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Cells from the same individual share a common genetic and environmental 

background and are not independent, therefore they are subsamples or pseudoreplicates. 

Empirically, we show this dependence across a range of cell types. Thus, single-cell data 

have a hierarchical structure that current single-cell methods do not address and 

subsequently the application of such tools leads to biased inference and reduced robustness 10 

and reproducibility. When properly simulating the hierarchical structure of single-cell 

data, commonly applied single-cell differential expression analysis tools exhibit highly 

inflated type I error rates, particularly when applied together with a batch effect correction 

for individual as a means of accounting for within sample correlation. As single-cell 

experiments increase in size and frequency, we propose applying generalized linear mixed 15 

models that include random effects for differences among persons to properly account for 

the correlation structure that exists among measures from cells within an individual. 

The rapid evolution of single-cell technologies will enable novel interrogation of 

fundamental questions in biology, dramatically accelerating discoveries across many biological 

disciplines. Thus, researchers are developing methods that leverage or account for the unique 20 

properties of single-cell RNA sequencing (scRNA-seq) data, particularly its increased sparseness 

and heterogeneity compared to its bulk sequencing counterpart1–3. An important characteristic of 

single-cell experiments is that they result in many cells from the same individual, and therefore 
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the same genetic and environmental background. Here we empirically document the correlation 

among measures from cells within an individual and demonstrate how differential expression 25 

analysis of scRNA-seq data without considering this correlation, the current common practice, 

violates fundamental assumptions and leads to false conclusions. Proper identification of the 

experimental unit (i.e., the smallest observation for which independence can be assumed) for the 

hypothesis is critical for proper inference. Observations nested within an experimental unit are 

referred to as subsamples, technical replicates, or pseudoreplicates.  Pseudoreplication, or 30 

subsampling, is formally defined as “the use of inferential statistics where replicates are not 

statistically independent”4. There are two types of pseudoreplication commonly occurring in 

single-cell experiments: simple and sacrificial. Simple pseudoreplication occurs when “samples 

from a single experimental unit are treated as replicates representing multiple experimental 

units” 4,5.  Sacrificial pseudoreplication occurs when “the samples taken from each experimental 35 

unit are treated as independent replicates”4,5. Pseudoreplication has been addressed repeatedly in 

the fields of ecology, agriculture, psychology, and neuroscience4–8 and has been acknowledged 

as one of the most common statistical mistakes in scientific literature9. New technologies are 

particular prone to this error. Thus, it is not surprising that pseudoreplication is ubiquitous in the 

single-cell literature. Properly identifying the right experimental unit in single-cell studies will 40 

greatly increase both robustness and reproducibility, thereby leveraging the very features that 

make single-cell methods powerful. 

Measures from cells from the same individual should be more (positively) correlated with 

each other than cells from unrelated individuals.  Empirically, this appears true across a range of 

cell types (Fig. 1). Thus, single-cell data have a hierarchical structure in which the single-cells 45 

may not be mutually independent and have a study-specific correlation (e.g., exchangeable 
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correlation within an 

individual). We note, that, 

within a cell type, cells 

appear to also exhibit some 50 

correlation across 

individuals (Fig. 1). We 

hypothesize this is due to 

zero-inflation and the 

stability in functional gene 55 

expression that is needed 

for a cell to classify as a 

specific cell type (e.g., T-

cells need to have some 

consistent signals of gene 60 

expression related to their 

function as T-cells). As the 

denominator of most 

statistical tests (e.g., Wald 

test) is a function of the 65 

variance, not accounting for the positive correlation among sampling units underestimates the 

true standard error and leads to false positives10,11.  In addition, treating each cell as independent 

inflates the test degrees of freedom, making it easier to falsely reject the null hypothesis (type 1 

error). Too many false positives can mask true associations, especially when multiple 

Fig. 1 | Intra-individual correlation. Box plot of the intra- and inter-individual 

Spearman’s correlations for gene expression values across six different cell 

types. Cell types, along with their respective numbers of cells (Ncells) and 

individuals (Nindividuals), are labeled on the x axis. Mean correlation among a 

donor’s own cells (intra-individual) is always greater than the mean correlation 

across individuals (inter-individual). Some cell types may be more correlated 

than others. We note that the population of B-cells is largely unbalanced. Over 

80% of the cells are contributed by only three of ten individuals, which may 

partially explain the lack of difference between inter- and intra-individual 

correlation. We also note that cell types were designated by previous authors. 
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comparison procedures such as false discovery rate are 70 

applied. In combination, this will adversely affect 

downstream analyses (pathway analysis), robustness, 

and reproducibility – increasing the cost of science.  

