome-wide H-MAGMA results for fetal and adult tissues, respectively. Of the 16 unique genes 131 identified, 10 genes in three known loci were associated with HSI in the UK Biobank at P<0.0031, based on correction for testing 16 genes (Supplementary Table 9): the ACSBG1-132 WDR61-IREB2-HYKK-PSMA4-CHRNA5-CHRNA3-CHRNAB4-ADAMTS7-MORF4L1 gene 133 134 cluster on chr. 15q25, CHRNA4 on chr. 20q13, and the ADAMTSL2 and DBH genes in close proximity on chr. 9q34. Two novel genes on distinct chromosomes were identified in iNDiGO 135 (AFG1L on chr. 6q21 and AK2 on chr. 1p35), but their associations were not corroborated in UK 136 Biobank. 137

138	We also applied Summary-MultiXcan (S-MultiXcan) ²⁸ to the EUR-specific GWAS meta-
139	analysis results and found significant associations for two chromosome 15q25 genes (PSMA4
140	and CHRNA5), when considering cis-eQTL evidence from either the multi-tissue or single best
141	tissue (substantia nigra). See Supplementary Table 10 for the genome-wide S-MultiXcan
142	results. Both genes were also associated with HSI in UK Biobank from multi-tissue ($P=2.4\times10^{-8}$
143	for <i>PSMA4</i> and 1.3×10^{-6} for <i>CHRNA5</i>) or single best tissue (P=9.6×10 ⁻¹⁴ for <i>PSMA4</i> and 4.6×10 ⁻¹⁴
144	⁸ for <i>CHRNA5</i> , both in substantia nigra).

145 ND is genetically correlated with 17 other phenotypes

We estimated the heritability explained by common SNPs of ND at h_g^2 (standard error) = 146 0.086 (0.012), using LDSC²⁹ and the EUR-specific GWAS meta-analysis results. We also found 147 statistically significant genetic correlations of ND with 17 phenotypes (Bonferroni-corrected 148 P<0.0011; Figure 3 and Supplementary Table 11). Positive correlations indicate that the 149 genetic predisposition to higher ND risk was correlated with genetic risks for other smoking 150 traits⁵ (smallest P= 3.1×10^{-70} for higher CPD [r_g=0.95], followed by P= 3.2×10^{-16} for current 151 smoking $[r_g=0.54]$ and P=3.2×10⁻¹⁶ for ever smoking $[r_g=0.40]$). We repeated LDSC, after 152 removing all chr15q25 variants between 78.5 and 79.5 MB and found only negligible differences 153 in these correlations ($r_g=0.94$ for higher CPD, $r_g=0.51$ for current smoking, and $r_g=0.42$ for ever 154 smoking). Beyond the smoking traits, with all SNPs included, higher ND was genetically 155 correlated with higher risks of alcohol dependence,³⁰ neuroticism,³¹ psychiatric diseases 156 (attention deficit hyperactivity disorder,³² bipolar disorder,³³ major depressive disorder³⁴ and its 157 symptoms,³¹ posttraumatic stress disorder, and schizophrenia³⁵), and smoking-related 158 consequences (lung cancer and its histological subtypes³⁶ and coronary artery disease³⁷). Among 159 these positively correlated traits, rg values ranged from 0.16 (schizophrenia) to 0.77 (squamous 160

161 cell lung cancer). Higher risk of ND was genetically correlated with lower age of smoking 162 initiation⁵ (r_g =-0.55) and fewer years of schooling³⁸ (r_g =-0.34).

For the traits with statistically significant genetic correlations with ND from the cigarette 163 smoking, drug and alcohol use, personality, and psychiatric categories, we applied pairwise 164 GWAS (GWAS-PW)³⁹ to identify shared genetic influences between FTND and each of these 165 traits (Supplementary Figure 5). GWAS-PW provides posterior probabilities for several models 166 of genetic influence, including whether a given genomic region contains a variant that influences 167 only ND (model 1), only the other trait (model 2), or both ND and the other trait (model 3). It 168 169 also considers the scenario of whether the region contains a variant that influences ND and a separate variant influences the other trait (model 4). Both novel FTND-associated GWAS loci 170 showed large probabilities for model 4 when comparing alcohol dependence and ND (posterior 171 172 probabilities > 0.97). The region surrounding rs2714700 also showed large model 4 probabilities for comparisons with depressive symptoms and schizophrenia. The region surrounding 173 rs1862416 exhibited large model 3 probabilities for major depressive disorder and smoking 174 initiation. 175 Rs1862416 was located within the boundaries of a genome-wide significant locus for 176 177 smoking initiation (chr5:164,596,435-168,114,971), and to assess the independence of

association signals at the single variant level, we performed conditional modeling using

179 Genome-wide Complex Trait Analysis (GCTA).^{40,41} All 6 lead SNPs in this GSCAN-identified

locus were in low LD with rs1862416 (maximum $r^2=0.0047$ [Supplementary Figure 6],

181 maximum D'=0.46), and three were nominally associated with ND at P<0.05 (Supplementary

Table 5). Among our iNDiGO studies, rs1862416 remained associated with ND in models

183 conditioned on each GSCAN lead SNP individually ($P=7.9\times10^{-8}-1.8\times10^{-8}$) and with all 6 SNPs

184	taken together (P= 2.2×10^{-7}). Rs2714700 was located >1 MB away from any GSCAN-identified
185	locus, so conditional modeling was not necessary. Altogether, the GWAS-PW results suggest
186	pleiotropy of smoking-related and comorbid traits in our two novel ND-associated regions, but at
187	the variant level, the rs2714700 and rs1862416 associations with ND are independent of the
188	GSCAN-identified variants.
189	Gene expression data implicates target genes for novel ND-associated SNPs and identifies ND
190	heritability enrichment in cerebellum
191	Credible set analysis of the chr7q21 locus narrowed the list of most likely causal variants
192	to the lead SNP (rs2714700) and three others (rs2714674, rs1464692, and rs2707864)
193	(Supplementary Table 12). Rs2714700, an intergenic SNP, is not a significant <i>cis</i> -eQTL with
194	any gene-level expression in the Genotype-Tissue Expression (GTEx; v8) project, but it was
195	implicated as a <i>cis</i> -eQTL for the <i>MAGI2-AS3</i> transcript in hippocampus from BrainSeq ⁴²
196	(N=551; P= 8.5×10^{-4}). The protective allele for ND (rs2714700-T) was associated with higher
197	expression of the MAGI2-AS3 transcript ENST00000414797.5. Rs1464692 was also implicated
198	as a <i>cis</i> -eQTL for the <i>MAGI2-AS3</i> transcript in hippocampus from BrainSeq (N=551; P= 8.1×10^{-10}
199	⁴), and rs2707864 is located in a DNaseI hypersensitivity site in adult and fetal fibroblast cells in
200	HaploReg ³⁹ (Supplementary Table 12).

The lead SNP at the chr5q34 locus, rs1862416, is annotated to enhancer histone marks in brain (specifically, germinal matrix during fetal development and the developed prefrontal cortex, anterior caudate, and cingulate gyrus tissues) and several other tissues in HaploReg.⁴³ It is also located in the promoter of *CTB-77H17.1*, which is a novel antisense RNA transcript encoded within a *TENM2* intron. In GTEx, rs1862416 was reported as a significant lung-specific *cis*-eQTL SNP *TENM2*. The ND risk-conferring allele (rs1862416-T) was associated with

decreased gene-level *TENM2* expression in lung. *CTB-77H17.1* was too lowly expressed across
GTEx tissues to test its expression levels by rs1862416. Two additional, potentially causal
variants identified in a credible set analysis were similarly annotated to enhancer and promoter
markers in brain (prefrontal cortex, astrocyte) and fetal lung in HaploReg (rs36064369) and as
lung-specific *cis*-eQTL in GTEx (rs116612101) (Supplementary Table 12).
To assess whether heritability of ND is enriched in regions surrounding genes with the
highest specific gene expression patterns in given tissue/cell type(s), we applied LDSC-SEG⁴⁴

using the EUR-specific ND GWAS meta-analysis results with reference to 205 tissues/cell types

with publicly available gene expression data assembled from GTEx^{45} (53 human tissues/cell

types) and the underlying data that is used to comprise the Data-driven Expression Prioritized

217 Integration for Complex Traits (DEPICT) tool^{46,47} (152 tissues/cell types from humans and

rodent models). We observed statistically significant enrichment in one tissue (cerebellum) at

219 Bonferroni-corrected P<2.4×10⁻⁴ (Supplementary Table 13), indicating that genes spanning

220 ND-associated SNPs are enriched for specific expression in the cerebellum relative to other

tissues/cell types.

