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Abstract How do people learn to perform tasks that require continuous adjustments of motor9

output, like riding a bicycle? People rely heavily on cognitive strategies when learning discrete10

movement tasks, but such time-consuming strategies are infeasible in continuous control tasks11

that demand rapid responses to ongoing sensory feedback. To understand how people can learn12

to perform such tasks without the benefit of cognitive strategies, we imposed a rotation/mirror13

reversal of visual feedback while participants performed a continuous tracking task. We analyzed14

behavior using a system identification approach which revealed two qualitatively different15

components of learning: adaptation of a baseline controller and formation of a new task-specific16

continuous controller. These components exhibited different signatures in the frequency domain17

and were differentially engaged under the rotation/mirror reversal. Our results demonstrate that18

people can rapidly build a new continuous controller de novo and can flexibly integrate this process19

with adaptation of an existing controller.20

21

Introduction22

In many real-world motor tasks, skilled performance requires us to continuously control our actions23

in response to ongoing external events. For example, remaining stable on a bicycle depends on24

being able to rapidly respond to the tilt of the bicycle as well as obstacles in our path. The demand25

for continuous control in such tasks can pose additional challenges when it comes to learning them26

in the first place. In particular, new skills often require us to learn arbitrary relationships between27

our actions and their outcomes (like moving our arms to steer or flexing our fingers to brake) and it28

is thought that learning such mappings depends on the use of time-consuming cognitive strategies29

(McDougle et al., 2016). Continuous control tasks, however, require us to produce responses rapidly,30

leaving little time for deliberation about our actions. Therefore, it remains unclear how continuous31

motor skills are learned.32

Studies of motor learning have revealed a variety of different processes that support motor33

learning in humans (Krakauer et al., 2019). One of the most well-characterized processes is34

adaptation, an error-driven learning mechanism by which task performance is improved by using35

sensory prediction errors to recalibrate motor output (Mazzoni and Krakauer, 2006; Tseng et al.,36

2007; Shadmehr et al., 2010). Adaptation is primarily characterized by the presence of aftereffects37

(Redding and Wallace, 1993; Shadmehr and Mussa-Ivaldi, 1994; Kluzik et al., 2008) and is known38

to support learning in a variety of laboratory settings including making simple movements under39

imposed visuomotor rotations (Krakauer et al., 1999; Fernández-Ruiz et al., 2011;Morehead et al.,40
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2015), prism goggles (Martin et al., 1996; Fernández-Ruiz and Díaz, 1999), split-belt treadmills (Choi41

and Bastian, 2007; Finley et al., 2015), force fields (Lackner and Dizio, 1994; Shadmehr and Mussa-42

Ivaldi, 1994), as well as in more complex settings such as path integration in gain-altered virtual43

reality (Tcheang et al., 2011; Jayakumar et al., 2019). However, it appears that adaptation can only44

adjust motor output to a limited extent; in the case of visuomotor rotations, implicit adaptation is45

only capable of 15–25° of compensation, even when much larger rotations are applied (Taylor et al.,46

2010; Fernández-Ruiz et al., 2011; Taylor and Ivry, 2011; Bond and Taylor, 2015). This suggests47

that other mechanisms are required when learning to compensate for perturbations that impose48

significant deviations from one’s existing baseline motor repertoire.49

In scenarios where adaptation is insufficient, people appear to adopt a re-aiming strategy to50

compensate for perturbed visual feedback. This strategy involves aiming one’s movements towards51

a surrogate target rather than the true target of the movement. It has been shown that people52

use re-aiming strategies—or more generally, cognitive strategies—to compensate (at least in part)53

for visuomotor rotations (Mazzoni and Krakauer, 2006; de Rugy et al., 2012; Taylor et al., 2014;54

Morehead et al., 2015) and force fields (Schween et al., 2019). In principle, re-aiming enables people55

to compensate for arbitrary re-mappings of their environment, including large (90°) visuomotor56

rotations (Bond and Taylor, 2015) or mirror-reversed visual feedback (Wilterson and Taylor, 2019).57