Single-cell studies designed to identify 

differentially expressed genes rarely note or address the 75 

correlation among cells from the same individual or 

experimental unit. Excellent reviews of the field and 

methodological work have largely focused on 

challenges presented by properly classifying cell types, 

multimodality, dropout, and higher noise derived from 80 

biological and technical factors. However, they fail to 

highlight the effect of pseudoreplication and, 

furthermore, publications evaluating the performance 

single-cell specific tools all compute the simulations as 

if cells were independent12–18. The result is reduced 85 

reproducibility with real data, leading to the conclusion 

that tools built specifically to handle single-cell data do 

not appear to perform better than tools created for bulk 

data analysis19–21.  We completed a simulation study 

that reproduces both the inter- and intra-individual 90 

variance structures estimated from real data and 

documented the effect of intra-individual correlation on 

Fig. 2 | Simulation workflow. A gamma 

[𝚪(𝜶, 𝜷)] distribution was fit to the global 

mean transcripts per million read counts 

(TPM) of each gene to obtain a grand mean, 

𝝁𝒊.   The variance of the individual-specific 

means (inter-individual variance) was modeled 

as a quadratic function of the grand mean, 

𝒇𝟏(𝝁𝒊) and the within-sample variance (intra-

individual variance) was simulated using a 

uniform 𝑼(𝒂, 𝒃) distribution. Using a normal 

𝑵(𝝁, 𝝈𝟐) distribution with an expected value 

of zero and a variance computed by the first 

quadratic relationship, 𝒇𝟏(𝝁𝒊), a difference in 

means was drawn for each individual in the 

simulation. This difference was summed with 

the grand mean to obtain an individual mean, 

𝝁𝒊𝒋. A Poisson (𝝀) distribution with a λ equal 

to the expected number of cells desired for 

each individual was then used to obtain the 

count of cells per individual. For each cell 

assigned to an individual, a TPM count, 𝒀𝒊𝒋𝒌, 

was drawn from a normal distribution with an 

expected value equal to the individual’s 

assigned mean TPM value, 𝝁𝒊𝒋, and a variance, 

𝝈𝒋
𝟐, drawn from a uniform distribution. 
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the type 1 error rates of the most frequently used single-cell analysis tools (Fig. 2, fig. S1). Our 

simulation compared methods that do and do not account for the repeated observations within an 

experimental unit (see Methods). We varied the number of individuals and cells within an 95 

individual. All methods considered use asymptotic approximations and admit covariates.  

 We observed that the generalized linear mixed model (GLMM), either employing a 

tweedie distribution or a two-part hurdle model with a random effect (RE) for individual, 

outperformed other methods across a variety of conditions (Table 1, tables S1-S4)22–28.  

Table 1 | Type I error rates of some of the currently applied tools in single-cell analysis. Type I error rates of 100 

nine different methods under sixteen different conditions and a significance threshold of p<0.05. 250,000 iterations 

were computed to obtain an error rate for each method.  The conservative type I error rates computed with mixed 

models at the lower numbers of individuals per group are a consequence of underpowered study designs. Type I 

error rates are well controlled for with mixed models, while type I error rates inflate with other methods as 

additional independent samples or more cells are added.  105 

*Default denotes MAST was implemented without random-effects, RE denotes random-effects, Corrected 

denotes data was batch-corrected for individual prior to analysis without using individual as a random-effect, 

GLM denotes generalized linear model, GLMM denotes generalized linear mixed-effects model, and FE 

denotes fixed-effects. 

**Two-part Hurdle model as implemented in MAST, Tweedie distribution as implemented in ‘glmmTMB’, 110 

GEE1 as implemented in ‘geepack’, Modified t as implemented in ROTS, and Tobit as implemented in 

Monocle. 

Specifically, among the methods that explicitly model the correlation structure, GLMM 

consistently had more appropriate type 1 error rate control than both generalized estimating 