222 Discussion

We expanded current knowledge of ND in this largest GWAS to date, by identifying two novel genome-wide significant loci as well as 3 known loci, extending associations of additional loci implicated for other smoking phenotypes, and detecting significant genetic correlations of ND with 13 other complex phenotypes and with gene expression in cerebellum. The top novel SNPs between *MAGI2* and *GNAI1* (chr7q21) and in *TENM2* (chr5q34) were independent of previously reported GWAS signals for any smoking trait. Three of our genome-wide significant loci were known: (1) *CHRNA5-CHRNA3-CHRNB4* (chr15q25) is irrefutably associated with

230	ND, as driven largely by CPD. ⁶ (2) Our initial GWAS meta-analysis of 5 studies (now part of the
231	iNDiGO consortium) ²¹ identified CHRNA4 (chr20q13) at genome-wide significance. Subsequent
232	associations were found with heavy vs. never smoking in the UK Biobank ⁴⁸ and with initiation,
233	CPD, and cessation in GSCAN. ⁵ (3) <i>DBH</i> (chr9q34) was first identified as genome-wide
234	significant for smoking cessation but later associated with ND in our meta-analysis of 15 studies
235	(now part of the iNDiGO consortium) ²² and with CPD and cessation in GSCAN. ⁵ Known loci
236	were corroborated at the gene level with aggregated single SNP associations that take physical
237	proximity and chromatin interactions or <i>cis</i> -eQTL evidence into account.
238	The novel ND-associated locus with lead SNP rs2714700 is intergenic between MAGI2
239	(membrane associated guanylate kinase, WW and PDZ domain containing 2) and GNAI1 (G
240	protein subunit alpha i1). We identified rs2714700 at genome-wide significance for its
241	association with ND, which was driven by CPD (unlike rs1862416), TTFC, and other FTND
242	items, indicating that this SNP association may reflect both primary and secondary features of
243	ND. Primary (or core) features of ND are necessary and sufficient for habit formation (heaviness
244	of smoking [tolerance], automaticity, loss of control, and craving), while secondary features of
245	ND underlie smoking that is goal based, e.g., relief of negative mood or cognitive
246	enhancement. ⁴⁹⁻⁵² Rs2714700 was also associated with HSI in the independent UK Biobank. The
247	cis-eQTL evidence for rs2714700 in the hippocampus suggests that it may influence expression
248	of the long noncoding RNA MAGI2-AS3 (MAGI2 antisense RNA 3). MAGI2-AS3 has been
249	mainly studied for its role in the progression of cancer, including glioma in the brain. ⁵³ No
250	genome-wide significant associations have been reported within 1MB of rs2714700 in the
251	GWAS catalog. Our evidence of genome-wide significance for rs2714700 points to a novel locus

that has not been associated with smoking or any related trait, and its functional relevance meritsfurther investigation.

254	We also observed a genome-wide significant association of ND with rs1862416, a lung-
255	specific cis-eQTL for TENM2. TENM2 encodes teneurin transmembrane protein 2, a cell surface
256	receptor that plays a fundamental role in neuronal connectivity and synaptogenesis.54 With
257	rs1862416 residing in the promoter of CTB-77H17.1, it could influence this antisense RNA,
258	which in turn could dysregulate its sense transcript, TENM2. As an illustrative example, the SNP
259	rs4307059, identified at genome-wide significance and independently replicated for autism, ⁵⁵ is
260	annotated to and acts as a promoter region cis-eQTL for the antisense RNA MSNP1AS (moesin
261	pseudogene 1, antisense) that influences regulation of its sense transcript, MSN. ⁵⁶ However,
262	while rs1862416 is generally indicated for its potential regulatory role (i.e., enhancer and
263	promoter annotations and <i>cis</i> -eQTL evidence), its specific effect on either CTB-77H17.1 or
264	TENM2 regulation in brain tissue was not evident in currently available data.
265	Further, independent association testing using HSI in the UK Biobank did not yield
266	statistical significance for rs1862416. Similarly, the gene-based associations for the novel loci
267	were not corroborated in UK Biobank. These differences in observed SNP- and gene-based
268	associations may reflect components of ND that are not fully captured by the two FTND items
269	that comprise the HSI (TTFC and CPD), as suggested by the specific FTND item association
270	testing among the iNDiGO studies. Rs1862416 was suggestively associated (P<0.05) with
271	TTFC, "Which cigarette would you hate most to give up?" (the first one in the morning vs. all
272	others), and "Do/did you smoke if you are so ill that you are in bed most of the day?" (yes/no).
273	These item responses reflect withdrawal symptoms that are indicative of secondary features of
274	ND, as compared with primary features of ND associated with habit formation. ⁴⁹⁻⁵² Having the

275	composite ND phenotype may have enhanced our power for discovering TENM2, but its
276	detection in the UK Biobank may have been limited by the reliance on the HSI.
277	Beyond our discovery of rs1862416 with ND, SNPs across the TENM2 gene have been
278	identified at genome-wide significance, as presented in the GWAS catalog ⁵⁷ , for educational
279	attainment, ³⁸ smoking initiation (ever vs. never smoking), ^{5,58-60} age of smoking initiation, ⁵
280	smoking cessation (current vs. former smoking), ⁵ cigarette pack-years, ⁶¹ alcohol consumption
281	(drinks per week), ⁵ lung function, ^{60,62} height, ⁶⁰ number of sexual partners, ⁵⁸ depression, ^{63,64} risk
282	taking tendency, ⁵⁸ body mass index, ⁶⁰ menarche (age at onset) ⁶⁵ , and regular attendance at a
283	religious group ⁶⁶ . Our pairwise comparisons supported pleiotropic associations in the TENM2
284	region. At the variant level, all <i>TENM2</i> SNPs in the GWAS catalog have very low r^2 values with
285	our novel SNP, rs1862416 (Supplementary Figure 6), and our conditional modeling results
286	showed that rs1862416 was associated with ND independently from other TENM2 SNPs
287	implicated in GSCAN. While rs1862416 may have an ND-specific effect, the TENM2 region has
288	pleiotropic effects on ND, traits that are genetically correlated with ND, and other traits.
289	The genetics of smoking behaviors, more broadly, has rapidly evolved with the GSCAN
290	consortium having amassed a very large sample size and identified 298 genome-wide significant
291	loci for smoking traits representing single components: ever vs. never smoking, age of smoking
292	initiation, CPD, and current vs. former smoking. ⁵ We observed statistically significant genetic
293	correlations of each of these smoking traits with ND (highest r_g =0.95, as observed between ND
294	and CPD), yet our two novel ND-associated loci were not identified at genome-wide significance
295	by GSCAN (smallest P=0.033 for rs1862416-T; smallest P=0.016 for rs2714700-T), suggesting
296	that these loci are specific to ND. Similarly, the majority of GSCAN-identified loci were trait-
297	specific (191 of the 298 loci), where the other 107 loci were pleiotropic with associations