However, implementing re-aiming is cognitively demanding and time-consuming process that58

significantly increases reaction times (Haith et al., 2015; Leow et al., 2017; McDougle and Taylor,59

2019; Fernández-Ruiz et al., 2011). Indeed, although people can successfully compensate for a60

mirror reversal in point-to-point reaching tasks, this learning is not reflected in feedback response61

corrections to mid-movement perturbations (Telgen et al., 2014; Kasuga et al., 2015; Gritsenko and62

Kalaska, 2010), suggesting that the initial compensation was achieved through time-consuming63

re-aiming that could not be applied during a rapid online correction. By contrast, adaptation64

generalizes strongly to online corrective movements (Ahmadi-Pajouh et al., 2012; Cluff and Scott,65

2013; Telgen et al., 2014). Thus, re-aiming strategies seem unlikely to account for how humans66

learn motor tasks that require continuous responses to perturbations and changing goals.67

Instead, continuous tasks must likely be learned by building a new controller that implements68

the newly required mapping from sensory input to motor output—a process that has been termed69

de novo learning (Figure 1A) (Costa, 2011; Telgen et al., 2014; Sternad, 2018). This approach can70

be contrasted with adaptation, which parametrically adjusts the existing controller, and with re-71

aiming, which maintains the existing controller and provides it with artificial movement goals72

to obtain the desired motor output. It has been suggested that de novo learning is necessary73

when learning to compensate for a mirror-reversal of visual feedback. Theoretical and empirical74

findings have demonstrated that the learning rules which allow people to adapt to visuomotor75

rotations fail under mirror reversal (Abdelghani et al., 2008; Hadjiosif et al., 2020). Other studies76

have shown that mirror-reversal learning, unlike rotation learning, does not result in reach-direction77

aftereffects (Gutierrez-Garralda et al., 2013; Lillicrap et al., 2013) and likely has a distinct neural78

basis from rotation learning (Schugens et al., 1998; Maschke et al., 2004; Morton and Bastian,79

2006; Gutierrez-Garralda et al., 2013). Although some studies have suggested the opposite, namely80

that mirror-reversals and rotations engage the same learning mechanisms (Werner and Bock,81

2010; Bock, 2013), existing evidence overwhelmingly supports the view that these perturbations82

engage—at least in part—qualitatively distinct mechanisms.83

While most studies indicate that mirror reversal is learned de novo, many of them used experi-84

mental paradigms involving discrete movements (e.g., point-to-point reaches, ball throwing) that85

can be learned via re-aiming; for a point-to-point reach, if one knows the mirroring axis, one can86

still use their existing baseline controller to generate movement and simply aim their hand across87

the axis to reach the target. To dissociate true de novo learning of a new controller from re-aiming88

it is necessary to consider tasks in which movement goals change more quickly than the time it89

takes for slow cognitive strategies to be applied. One such approach is to require participants90

to continuously track an unpredictable stimulus. Although several studies have tested continu-91
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Figure 1. Conceptual overview and experimental design. A.We conceptualize adaptation as a parametric change to an existing controller
(changing � to �′) and de novo learning as building a new controller (g) to replace the baseline controller (f ). B. Participants performed planar
movements with their right hand while a target (yellow) and cursor (blue) were presented to them on an LCD display. Participants were asked to

either move the cursor to a static target (point-to-point task) or track a moving target with the cursor (tracking task). C. Participants learned to
control the cursor under one of two visuomotor perturbations: a 90° visuomotor rotation, or a mirror reversal. D. Participants alternated between
point-to-point reaching (1 block = 150 reaches) and tracking (1 block = ∼6 mins). We first measured baseline performance in both tasks under

veridical visual feedback (blue), followed by interleaved tracking and point-to-point blocks with perturbed visual feedback from early learning