Nindividuals Ncells 

Two-part Hurdle   Tweedie 

GEE1 

Nested  

FE 

Modified  

t Tobit Default RE Corrected   GLM GLMM 

2 

10 0.041 0.013 0.230  0.074 0.064 0.336 0.080 0.077 0.858 

25 0.064 0.034 0.551  0.089 0.071 0.310 0.114 0.105 0.865 

50 0.094 0.058 0.568  0.114 0.084 0.306 0.147 0.136 0.872 

100 0.138 0.081 0.573  0.154 0.101 0.298 0.195 0.178 0.883 

5 

10 0.040 0.029 0.247  0.063 0.048 0.133 0.083 0.077 0.856 

25 0.067 0.044 0.465  0.082 0.053 0.124 0.113 0.104 0.865 

50 0.101 0.056 0.628  0.112 0.059 0.120 0.150 0.134 0.873 

100 0.144 0.066 0.736  0.152 0.067 0.119 0.196 0.178 0.884 

10 

10 0.044 0.035 0.241  0.060 0.043 0.090 0.083 0.076 0.856 

25 0.073 0.046 0.453  0.083 0.047 0.083 0.114 0.101 0.863 

50 0.106 0.051 0.589  0.111 0.051 0.081 0.150 0.134 0.873 

100 0.151 0.060 0.718  0.151 0.055 0.079 0.195 0.175 0.883 

25 

10 0.049 0.043 0.238  0.057 0.042 0.063 0.084 0.076 0.854 

25 0.079 0.048 0.444  0.081 0.044 0.062 0.113 0.102 0.864 

50 0.113 0.052 0.582  0.111 0.046 0.061 0.150 0.133 0.873 

100 0.157 0.056 0.696   0.152 0.049 0.060 0.196 0.177 0.883 
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equations (GEE1) models and nested fixed-effects models, where the latter two perform poorly 115 

for any number of subsampling until the number of independent experimental units approached 

2529,30. When the number of experimental units was small, the GEE1 sandwich estimator of the 

variance provided standard errors that were too small and therefore inflated the type 1 error rate. 

Similarly, for nested fixed-effects models, the standard errors were also underestimated with 

standard estimation techniques (i.e., REML). The models that explicitly model the correlation 120 

structure all outperformed the methods that do not account for the lack of independence among 

experimental units (Table 1, tables S1-S4). All methods that treat observations as independent 

perform increasingly worse as the number of correlated cells increases. We note that DESeq2 

regularly failed to compute in scenarios where the numbers of cells and samples were large 

because the geometric mean normalization method implemented requiring at least one transcript 125 

to consist completely of all non-zero values (Tables S1-S4). A particularly noteworthy approach 

that has been suggested to account for the within-individual correlation is applying a batch effect 

correction method, for which the batches are individuals. This approach had markedly increased 

type 1 error rates (Table 1, tables S1-S4). This is primarily because regressing out the person-

specific effect as a batch effect and subsequently analyzing each cell as an independent 130 

observation will underestimate the overall variance by removing inter-individual differences 

while maintaining an inappropriately large number of degrees of freedom when treating cells as 

if they are independent.  

 One of the most heavily cited single-cell analysis tools, Model-based Analysis of Single-

cell Transcriptomics (MAST), is a two-part hurdle model built to handle sparse and bi-modally 135 

distributed single-cell data22. Although, to our knowledge, there are no publications that employ 

MAST to account for pseudoreplication as discussed here, Finak et al. note that MAST “can 
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easily be extended to accommodate random effects”22. Here, we emphasize this tool as an 

already well-established tool in the field and demonstrate that MAST performs exceptionally 

well when adjusting for individual as a random effect (i.e., MAST with RE), but no different 140 

than other tools when not doing so. This specific evaluation of MAST’s performance with and 

without a random effect for individual serves as a perfect example of why accounting for 

pseudoreplication is so important. While we do recommend computing differential expression 

analysis using MAST with RE, alternative methods include the tweedie GLMM or permutation 

testing. In order not to violate the exchangeability assumption, permutation methods must 145 

randomize at the independent experimental unit (e.g., individual) and properly account for 

covariates (i.e., conditional permutation). The tweedie GLMM method could be implemented 

using the ‘glmmTMB’ R-package23, but neither of these alternative approaches explicitly 

incorporate some of the single-cell specific concepts implemented in MAST (e.g., cellular 

detection rate). As detailed in their original manuscript, MAST models a log2(TPM + 1) gene 150 

expression matrix as a two-part generalized regression model22. Using their same notation, the 

addition of random effects for differences among persons is as follows: 

𝒍𝒐𝒈𝒊𝒕(𝐏𝐫(𝒁𝒊𝒈 = 𝟏|𝑿𝒊)) =  𝑿𝒊𝜷𝒈 

𝐏𝐫(𝒀𝒊𝒈 = 𝒚|𝒁𝒊𝒈 = 𝟏) = 𝑵(𝑿𝒊𝜷𝒈 +  𝑾𝒊𝜸𝒋, 𝝈𝒈
𝟐 ) 

where Yig is the expression level for gene g and cell i, Zig is an indicator for whether gene g is 155 

expressed in cell i, Xi contains the predictor variables for each cell i, and Wi is the design matrix 

for the random effects of each cell i belonging to each individual j (i.e., the random complement 

to the fixed Xi). βg represents the vector of fixed-effects regression coefficients and γj represents 

the vector of random effects (i.e., the random complement to the fixed βg). γj is distributed 

normally with a mean of zero and variance 𝜎𝛾𝑖

2 . To obtain a single result for each gene, likelihood 160 
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ratio or Wald test results from each of the two components are summed and the corresponding 

degrees of freedom for each component are added22. These tests have asymptotic χ2 null 

distributions and they can be summed and remain asymptotically χ2 because Zg and Yg are 

defined conditionally independent for each gene22. 