identified for two or more of the smoking traits.⁵ In our evaluation of GSCAN-identified loci, we 298 corroborated associations of several previously implicated loci for ND (e.g., nicotine 299 acetylcholine receptors genes CHRNA5-A3-B4 and CHRNA4) and three additional loci (DRD2, 300 C16orf97, and CHRNB2) that have not been reported in prior ND GWAS. Of these loci, DRD2 is 301 notable as a long-studied addiction candidate gene⁴ and its recent identification as genome-wide 302 significant for alcohol use disorder for rs4936277⁶⁷, which is correlated ($r^2=0.94$ in 1000G EUR, 303 0.82 in 1000G AFR) with rs7125588, the top SNP identified for CPD in GSCAN and associated 304 with ND in iNDiGO; these results support a shared genetic effect of DRD2 underlying addiction. 305 Notably, rs7125588 is not correlated ($r^2=0.04$ in 1000G EUR, 0.01 in 1000G AFR) with the 306 DRD2 variant rs1800497 (historically referred to as the 'Taq1A' polymorphism), which is not 307 significantly associated with ND in iNDiGO (P=0.24). 308 309 Other GSCAN loci were detected for the single component smoking traits but show no

evidence for association in our study (Supplementary Table 14), suggesting that these loci 310 influence stages of smoking other than ND, or they exert weak effects on ND that we were 311 underpowered to detect. We expect that additional GSCAN-identified loci are associated with 312 ND, but their detection will require a larger sample size. These results demonstrate the utility of 313 studying the genetics of the composite ND phenotype and comparing with GWAS of other 314 smoking traits to tease apart loci that are specific to one stage (i.e., initiation, regular smoking, 315 316 ND, cessation) vs. loci that influence multiple stages to better understand the full spectrum of 317 smoking behaviors.

Beyond the smoking traits, we observed significant genetic correlations between ND and alcohol dependence³⁰, years of schooling³⁸, neuroticism³¹, comorbid psychiatric traits (attention deficit hyperactivity disorder³², bipolar disorder³³, major depression³⁴, schizophrenia³⁵, and

posttraumatic stress disorder⁶⁸), and smoking-related health consequences (lung cancer³⁶ and 321 coronary artery disease³⁷). Some of these observations corroborate prior findings (for example, 322 alcohol dependence³⁰ and schizophrenia^{69,70} with ND), whereas the other correlations extend to 323 ND prior observations for the single component smoking traits (for example, CPD with years of 324 schooling⁵, neuroticism⁵, major depression⁵, coronary artery disease⁵, and lung cancer³⁶). The 325 genetic correlation between ND and gene expression in cerebellum is a notable observation 326 consistent with cerebellum-specific cis-eQTL effects observed for the ND-associated DNMT3B 327 SNP rs910083²² and the age of smoking initiation-associated CHRNA2 SNP rs11780471³⁶, both 328 of which are also associated with lung cancer. These findings add to the evidence that the 329 cerebellum may be important for ND risk,^{71,72} in addition to the other addiction-relevant brain 330 tissues. However, since the cerebellum contains a higher neuronal concentration than other brain 331 tissues,^{44,73} future studies are needed to decipher whether the cerebellar gene regulatory effects in 332 the etiology of ND are due to neuronal activity. Additionally, although genetic correlation 333 between ND and another trait suggest shared genetics underlying the phenotypes, multiple 334 mechanisms can produce significant correlations (i.e., unmeasured intermediary phenotypes, 335 correlated risk variants, mediation).⁷⁴⁻⁷⁶ Identifying the true mechanistic explanation requires 336 337 further investigations.

The present ND GWAS meta-analysis follows two prior waves of data assembly by the iNDiGO consortium (Ns=17,074²¹, 38,602²², and now 58,000) and is the largest to date for the field. Despite still having substantially smaller sample sizes than the GSCAN GWAS, at each wave, increasing sample size for diverse ancestry groups (EURs and AAs) has illuminated NDassociated loci, some of which are shared with other stages of smoking while others are specific to ND. Our present findings underscore the complexity even within the ND phenotype, as our

novel loci displayed patterns of association with specific FTND items that reflect primary or 344 secondary ND features, e.g., the TENM2 SNP influenced secondary features that are not captured 345 simply by heaviness of smoking. Future studies are needed to further dissect the genetic 346 architectures underlying each of the specific FTND items. Understanding genetic similarities and 347 differences that underlie these items and their contributions to primary vs. secondary ND may 348 349 better inform treatment strategies, e.g., changing environmental cues for individuals whose smoking is driven solely by primary ND features vs. treating withdrawal for individuals whose 350 ND is augmented with secondary features.⁵¹ Studying the genetics of ND alongside other 351 352 smoking traits (e.g., initiation and cessation) is key to gaining a better understanding of the neurobiological perturbations that influence the trajectory of smoking behaviors and their 353 treatment implications. 354

355 Methods

356 We assembled 58,000 participants from 23 iNDiGO consortium studies with genome-357 wide SNP genotypes and FTND phenotype data available for ever smokers to perform ND 358 GWAS meta-analyses. Fifteen of the studies were included from our prior GWAS using their original or updated sample sizes (total N increased from 38,602²² to 46,098 in the current 359 360 analysis), while 8 studies were added for the current study (total N=11,902). Participant characteristics are provided in Supplementary Table 3, and details of the study designs, 361 genotyping, quality control, imputation, and statistical analyses are provided in the 362 363 Supplementary Methods. Institutional review boards at the respective sites approved the study protocols, and all participants provided written informed consent. 364

365 ND GWAS meta-analysis

366	The FTND is a well-validated, widely used 6-item questionnaire that assesses
367	psychologic dependence on nicotine, with scores ranging from 0 (no dependence) to 10 (highest
368	dependence level). ^{12,20} As done before, ^{21,22} we categorized FTND scores as mild (scores 0–3),
369	moderate (scores 4-6), or severe (scores 7-10). FTND data reflected current smoking behaviors
370	at the time of interview (i.e., current FTND) or the period of heaviest smoking among ever
371	smokers (i.e., lifetime FTND). We previously found only small differences in genetic association
372	results due to any measurement variance when using current vs. lifetime FTND. ⁷⁷ See
373	Supplementary Methods for further details on the ND phenotype data by study.
374	For each study, genome-wide SNP/indel associations with the 3-level categorical ND
375	outcome were tested within an ancestry group using linear regression. Covariates included age,
376	sex, principal component eigenvectors, and study-specific covariates where warranted. For
377	studies that included relatives, relatedness was accounted for in the regression modeling. See the
378	Supplementary Methods for additional study-specific details.
379	GWAS results were combined using fixed-effect inverse variance-weighted meta-
380	analyses in METAL. ⁷⁸ Prior to performing meta-analyses, we applied genomic control to results
381	from one study, deCODE, to adjust for inflation due to relatedness among participants (λ =1.12);
382	all other studies had low inflation (λ =0.99–1.04) (Supplementary Table 3). We removed
383	SNPs/indels with minor allele frequency (MAF) <1% in the 1000G phase 3 reference panel for
384	the analyzed ancestry group (1000G European or African superpopulations), imputation info
385	score<0.3, or availability in only one study. All variant annotations correspond to the National
386	Center for Biotechnology Information (NCBI) build 37. As before ²² , the threshold of genome-
387	wide significance was set at $P = 5 \times 10^{-8}$. Regional association plots of novel genome-wide
388	significant loci were constructed using LocusZoom ⁷⁹ with references of either 1000G European

389	or African panels to estimate linkage disequilibrium of the lead SNP (based on smallest meta-
390	analysis P-value) and surrounding SNPs. The lead SNP for each novel FTND locus was tested
391	for association with each of the specific FTND items (Supplementary Methods).
392	For any ND-associated SNPs located within the bounds of loci identified by GSCAN (1
393	MB surrounding the lead SNP), ⁵ conditional models were analyzed using our GWAS summary
394	statistics and the Genome-wide Complex Trait Analysis (GCTA) tool, adjusted for the lead SNPs
395	in GSCAN. ^{40,41} To contextualize the magnitude of the observed effect sizes, we calculated odds
396	ratios (ORs) using the β estimate from the single SNP linear regression model (OR=exp[2× β _{SNP}]
397	for severe vs. mild ND, with OR>1 corresponding to an increased risk of severe ND) and
398	compared these values across studies and ancestries using the Forest Plot Viewer. ⁸⁰

399 Independent testing using heaviness of smoking index in the UK Biobank

Novel, genome-wide significant SNPs from our ND GWAS meta-analysis were tested in 400 401 the UK Biobank. Although all 6 items of the FTND were not collected in the UK Biobank, two 402 items (CPD and TTFC) were collected among current smokers. These two items together form the HSI, which is highly correlated with the full-scale FTND.²⁶ We derived HSI scores, ranging 403 404 from 0 (no dependence) to 6 (highest dependence level), and categorized them as follows: mild 405 (scores 0–2), moderate (scores 3–4), and severe (scores 5–6). These HSI categories were highly 406 concordant (89.3%) with our routinely used FTND categories using the COGEND study, which was ascertained specifically for ND (Supplementary Methods and Supplementary Table 15). 407 408 The final analysis dataset included 33,791 current smokers (18,063 mildly, 13,395 moderately, and 2,333 severely dependent, as defined by HSI). Our linear regression model included 409 410 covariates for age, sex, and principal component eigenvectors (Supplementary Methods).