(orange) to late learning (yellow). At the end of the experiment, we assessed aftereffects in the tracking task by removing the perturbation (purple).

ous tracking under mirror reversal (Schugens et al., 1998; Bock and Schneider, 2001; Bock et al.,92

2001), these studies used low-frequency stimuli (<0.35 Hz) which could potentially be tracked using93

intermittent "catch-up" movements that are strategically planned similar to explicit re-aiming of94

point-to-point movements (Craik, 1947;Miall et al., 1993a; Russell and Sternad, 2001). Therefore,95

to our knowledge, no study has yet demonstrated that mirror-reversal genuinely reflects de novo96

learning of a continuous controller.97

Here, we sought to explicitly test whether a motor task could be learned by forming a de novo98

controller, rather than through adaptation or re-aiming. Participants learned to counter a mirror-99

reversal of visual feedback in both a point-to-point movement task and in a continuous tracking100

task in which a target moved in a pseudorandom sum-of-sinusoids trajectory (Figure 1B-C) (Miall101

et al., 1993b; Kiemel et al., 2006; Roth et al., 2011; Madhav et al., 2013; Sponberg et al., 2015;102

Yamagami et al., 2019). The target in the tracking task moved continuously and unpredictably at103

frequencies ranging from 0.1–2.15 Hz—a high enough frequency that participants could not engage104

in time-consuming deliberate planning of the kind associated with re-aiming (Fernández-Ruiz et al.,105

2011; McDougle and Taylor, 2019; Leow et al., 2017; Haith et al., 2015). Participants instead had106

to continuously generate movements to track the target. Critically, the sum-of-sines structure107

of the target motion allowed us to employ a frequency-based system identification approach108

to characterize changes in participants’ motor controllers during mirror-reversal learning. We109

compared learning in this group to that of a second group of participants that learned to counter a110

visuomotor rotation, where presumably—unlike mirror reversal—adaptation would contribute to111

learning.112

We hypothesized that participants learning to counter the mirror reversal would be able to learn113

a de novo controller that enables them to smoothly track the target. If, however, the mirror reversal114

can only be learned through a re-aiming strategy, participants would be incapable of performing115
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Figure 2. Task performance improves in the point-to-point and tracking tasks. A. Performance in the point-to-point task, as quantified by initial
reach direction error, is plotted as heat maps for the rotation (top) and mirror-reversal groups (bottom). Each column shows the distribution of

initial reach direction errors, pooled across all participants, over a (horizontal) bin of 15 trials. The intensity of color represents the number of trials

in each 10° vertical bin (max possible value of 150 for any bin). B. Example tracking trajectories from a representative participant in each group.
Target trajectories are shown in black while cursor trajectories are shown in brown. Each trajectory displays approximately 5 seconds of movement.C. Performance in the tracking task as quantified by average mean-squared positional error between the cursor and target during each trial. Error
bars are SEM across participants.

Figure 2–video 1. Video of tracking behavior at different time points during learning.

the continuous feedback control required to track the target. Additionally, we hypothesized that116

participants should be able to counter the rotation in the tracking task due to the presence of117

sensory prediction errors—the only error signal needed to drive adaptation.118

Results119

Participants Learned to Compensate for the Rotation and Mirror Reversal but us-120

ing Different Learning Mechanisms121

Twenty participants used their right hand to manipulate an on-screen cursor under either a 90°122

visuomotor rotation (n = 10) or a mirror reversal (n = 10) about an oblique 45° axis (Figure 1C).123