 We computed an extensive simulation-based power analysis to provide researchers 165 

estimates across a wide range of experimental conditions. This was computed using a two-part 

hurdle model with 

random effects for 

individuals as 

implemented in 170 

MAST. Increasing the 

number of 

independent 

experimental units 

(e.g., individuals) in a 175 

study is the best way 

to increase power to 

detect true differences 

(Fig. 3, fig. S2-S31). 

Empirically, there 180 

are only marginal 

gains in power when 

more than twenty-

Fig. 3 | Power calculations using MAST with a random effect for individual. Power 

curves for twenty-eight different, but likely single-cell scenarios using MAST with a 

random effect for individual. Fold change is simulated by multiplying the global mean 

gene expression values by the fold change value for one group. Power is capped just 

above 0.8 because of high amounts of dropout in lowly expressed transcripts that cause 

either complete separation in the model or have too few observations to make inference. 

While increasing the expected number of cells per donor gives moderate gains in power, 

the greatest increase in power is achieved by increasing the number of donors. 
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five cells per individual are sampled. Increasing the number of cells per individual provides more 

precision in the estimate for an individual. However, it does not directly affect power for 185 

detecting differences across individuals such as treatment effects applied at the individual level 

(i.e., cases/control studies). We estimated negligible improvement power when increasing the 

expected number of cells per individual beyond 100 in a handful of situations (Fig. 3). We note 

that estimating power with more than 100 cells per individual was exceedingly slow and 

computationally expensive. Because 1000s of cells per individual is not atypical for single-cell 190 

experiments, tools that account for the correlation structure when analyzing these data need to be 

further developed to increase computational efficiency.  

Most papers compare cells across very few individuals, sometimes even a single case and 

control (simple pseudoreplication); in the former case the estimate of the variance is possible but 

has wide bounds on parameter confidence intervals, and in the latter case the variance is not 195 

estimable. These power simulations indicate that the majority of published studies are 

underpowered (Fig. 3, fig. S2-S31). The majority of single-cell papers show a deep 

understanding of the underlying biology and conduct otherwise very informative experiments, 

appropriately landing in very high visibility journals. However, our type 1 error and power 

simulations document that many published studies are missing important true effects while 200 

reporting too many false positives generated via pseudoreplication.  As single-cell technology 

continues to evolve and costs decrease, reviewers need to be aware of this issue to avoid 

proliferation of irreproducible results.  We encourage the use of mixed models, such as the 

tweedie GLMM or the two-part hurdle model with a random effect (e.g., as implemented in 

MAST with RE), as ways of accounting for the repeated observations from an individual while 205 

being able to adjust for covariates at the individual level and, if appropriate, at the individual cell 
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level. Finally, we note that although our focus here is on hypothesis testing for finding 

differentially expressed genes, the concept is applicable to all single-cell sequencing 

technologies such as proteomics, metabolomics, and epigenetics. 

Materials and Methods 210 

Literature Review 

A PubMed search for the keywords “single-cell differential expression” returned 251 

articles published in the last 3 years which were subsequently sorted and filtered by each of their 

abstracts. Many of the returned articles were associated with bulk RNA sequencing or 

completely irrelevant to differential expression analysis in single-cell and were therefore 215 

eliminated. Of the 251 original hits, 76 of them were deemed appropriate for further 

consideration. Of those, 10 of them were reviews, 36 of them were methods papers, and 30 of 

them were implementation papers. This method is not meant to be a perfect capture of all of the 

literature, but provides a clear snapshot of the current state of single-cell differential expression 

analyses.  Each of the methods and implementation articles was thoroughly reviewed and tabled 220 

along with its number of citations, date of publication, and any other pertinent information such 

as number of independent samples, tools used, or number of cells captured. 