411

412 Gene-based association testing

413	To assess evidence for association beyond single variants, we applied two methods that
414	aggregate SNP-based summary statistics at the gene level. For genome-wide testing with both
415	methods, we used the EUR-specific GWAS meta-analysis results from iNDiGO as the input
416	dataset, given the reliance on linkage disequilibrium (LD) reference data by ancestry in
417	calculating the gene-based summary statistics. First, H-MAGMA ²⁷ computes gene-based
418	association statistics by aggregating SNP associations based on physical proximity to the target
419	gene(s) measured by chromatin interaction maps from human brain tissue. We included SNPs
420	with an rs identification number (9,525,836 SNPs) and coupled them with Hi-C reference
421	datasets from fetal ⁸¹ and adult brain tissues, specifically cortical tissues, ⁸² that are available for
422	running H-MAGMA. H-MAGMA converted SNP-level p-values into gene-level p-values. We
423	identified statistically significant genes that were associated with ND at Bonferroni-corrected
424	threshold of P<2.7×10 ⁻⁶ (α =0.05/18,655 protein coding genes).
425	Second, we applied Summary-MultiXcan (S-MultiXcan) ²⁸ to compute gene-level
426	associations by leveraging imputed genetically driven gene expression using RNA-Seq across
427	the 13 adult brain tissues in GTEx as reference data. S-MultiXcan ²⁸ , an extension of the S-
428	PrediXcan method for integrating eQTLs with GWAS summary statistics ⁸³ , aggregates eQTL
429	information across multiple tissue types to enhance statistical power, while still presenting the
430	single tissue with the best evidence for association. We applied Bonferroni correction to declare
431	statistically significant gene-based associations as P<3.5×10 ⁻⁶ (α =0.05/14,494 genes).
432	For both gene-based methods, we carried forward significant gene-level associations and
433	tested them in the UK Biobank, using HSI as a proxy for ND, as done with the single SNP
434	associations.

435 Genetic correlations of ND with other complex phenotypes and with gene expression

436	Summary statistics from the EUR-specific meta-analyses were used as input into LD
437	score regression (LDSC) ²⁹ with reference to the 1000G EUR panel to estimate the SNP
438	heritability (h_g^2) of ND and its genetic correlations with 46 other complex phenotypes, including
439	other smoking, drug, and alcohol use and dependence traits, smoking-related health
440	consequences (e.g., cancer, COPD, and coronary heart disease), psychiatric and neurologic
441	disorders, cognitive and educational traits, and brain volume metrics. The full list of phenotypes
442	and GWAS datasets, as obtained from LD Hub ⁸⁴ or shared by the original study investigators,
443	are provided in Supplementary Table 11 .
444	Similarly, EUR-specific GWAS meta-analysis summary statistics were input into
445	stratified LDSC, as applied to specifically expressed genes (LDSC-SEG), ⁴⁴ with reference to 205
446	tissues and cell types from two sources-RNA-sequencing data on 53 human tissues/cell types in
447	GTEx ⁸⁵ and array-based data on 152 tissues/cell types from humans and rodent models that
448	underlie the DEPICT tool and made available in Gene Expression Omnibus. ^{46,47} See full list of
449	the 205 tissues/cell types in Supplementary Table 13. Similarly to the initial application of
450	LDSC-SEG, ⁴⁴ these two sources were selected because their expression data included a wide
451	range of ND-relevant and other tissues and cell types in humans, as opposed to focused
452	information on a particular tissue. LDSC-SEG involved comparing expression of each gene in
453	each tissue/cell type with that in other tissues/cell types, selecting the top 10% of differentially
454	expressed genes, annotating SNPs from the GWAS summary statistics that lie within 100kb
455	windows of the selected genes, and using the stratified LDSC method to estimate the enrichment
456	in SNP heritability for ND for the given gene set compared to the baseline LDSC model with all
457	genes. For each analysis, a Bonferroni correction was applied to assess statistical significance:

458 P<0.0011 (α =0.05/46 phenotypes) for LDSC and P<2.4×10⁻⁴ (α =0.05/205 tissues/cell types) for 459 LDSC-SEG.

460 Associations of ND loci with other complex traits

We applied pairwise GWAS (GWAS-PW v0.21 [github.com/joepickrell/gwas-pw/])³⁹ to 461 characterize the cross-phenotype associations for ND and its genetically correlated phenotypes, 462 as revealed in the LDSC analyses. Specifically, we applied GWAS-PW to the "Cigarette 463 smoking", "Drug and alcohol use", "Personality", and "Psychiatric" phenotypes with significant 464 genetic correlation with ND. Using EUR-specific GWAS summary statistics for ND and its 465 correlated phenotypes, for each pairwise comparison of ND to a given phenotype, we calculated 466 a correlation statistic that is used by GWAS-PW to account for potential sample overlaps 467 between studies. We followed the approach as detailed in Pickrell et al.³⁹ We then reduced the 468 SNP set to only SNPs with summary statistics available from both studies and that also were 469 located within an LD block for any of the 5 FTND GWAS significant loci. We defined the LD 470 blocks by using LDproxy⁸⁶ with the top (i.e., most significant) SNP from each FTND-associated 471 locus and extracting r² values (based on 1000 Genomes Phase 3 EUR populations) for all SNPs 472 473 within 0.5 Mb of the top SNP. The minimum and maximum genomic coordinate for all extracted SNPs with $r^2 > 0.2$ were used as the LD block boundaries. 474

475 cis-eQTL assessment of novel ND-associated SNPs

For each novel locus, we identified a credible set, or the set of SNPs most likely to
contain the causal variant, using a Bayesian method⁸⁷ implemented via LocusZoom.⁷⁹ To assess
evidence for SNP-gene associations, SNPs in the credible set were queried against GTEx
(version 8) *cis*-expression quantitative trait loci (*cis*-eQTL) results derived from SNP genotype
and RNA-sequencing data across 44 tissues (N=126–209 for the 13 brain tissues).⁸⁵ The GTEx

481 portal (https://gtexportal.org/home/) presents significant single-tissue *cis*-eQTLs, based on a
482 false discovery rate (FDR) <5%.

483	We also assessed single-tissue <i>cis</i> -eQTL evidence from the BrainSeq consortium that
484	includes larger sample sizes with SNP genotype and RNA-sequencing data available in two brain
485	tissues, dorsolateral prefrontal cortex (N=453) and hippocampus (N=447). ⁴² Of the 551
486	individuals with data available in at least one brain tissue, 286 were schizophrenia cases;
487	case/control status was included as a covariate for adjustment in the cis-eQTL analysis, as
488	described elsewhere. ⁸⁸ Significant <i>cis</i> -eQTLs at FDR <10% are available at

489 http://eqtl.brainseq.org/phase2/eqtl/.

490 Data Availability

The prior meta-analysis summary statistics²² are available via dbGaP accession number phs001532.v1.p1.The summary statistics generated from the current study are included under version 2 of this dbGaP study (accession number phs001532.v2.p1), or are available upon request to the corresponding author (D.B.H.). Individual-level genotype and phenotype data for many of the contributing cohorts are also available via dbGaP, as outlined in the study descriptions in the Supplementary Information.