These perturbations were designed such that, in both cases, motion of the hand in the x direction124

was mapped to cursor motion in the y direction and vice versa. Each group first practiced moving125

under their respective perturbation in a point-to-point task, reaching towards targets that appeared126

at random locations on the screen (Figure 1D), and we quantified their performance in each trial127

through the the error in their initial reach direction. For the rotation group, this error decreased128

as a function of training time and plateaued near 0°, demonstrating that participants successfully129

learned to compensate for the rotation (Figure 2A, upper panel). For the mirror-reversal group, the130

directional error did not show any clear learning (Figure 2A, lower panel), but performance was131

better than would be expected if participants had not attempted to compensate at all (which would132

manifest as reach errors uniformly distributed between ± 180°). Thus, both groups of participants133

compensated for the perturbations during point-to-point movements (at least partially), consistent134

with previous findings.135

To test whether participants could compensate for these perturbations in a continuous control136
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Figure 3. The rotation group exhibited reach-direction aftereffects while the mirror-reversal group did not. A. Alignment matrices relating target
and hand movement established by trajectory alignment. The top row illustrates the ideal alignment matrices at baseline or to successfully

compensate for each perturbation (blue represents positive values, red represents negative values). Alignment matrices (calculated from one trial

averaged across participants) from the rotation (middle row) and mirror-reversal (bottom row) groups are depicted at different points during

learning. Below each matrix, we visualized how the unit x and y vectors (black lines) would be transformed by the columns of the matrices
(transformed x = green, transformed y = purple). Shaded areas are 95% confidence ellipses across participants. B. The average of the two
off-diagonal elements of the estimated alignment matrices across all blocks of the experiment (baseline through post). Grey boxes indicate when

the rotation or mirror reversal were applied. Thin black lines indicate individual participants and thick lines indicate the mean across participants. C.
(Left: rotation group) Angular compensation for the rotation, estimated by approximating each alignment matrix with a pure rotation matrix. (Right:

mirror-reversal group) Scaling factor orthogonal to the mirror axis. In each plot, dashed lines depict ideal performance when the perturbation is

(green) or is not (black) applied. Thin black lines indicate individual participants and thick lines indicate the mean across participants.

task after having practiced them in the point-to-point task, we had them perform a manual tracking137

task. In this task, participants tracked a target that moved in a continuous sum-of-sinusoids138

trajectory at frequencies ranging between 0.1–2.15 Hz, with distinct frequencies used for x- and139

y-axis target movement. The resulting target motion was unpredictable and appeared random.140

Furthermore, the target’s trajectory was altered every block by randomizing the phases of the141

component sinusoids, preventing participants from being able to learn a specific target trajectory.142

Example trajectories from single participants are presented in Figure 2B (see also Figure 2–video 1143

for a movie of tracking behavior).144

As an initial assessment of how well participants learned to track the target, we measured the145

average mean-squared positional error (tracking error) between the target and cursor trajectories146

during every tracking trial. Tracking error improved with practice in both groups of participants,147

approaching similar levels of error by late learning (Figure 2C). Therefore, in both the point-to-point148

and tracking tasks, participants’ performance improved with practice. However, this measure149

of tracking error is insensitive to changes in the direction of cursor movement, a feature of the150

behavior that is critical for distinguishing how participants learned to counter the rotation versus151

the mirror reversal.152

Instead, we quantified participants’ behavior in the tracking task using a different method,153
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estimating how participants translated target motion into hand motion at different points during154

learning. We aligned the hand and target tracking trajectories with a linear transformation matrix155

(alignment matrix) that, when applied to the target trajectory, minimized the discrepancy between156

the hand and target trajectories (see Methods for details). This approach was sensitive to detecting157

the directionality of hand movements, allowing us to more precisely quantify how participants158

altered their movements during learning.159

Figure 3A shows the estimated matrices for both groups at different time points during the160

experiment, along with a visualization of how they affected the unit x and y vectors. At baseline, the161

estimated alignment matrices were close to the identity matrix, as would be expected if the hand162

trajectory is well aligned with the target trajectory. Under perturbed feedback, perfect tracking163

would be achieved when the alignment matrix is equal to the inverse of the matrix representing164

the applied perturbation. Indeed, by late learning, the alignment matrices resembled this inverse165

under both perturbations.166

To test whether these changes were statistically significant, we focused on the off-diagonal167

elements of the matrices. These elements critically distinguish the different transformations from168

one another and from baseline. In late learning, both the rotation (linear mixed effects model [see169