 

Intra and Inter-correlation analyses  

Pairwise comparisons between all cells of interest were made to compute intra- and inter- 225 

individual correlations. Genes were filtered if the average transcript-per-million (TPM) value 

was not greater than five. For intra-individual correlation, spearman’s correlation was computed 

for all possible pairs of cells within an individual. For inter-individual correlation, spearman’s 

correlation was computed for all possible pairs of cells from a random draw of one cell from 
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each individual. 1,000 draws were computed. Correlations and their means were tested for 230 

differences (Fig. 1). The measures were compared in six different cell types across three different 

single-cell studies. These studies are publically available under the accession numbers 

GSE81861, GSE72056, and E-MTAB-5061. The cell type designations that were used were 

given by the authors of these studies.  

 235 

Simulation  

Means and variances were computed empirically from the transcript per million read count 

values previously reported in six different cell types across three different single-cell studies. 

Once consistent patterns were identified across cell types, alpha cells from the pancreas dataset, 

were used as the model data for our simulation. After removing the top percent of the most 240 

variant genes, we fit a gamma distribution to the global mean transcript per million read count 

values of each gene to obtain a grand mean, 𝜇𝑖.  The variance of the individual-specific means 

(inter-individual variance) was modeled as a quadratic function of the grand mean, 𝑓1(𝜇𝑖) and 

the within-sample variance (intra-individual variance) was simulated using a uniform 

distribution, 𝑈(𝑎, 𝑏). (Fig. 2). The objective for obtaining the inter-individual variance as 245 

function of the grand mean was to simply capture the average associations between the variance 

and the grand mean - the uncertainty in this relationship was not of particular interest for this 

simulation. Using a normal distribution with an expected value of zero and a variance computed 

by the first quadratic relationship, 𝑓1(𝜇𝑖), a difference in means was drawn for each individual in 

the simulation. This difference was summed with the grand mean to obtain an individual mean, 250 

𝜇𝑖𝑗. A Poisson distribution with a λ equal to the expected number of cells desired for each 

individual was then used to obtain the count of cells per individual. For each cell assigned to an 
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individual, a transcript per million read count value, 𝑌𝑖𝑗𝑘, was drawn from a normal distribution 

with an expected value equal to the individual’s assigned mean transcript per million read count 

value, 𝜇𝑖𝑗, and a variance, 𝜎𝑗
2, drawn from a uniform distribution. The correlation structure 255 

between genes was not taken into account in this simulation and this simple process was 

replicated a selected number of times to obtain the desired number of genes. Due to their 

widespread use in the field, tSNE plots were made of the simulated data to assess how realistic 

the simulated data appeared and to assess the effects of altering intra-individual variance in these 

data (Fig S1). 260 

 

Type I error 

250,000 iterations of our simulation were computed for varying numbers of cells and 

varying numbers of individuals. The number of individuals per group was fixed at either 2, 5, 10, 

or 25. The number of cells per individual was drawn from a Poisson distribution with either a λ 265 

of 10, 25, 50, or 100.  For each of the 250,000 iterations, the number of results that met our 

significance threshold were counted and the type I error was computed as the percentage of 

significant results. After primary analysis of the type I error using a tweedie mixed-effects 

model, type I error was computed with the following tools: MAST, MAST with random effects, 

MAST with a batch effect correction, DESeq2, Monocle, ROTS, Tweedie GLM, and a GEE1 270 

with a Gaussian link and exchangeable correlation. All of these tools were selected because they 

could handle the transcript per million read count values being simulated – with the exception of 

DESeq2. DESeq2 requires integers and at least one gene without a zero value to compute its 

normalization, so as the number of samples and cells increased, the likelihood of if computing 

greatly decreased. We acknowledge DESeq2 is not appropriate for analyzing these data, but felt 275 
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that where we could complete simulations, the tool must be addressed because of its frequent use 

in the field. MAST was implemented with and without the use of a random effect for individual 

and the remaining single-cell tools were implemented exactly as their vignettes instruct. GEE1 

with exchangeable correlation was implemented to compare its performance to the mixed-effects 

model, particularly where the numbers of donors are low. Type I errors were computed using 280 

significance thresholds of 0.05, 0.01, 0.001, and 0.0001 (Table 1, tables S1-S4). 

 

Power calculations 

Using MAST with a random effect for individual we computed power curves to estimate 

how well this tool functions with varying numbers and ratios of cells and individuals. 285 

Computations were identical to the type I error analyses with exception of multiplying a 

constant, hereafter labeled fold change, with the global mean gene expression value of a gene to 

spike the expression values in one group. Power was computed at small increments between a 

fold change of 1 and 5, or until MAST with RE was unable to compute because of complete 

separation. For lowly expressed genes with high amounts of zero inflation, inference remained 290 

difficult, causing MAST with RE to asymptote out before reaching maximum power. This is just 

the nature of sparse single-cell data, and it cannot be avoided.   
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