497 **Conflicts of Interest**

L.J.B. and the spouse of N.L.S. are listed as inventors on U.S. Patent 8,080,371, 'Markers for Addiction' covering the use of certain SNPs in determining the diagnosis, prognosis, and treatment of addiction. Y.G. is an employee of GeneCentric Therapeutics. Although unrelated to this research, H.R.K. is an advisory board member for Dicerna and a member of the American Society of Clinical Psychopharmacology's Alcohol Clinical Trials Initiative, which was

supported in the last 3 years by AbbVie, Alkermes, Ethypharm, Indivior, Lilly, Lundbeck,

Otsuka, Pfizer, Arbor and Amygdala Neurosciences. H.R.K. and J.G. are named as inventors on
PCT patent application #15/878,640 entitled: "Genotype-guided dosing of opioid agonists," filed
January 24, 2018. J.K. consulted for Pfizer in 2012–2015 on ND. All other authors declare no
conflict of interest.

508 Acknowledgements

We are grateful to the many study participants, who made this work possible. The meta-509 510 analysis was supported by the National Institute on Drug Abuse grant numbers R01 DA042090 511 (PI: DBH) and R01 DA036583 (PI: LJB). The authors thank deCODE Genetics / Amgen and its 512 investigators (Gunnar W. Reginsson, Thorgeir E. Thorgeirsson, and Kari Stefansson) for contributing and analyzing their data for inclusion in the meta-analysis. Their work was 513 514 supported in part by NIDA R01 DA017932 (PI: Kari Stefansson). Acknowledgments for all 515 other ND studies, contributed by the authors and/or made publicly available, are included in the 516 Supplementary Information. This research also leveraged the UK Biobank Resource under 517 Application Number 24603. 518 519 **Author Contributions**

- 520 Contributions of each author are categorized using terms from the Contributor Roles
- 521 Taxonomy (<u>https://casrai.org/credit/</u>). Conceptualization: D.B.H., D.W.M., E.O.J., L.J.B.,
- 522 M.J.B., M.R., N.E.C., T.B.B.; Data curation: B.C.Q., C.C.M., F.A., J.H., J.K., M.N., N.C.G.,
- 523 N.E.C., N.L.S., R.G., S.Z., Y.G.; Formal analysis: A.W., B.C.Q., C.A.M., C.C.M., D.D., F.A.,
- 524 H.Y., J.A.M., J.H., M.J.B., M.N., M.U.C., N.C.G., R.S., T.P., Y.G.; Funding acquisition: D.B.H.,
- 525 D.M.D., D.W.M., E.O.J., J.K., L.J.B., M.R., W.G.I.; Investigation: D.I.B., E.O.J., F.A., G.W.,
- 526 H.R.K., J.G., J.H., J.K., J.M.V., L.A.F., L.J.B., M.C.N., M.J.B., M.M., M.R., M.T.L., N.L.S.,

- 527 P.M., S.V., W.G.I.; Methodology: D.W.M.; Project administration: D.B.H., D.M.D., D.W.M.,
- 528 J.K.; Resources: D.B.H., D.I.B., D.M.D., D.W.M., G.W., J.G., J.K., J.M.V., K.A.Y., L.A.F.,
- 529 L.J.B., M.C.N., M.J.B., M.L.M., M.M., M.R., M.T.L., N.C.G., N.E.C., P.M., R.G., S.V., W.G.I.;
- 530 Software: A.W., B.C.Q., H.W., J.A.M., M.U.C., N.C.G., N.Y.A.S.; Supervision: D.B.H.,
- 531 D.M.D., D.W.M., E.O.J., J.K., M.J.B., M.N.; Validation: D.B.H., M.L.; Visualization: B.C.Q.,
- 532 D.B.H., J.A.M., M.J.B.; Writing original draft: B.C.Q., D.B.H., J.A.M., S.Z., T.B.B.; Writing –
- 533 review & editing: A.W., B.C.Q., C.A.M., C.C.M., D.B.H., D.I.B., D.M.D., D.W.M., E.O.J., F.A.,
- 534 G.W., H.R.K., J.E.H., J.G., J.K., J.M.V., K.A.Y., L.A.F., L.J.B., M.C.N., M.J.B., M.L.M., M.M.,
- 535 M.R., M.T.L., N.C.G., N.E.C., N.L.S., P.M., S.V., T.B.B.
- 536

537 **References**

- 538 1. World Health Organization. WHO report on the global tobacco epidemic, 2017:
- 539 monitoring tobacco use and prevention policies. (Geneva, 2017).
- 5402.U.S. Department of Health and Human Services. The Health Consequences of Smoking-
- 541 50 Years of Progress: A Report of the Surgeon General, (Atlanta (GA), 2014).
- 542 3. Sullivan, P.F. & Kendler, K.S. The genetic epidemiology of smoking. *Nicotine Tob Res* 1
 543 Suppl 2, S51-7; discussion S69-70 (1999).
- 4. Agrawal, A. *et al.* The genetics of addiction-a translational perspective. *Transl Psychiatry*2, e140 (2012).
- 546 5. Liu, M. *et al.* Association studies of up to 1.2 million individuals yield new insights into
- 547 the genetic etiology of tobacco and alcohol use. *Nat Genet* **51**, 237-244 (2019).
- 548 6. Hancock, D.B., Markunas, C.A., Bierut, L.J. & Johnson, E.O. Human Genetics of
- 549 Addiction: New Insights and Future Directions. *Curr Psychiatry Rep* **20**, 8 (2018).

550	7.	Baker, T.B. et al. Are tobacco dependence and withdrawal related amongst heavy
551		smokers? Relevance to conceptualizations of dependence. J Abnorm Psychol 121, 909-21
552		(2012).
553	8.	Zelman, D.C., Brandon, T.H., Jorenby, D.E. & Baker, T.B. Measures of affect and
554		nicotine dependence predict differential response to smoking cessation treatments. J
555		Consult Clin Psychol 60, 943-52 (1992).
556	9.	Gu, F. et al. Time to smoke first morning cigarette and lung cancer in a case-control
557		study. J Natl Cancer Inst 106, dju118 (2014).
558	10.	Guertin, K.A. et al. Time to First Morning Cigarette and Risk of Chronic Obstructive
559		Pulmonary Disease: Smokers in the PLCO Cancer Screening Trial. PLoS One 10,
560		e0125973 (2015).
561	11.	Fagerstrom, K. Determinants of tobacco use and renaming the FTND to the Fagerstrom
562		Test for Cigarette Dependence. Nicotine Tob Res 14, 75-8 (2012).
563	12.	Heatherton, T.F., Kozlowski, L.T., Frecker, R.C. & Fagerstrom, K.O. The Fagerstrom
564		Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br
565		J Addict 86, 1119-27 (1991).
566	13.	Breslau, N. & Johnson, E.O. Predicting smoking cessation and major depression in
567		nicotine-dependent smokers. Am J Public Health 90, 1122-7 (2000).
568	14.	Agrawal, A. et al. A latent class analysis of DSM-IV and Fagerstrom (FTND) criteria for
569		nicotine dependence. Nicotine Tob Res 13, 972-81 (2011).
570	15.	Paik, S.H. et al. Prevalence and analysis of tobacco use disorder in patients diagnosed
571		with lung cancer. PLoS One 14, e0220127 (2019).

572	16.	Baker, T.B. et al. Time to first cigarette in the morning as an index of ability to quit
573		smoking: implications for nicotine dependence. Nicotine Tob Res 9 Suppl 4, S555-70
574		(2007).
575	17.	Sweitzer, M.M., Denlinger, R.L. & Donny, E.C. Dependence and withdrawal-induced
576		craving predict abstinence in an incentive-based model of smoking relapse. Nicotine Tob
577		<i>Res</i> 15 , 36-43 (2013).
578	18.	Bolt, D.M. et al. The Wisconsin Predicting Patients' Relapse questionnaire. Nicotine Tob
579		<i>Res</i> 11 , 481-92 (2009).
580	19.	Haberstick, B.C. et al. Genes, time to first cigarette and nicotine dependence in a general
581		population sample of young adults. Addiction 102, 655-65 (2007).
582	20.	Conway, K.P. et al. Data compatibility in the addiction sciences: an examination of
583		measure commonality. Drug Alcohol Depend 141, 153-8 (2014).
584	21.	Hancock, D.B. et al. Genome-wide meta-analysis reveals common splice site acceptor
585		variant in CHRNA4 associated with nicotine dependence. Transl Psychiatry 5, e651
586		(2015).
587	22.	Hancock, D.B. et al. Genome-wide association study across European and African
588		American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence.
589		Mol Psychiatry 23, 1911-1919 (2018).
590	23.	Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer and
591		peripheral arterial disease. Nature 452, 638-42 (2008).
592	24.	Bierut, L.J. et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J
593		Psychiatry 165, 1163-71 (2008).

594	25	Huedo-Medina,	T.B. Sanchez-	Meca I	Marin-Martinez	F &	Botella	I Assessing
JJ4	<i>4J</i> .	Thucuo-Micuma,	I.D., Danonez-	IVICCA, J.,	1 1 1 1 1 1 1 1 1 1	1.0	Dotona,	J. Assessing

- heterogeneity in meta-analysis: Q statistic or I2 index? *Psychol Methods* 11, 193-206
 (2006).
- 597 26. DiFranza, J.R. *et al.* What aspect of dependence does the fagerstrom test for nicotine
 598 dependence measure? *ISRN Addict* 2013, 906276 (2013).
- 599 27. Sey, N.Y.A. *et al.* A computational tool (H-MAGMA) for improved prediction of brain600 disorder risk genes by incorporating brain chromatin interaction profiles. *Nat Neurosci*
- 601 (2020).
- Barbeira, A.N. *et al.* Integrating predicted transcriptome from multiple tissues improves
 association detection. *PLoS Genet* 15, e1007889 (2019).
- Bulik-Sullivan, B. *et al.* An atlas of genetic correlations across human diseases and traits. *Nat Genet* 47, 1236-41 (2015).
- 30. Walters, R.K. et al. Transancestral GWAS of alcohol dependence reveals common
- 607 genetic underpinnings with psychiatric disorders. *Nat Neurosci* **21**, 1656-1669 (2018).
- 608 31. Okbay, A. et al. Genetic variants associated with subjective well-being, depressive
- symptoms, and neuroticism identified through genome-wide analyses. *Nat Genet* 48, 62433 (2016).
- 611 32. Demontis, D. *et al.* Discovery of the first genome-wide significant risk loci for attention
 612 deficit/hyperactivity disorder. *Nat Genet* 51, 63-75 (2019).
- 613 33. Stahl, E.A. *et al.* Genome-wide association study identifies 30 loci associated with
- 614 bipolar disorder. *Nat Genet* **51**, 793-803 (2019).

615	34.	Howard, D.M. et al. Genome-wide meta-analysis of depression identifies 102
616		independent variants and highlights the importance of the prefrontal brain regions. Nat
617		Neurosci 22, 343-352 (2019).
618	35.	Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from
619		108 schizophrenia-associated genetic loci. Nature 511, 421-7 (2014).
620	36.	McKay, J.D. et al. Large-scale association analysis identifies new lung cancer
621		susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.
622		Nat Genet 49, 1126-1132 (2017).
623	37.	Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association
624		meta-analysis of coronary artery disease. Nat Genet 47, 1121-1130 (2015).
625	38.	Lee, J.J. et al. Gene discovery and polygenic prediction from a genome-wide association
626		study of educational attainment in 1.1 million individuals. Nat Genet 50, 1112-1121
627		(2018).
628	39.	Pickrell, J.K. et al. Detection and interpretation of shared genetic influences on 42 human
629		traits. Nat Genet 48, 709-17 (2016).
630	40.	Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide
631		complex trait analysis. Am J Hum Genet 88, 76-82 (2011).
632	41.	Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics
633		identifies additional variants influencing complex traits. Nat Genet 44, 369-75, S1-3
634		(2012).
635	42.	BrainSeq: A Human Brain Genomics Consortium. BrainSeq: Neurogenomics to Drive
636		Novel Target Discovery for Neuropsychiatric Disorders. Neuron 88, 1078-1083 (2015).

637	43.	Ward, L	L.D. & Ke	ellis, M. Ha	ploReg: a	resource for	exploring	chromatin states,

- 638 conservation, and regulatory motif alterations within sets of genetically linked variants.
- 639 *Nucleic Acids Res* **40**, D930-4 (2012).
- 640 44. Finucane, H.K. et al. Heritability enrichment of specifically expressed genes identifies
- 641 disease-relevant tissues and cell types. *Nat Genet* **50**, 621-629 (2018).
- GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot
 analysis: multitissue gene regulation in humans. *Science* 348, 648-60 (2015).
- 46. Pers, T.H. *et al.* Biological interpretation of genome-wide association studies using
 predicted gene functions. *Nat Commun* 6, 5890 (2015).
- Fehrmann, R.S. *et al.* Gene expression analysis identifies global gene dosage sensitivity
 in cancer. *Nat Genet* 47, 115-25 (2015).
- 48. Wain, L.V. et al. Novel insights into the genetics of smoking behaviour, lung function,
- and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in
- 650 UK Biobank. *Lancet Respir Med* **3**, 769-781 (2015).
- 49. Piper, M.E. et al. Refining the tobacco dependence phenotype using the Wisconsin
- Inventory of Smoking Dependence Motives. *J Abnorm Psychol* **117**, 747-61 (2008).
- 50. Piasecki, T.M., Piper, M.E. & Baker, T.B. Refining the tobacco dependence phenotype
- using the Wisconsin Inventory of Smoking Dependence Motives: II. Evidence from a
- laboratory self-administration assay. *J Abnorm Psychol* **119**, 513-23 (2010).
- 656 51. Piasecki, T.M., Piper, M.E. & Baker, T.B. Tobacco Dependence: Insights from
- 657 Investigations of Self-Reported Smoking Motives. *Curr Dir Psychol Sci* **19**, 395-401
- 658 (2010).

659	52.	Piasecki, T.M., Piper, M.E., Baker, T.B. & Hunt-Carter, E.E. WISDM primary and
660		secondary dependence motives: associations with self-monitored motives for smoking in
661		two college samples. Drug Alcohol Depend 114, 207-16 (2011).
662	53.	Chen, X.D., Zhu, M.X. & Wang, S.J. Expression of long non-coding RNA MAGI2AS3
663		in human gliomas and its prognostic significance. Eur Rev Med Pharmacol Sci 23, 3455-
664		3460 (2019).
665	54.	Silva, J.P. et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-
666		affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci USA
667		108 , 12113-8 (2011).
668	55.	Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum
669		disorders. Nature 459, 528-33 (2009).
670	56.	Kerin, T. et al. A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci Transl
671		<i>Med</i> 4 , 128ra40 (2012).
672	57.	Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait
673		associations. Nucleic Acids Res 42, D1001-6 (2014).
674	58.	Karlsson Linner, R. et al. Genome-wide association analyses of risk tolerance and risky
675		behaviors in over 1 million individuals identify hundreds of loci and shared genetic
676		influences. Nat Genet 51, 245-257 (2019).
677	59.	Erzurumluoglu, A.M. et al. Meta-analysis of up to 622,409 individuals identifies 40
678		novel smoking behaviour associated genetic loci. Mol Psychiatry (2019).
679	60.	Kichaev, G. et al. Leveraging Polygenic Functional Enrichment to Improve GWAS
680		Power. Am J Hum Genet 104, 65-75 (2019).

681	61.	Buchwald, J. et al. Genome-wide association meta-analysis of nicotine metabolism and
682		cigarette consumption measures in smokers of European descent. Mol Psychiatry (2020).
683	62.	Lutz, S.M. et al. A genome-wide association study identifies risk loci for spirometric
684		measures among smokers of European and African ancestry. BMC Genet 16, 138 (2015).
685	63.	Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in
686		449,484 individuals identifies novel genetic loci and pathways. Nat Genet 50, 920-927
687		(2018).
688	64.	Wray, N.R. et al. Genome-wide association analyses identify 44 risk variants and refine
689		the genetic architecture of major depression. Nat Genet 50, 668-681 (2018).
690	65.	Perry, J.R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for
691		age at menarche. Nature 514, 92-97 (2014).
692	66.	Day, F.R., Ong, K.K. & Perry, J.R.B. Elucidating the genetic basis of social interaction
693		and isolation. Nat Commun 9, 2457 (2018).
694	67.	Kranzler, H.R. et al. Genome-wide association study of alcohol consumption and use
695		disorder in 274,424 individuals from multiple populations. Nat Commun 10, 1499 (2019).
696	68.	Nievergelt, C.M. et al. International meta-analysis of PTSD genome-wide association
697		studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun 10, 4558
698		(2019).
699	69.	Reginsson, G.W. et al. Polygenic risk scores for schizophrenia and bipolar disorder
700		associate with addiction. Addict Biol (2017).
701	70.	Hartz, S.M. et al. Genetic correlation between smoking behaviors and schizophrenia.
702		Schizophr Res (2017).

703	71.	Moulton, E.A., Elman, I., Becerra, L.R., Goldstein, R.Z. & Borsook, D. The cerebellum
704		and addiction: insights gained from neuroimaging research. Addict Biol 19, 317-31
705		(2014).
706	72.	Miquel, M. et al. Have we been ignoring the elephant in the room? Seven arguments for
707		considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 60, 1-11
708		(2016).
709	73.	Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the
710		quantification of total cell and neuron numbers in the brain. J Neurosci 25, 2518-21
711		(2005).
712	74.	Timofeeva, M.N. et al. Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels,
713		and risk of lung cancer in EPIC. Cancer Epidemiol Biomarkers Prev 20, 2250-61 (2011).
714	75.	Martin, J., Taylor, M.J. & Lichtenstein, P. Assessing the evidence for shared genetic risks
715		across psychiatric disorders and traits. Psychol Med 48, 1759-1774 (2018).
716	76.	Hjelmborg, J. et al. Lung cancer, genetic predisposition and smoking: the Nordic Twin
717		Study of Cancer. Thorax 72, 1021-1027 (2017).
718	77.	Glasheen, C. et al. Is the Fagerstrom test for nicotine dependence invariant across secular
719		trends in smoking? A question for cross-birth cohort analysis of nicotine dependence.
720		Drug Alcohol Depend 185, 127-132 (2018).
721	78.	Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of
722		genomewide association scans. Bioinformatics 26, 2190-1 (2010).
723	79.	Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan
724		results. Bioinformatics 26, 2336-7 (2010).

725	80.	Boyles, A.L., Harris, S.F., Rooney, A.A. & Thayer, K.A. Forest Plot Viewer: a new
726		graphing tool. <i>Epidemiology</i> 22 , 746-7 (2011).
727	81.	Nowakowski, T.J. et al. Spatiotemporal gene expression trajectories reveal
728		developmental hierarchies of the human cortex. Science 358, 1318-1323 (2017).
729	82.	Wang, D. et al. Comprehensive functional genomic resource and integrative model for
730		the human brain. Science 362(2018).
731	83.	Barbeira, A.N. et al. Exploring the phenotypic consequences of tissue specific gene
732		expression variation inferred from GWAS summary statistics. Nat Commun 9, 1825
733		(2018).
734	84.	Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score
735		regression that maximizes the potential of summary level GWAS data for SNP
736		heritability and genetic correlation analysis. Bioinformatics 33, 272-279 (2017).
737	85.	GTEx Consortium. et al. Genetic effects on gene expression across human tissues.
738		<i>Nature</i> 550 , 204-213 (2017).
739	86.	Machiela, M.J. & Chanock, S.J. LDlink: a web-based application for exploring
740		population-specific haplotype structure and linking correlated alleles of possible
741		functional variants. Bioinformatics 31, 3555-7 (2015).
742	87.	Wellcome Trust Case Control Consortium. et al. Bayesian refinement of association
743		signals for 14 loci in 3 common diseases. Nat Genet 44, 1294-301 (2012).
744	88.	Collado-Torres, L. et al. Regional Heterogeneity in Gene Expression, Regulation, and
745		Coherence in the Frontal Cortex and Hippocampus across Development and
746		Schizophrenia. Neuron 103, 203-216 e8 (2019).

Table 1. Lead single nucleotide polymorphism (SNP) associations from the five genome-wide significant loci in the Nicotine

 Dependence GenOmics (iNDiGO) consortium cross-ancestry meta-analysis for nicotine dependence (ND). Ancestry-specific

 association results are also presented.

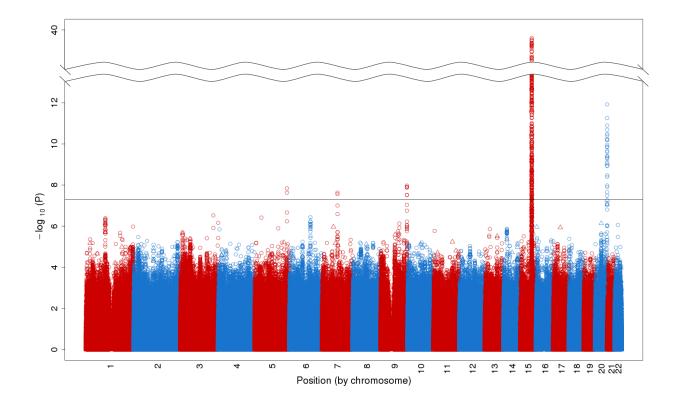
			European ancestry-specific ND meta-analysis (total N =				American- a-analysis (Cross-ancestry ND meta-analysis		
			46,213)			11,787)			(total N =	58,000)
	Chr:position	Gene /	Effect			Effect				
SNP (effect	(NCBI	closest	allele			allele				
allele)	build 37)	genes	freq. ^a	β (SE)	Р	freq. ^a	β (SE)	Р	β (SE)	Р
Lead SNPs fr	om novel ND-as	sociated loci		<u> </u>	<u> </u>					
rs1862416	5:167,394,595	TENM2	0.88	0.037	5.4×10 ⁻⁷	0.94	0.049	6.6×10 ⁻³	0.039	1.5×10 ⁻⁸
(T)				(0.0074)			(0.0066)		(0.0068)	
rs2714700	7:79,367,667	MAGI2 /	0.47	-0.022	1.2×10 ⁻⁶	0.72	-0.026	5.5×10 ⁻³	-0.023	2.3×10 ⁻⁸
(T)		GNAII		(0.0045)			(0.0094)		(0.0041)	
Lead SNPs fr	om known ND-a	ssociated lo	<u>ci</u>	1	I	1		1	1	<u> </u>

rs13284520	9:136,502,572	DBH	0.83	0.028	1.7×10 ⁻⁶	0.56	0.029	1.7×10 ⁻³	0.029	1.1×10 ⁻⁸
(A)				(0.0059)			(0.0092)		(0.0050)	
rs16969968	15:78,882,925	CHRNA5	0.37	0.061	4.9×10 ⁻³⁸	0.02	0.049	7.1×10 ⁻³	0.060	1.6×10 ⁻³⁹
(A)				(0.0047)			(0.018)		(0.0046)	
rs151176846	20:61,997,500	CHRNA4	0.92	-0.067	1.2×10 ⁻¹²	1.00	NA	NA	0.067	1.2×10 ⁻¹²
(T)				(0.0094)					(0.0094)	

Abbreviations: NA, not available (due to monomorphism for rs151176846 among African Americans); NCBI, National Center for

Biotechnology Information; SE, standard error.

^a Frequencies correspond to 1000G European and African superpopulation reference panels.


Table 2. Single nucleotide polymorphisms (SNPs) identified as genome-wide significant for cigarettes per day (CPD) by the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium and associated with nicotine dependence (ND) at $P<9.1\times10^{-4}$ ($\alpha=0.05/55$ tests) in the cross-ancestry meta-analysis by the Nicotine Dependence GenOmics (iNDiGO) consortium. Results are sorted by novelty and then by iNDiGO p-values, and β values correspond to direction of association for the effect alleles.

			GSCAN consortium meta-			iNDiGO consortium meta-				
	Chr:position		analysis	for CPD		analysis for ND (N=58,000)				
	(NCBI build	CBI build (N			(N=330,721)					
SNP (effect allele)	37)	Gene / nearest gene(s)	β	SE	Р	β	SE	Р		
SNPs from loci not reported by prior GWAS of ND										
rs7125588 (G)	11:113,436,072	DRD2 / TMPRSS5	-0.014	0.0020	6.5×10 ⁻¹²	-0.016	0.0042	1.8×10 ⁻⁴		
rs1592485 (A)	16:52,093,549	C16orf97	-0.013	0.0021	1.1×10 ⁻¹⁰	-0.015	0.0043	4.5×10 ⁻⁴		
rs2072659 (G)	1:154,548,521	CHRNB2	-0.025	0.0038	2.5×10 ⁻¹³	-0.026	0.0078	8.4×10 ⁻⁴		
SNPs from loci rep	orted by prior G	WAS of ND								
rs146009840 (T)	15:78,906,177	CHRNA3	0.030	0.0036	2.0×10 ⁻¹⁷	0.060	0.0046	2.6×10 ⁻³⁹		
rs72740955 (T)	15:78,849,779	PSMA4 / CHRNA5	0.040	0.0033	2.4×10 ⁻³⁴	0.058	0.0045	1.5×10 ⁻³⁸		
rs10519203 (A)	15:78,814,046	НҮКК	-0.075	0.0021	3.1×10 ⁻²⁸⁶	-0.050	0.0042	7.7×10 ⁻³²		

rs8040868 (C)	15:78,911,181	CHRNA3	0.022	0.0034	1.8×10 ⁻¹⁰	0.044	0.0041	7.3×10 ⁻²⁷
rs12438181 (A)	15:78,812,098	НҮКК	-0.023	0.0037	5.0×10 ⁻¹⁰	-0.039	0.0049	2.6×10 ⁻¹⁵
rs3743063 (C)	15:79,065,171	ADAMTS7	-0.023	0.0035	1.5×10 ⁻¹¹	-0.030	0.0042	6.8×10 ⁻¹³
rs28681284 (T)	15:78,908,565	CHRNA3	-0.049	0.0030	2.1×10 ⁻⁵⁸	-0.035	0.0051	1.1×10 ⁻¹¹
rs2273500 (C)	20:61,986,949	CHRNA4	0.031	0.0029	3.5×10 ⁻²⁶	0.034	0.0058	4.0×10 ⁻⁹
rs3025383 (C)	9:136,502,369	DBH	-0.026	0.0026	9.8×10 ⁻²⁴	-0.025	0.0049	1.8×10 ⁻⁷
rs28438420 (T)	15:78,836,288	PSMA4	0.020	0.0028	1.3×10 ⁻¹²	0.020	0.0041	7.9×10 ⁻⁷
rs75596189 (T)	9:136,468,701	FAM163B / DBH	0.035	0.0037	1.8×10 ⁻²⁰	0.030	0.0066	8.1×10 ⁻⁶
rs4236926 (G)	8:42,578,059	CHRNB3	0.028	0.0024	7.7×10 ⁻³³	0.021	0.0048	1.6×10 ⁻⁵
rs56113850 (C)	19:41,353,107	CYP2A6	0.043	0.0021	4.0×10 ⁻⁹⁹	0.018	0.0042	2.1×10 ⁻⁵
rs1737894 (G)	20:31,054,702	NOL4L	0.014	0.0021	9.9×10 ⁻¹²	0.017	0.0043	1.1×10 ⁻⁴

Abbreviations: NCBI, National Center for Biotechnology Information; SE, standard error.

Figure 1. Cross-ancestry nicotine dependence genome-wide association meta-analysis results, comprising 23 iNDiGO studies with total N = 58,000 European and African American ancestry ever smokers. The $-\log_{10}$ meta-analysis p-values of single nucleotide polymorphisms (SNPs; depicted as circles) and insertions/deletions (indels; depicted as triangles) are plotted by chromosomal position. Five loci surpassed the genome-wide statistical significance threshold (P<5×10⁻⁸, as marked by the solid horizontal black line).

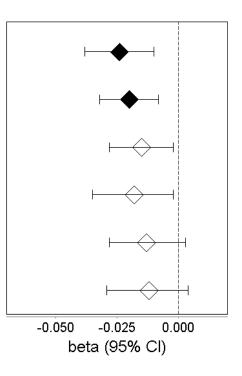
Figure 2. Associations of novel single nucleotide polymorphisms (SNPs) with specific items of the Fagerström Test for Nicotine Dependence (FTND) across the iNDiGO studies. Associations are presented from cross-ancestry meta-analyses of the (A) *MAGI2/GNAI1* SNP allele rs2714700-T and (B) *TENM2* SNP allele rs1862416-T. Beta (β) and corresponding 95% confidence interval (CI) estimates were taken from linear regression models for categorical FTND item responses (1 and 4, closed diamonds) or logistic regression models for binary FTND item responses (2, 3, 5, and 6, open diamonds).

(A)

rs2714700-T

FTND item

1: Time to first cigarette after waking


4: Cigarettes per day

2: Difficult to refrain from smoking in forbidden places

3: Cigarette most hated to give up (first in the morning or others)

5: Smoke more during first hours after waking

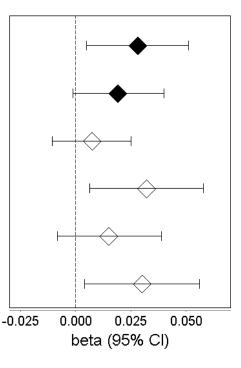
6: Smoke when ill

(B)

rs1862416-T

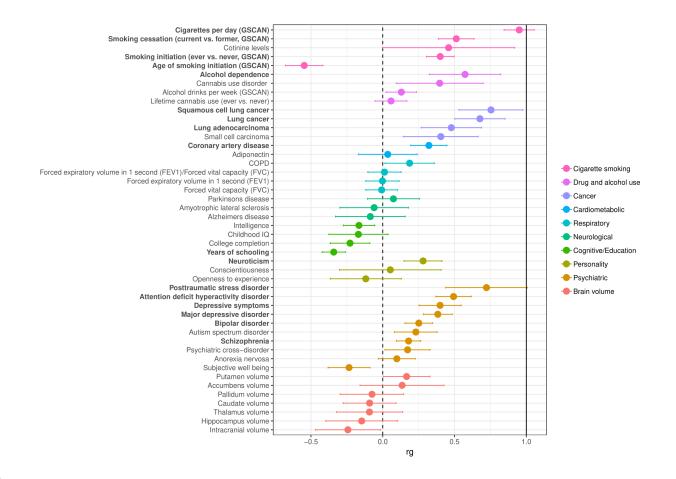
FTND item

1: Time to first cigarette after waking


4: Cigarettes per day

2: Difficult to refrain from smoking in forbidden places

3: Cigarette most hated to give up (first in the morning or others)


5: Smoke more during first hours after waking

6: Smoke when ill

Figure 3. Genetic correlations of nicotine dependence (ND) with 46 other phenotypes.

Correlations were calculated using linkage disequilibrium (LD) score regression with the iNDiGO European ancestry-specific GWAS meta-analysis results for ND (N=46,213), compared with results made available via LD Hub or study investigators (see Supplementary Table 3 for original references). Phenotypes were grouped by disease/trait or measurement category, as indicated by different colorings. Point estimates equate to genetic correlation (r_g) values; error bars show the 95% confidence intervals; and the dotted vertical grey line corresponds to $r_g=0$ (no correlation with ND). Phenotypes with significant correlations (P<0.0011, α =0.05/46 tested) are bolded.