"Statistics" in Methods for details about the structure of the model]: two-way interaction between170

group and block (F (2, 36) = 7.56, p = 0.0018; Tukey’s range test: p < 0.0001) and mirror-reversal171

groups (Tukey’s range test: p < 0.0001) exhibited off-diagonal values that were significantly different172

from their baseline values (Figure 3B), and in the appropriate direction to compensate for their173

respective perturbations.174

From these matrices, we derived additional metrics associated with each perturbation to further175

characterize learning. For the rotation group, we estimated a compensation angle, �, using a176

singular value decomposition approach (Figure 3C; see "Trajectory-alignment analysis" in Methods177

for details). At baseline, we found that � = 3.8±1.0° (mean ± SEM), and this increased to � = 72.5±1.9°178

by late learning. For the mirror-reversal group, to assess whether participants learned to flip the179

direction of their movements across the mirroring axis, we computed the scaling of the target180

trajectory along the direction orthogonal to the mirror axis (Figure 3C). This value was positive at181

baseline and negative by late learning, indicating that participants successfully inverted their hand182

trajectories relative to that of the target.183

Lastly, we sought to confirm that the rotation and mirror reversal were learned using different184

mechanisms, as has been suggested by previous studies (Gutierrez-Garralda et al., 2013; Telgen185

et al., 2014). We did so by assessing whether participants in each group expressed reach-direction186

aftereffects—the canonical hallmark of adaptation—at the end of the experiment, following removal187

of each perturbation in the tracking task (and with participants made explicitly aware of this). Again188

estimating alignment matrices, we found that the magnitude of the aftereffects was different for189

the two visuomotor perturbations (Figure 3B). The off-diagonal elements for the rotation group190

were significantly different from baseline (Tukey’s range test: p < 0.0001), indicating clear aftereffects.191

These aftereffects corresponded to a compensation angle of � = 32.4±1.4°, similar to the magnitude192

of aftereffects reported for visuomotor rotation in point-to-point tasks (Bond and Taylor, 2015;193

Morehead et al., 2017). For the mirror-reversal group, by contrast, the off-diagonal elements of194

the post-learning alignment matrix were not significantly different from baseline (Tukey’s range195

test: p = 0.2057; baseline range: −0.11–0.11; post-learning range: −0.07–0.28), suggesting negligible196

aftereffects. (Note that aftereffects were not evident in the mean-squared error analysis in Figure197

2C, as that analysis was not designed to be sensitive to the small changes in movement direction198

associated with aftereffects.) The lack of aftereffects under mirror-reversal implies that participants199

did not counter this perturbation via adaptation and instead engaged de novo learning.200

In summary, these data suggest that participants were able to compensate for both perturba-201

tions in the more challenging tracking task. Consistent with previous studies, the data support the202

idea that the rotation was learned via adaptation while the mirror reversal was learned via de novo203

learning.204
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Figure 4. Tracking behavior was approximately linear, indicating that the hand tracked the target continuously. A. Amplitude spectra of x-hand
trajectories (black line) averaged across participants from one trial in each listed block. In each plot, the amplitudes and frequencies of target

motion are indicated by diamonds (yellow: x-target frequencies; blue: y-target frequencies). Hand responses at x- and y-target frequencies are
highlighted as yellow and blue circles, respectively, and are connected by lines for ease of visualization. Ideal performance at baseline and under

the rotation/mirror reversal are depicted on the right. B. Spectral coherence between x-target movement and both x- and y-hand movement (i.e.,
single-input multi-output coherence), which provides a measure of how linear the relationship is between target motion and hand motion. This

coherence is proportional to the linear component of the hand’s response to the target. Darker colors represent lower frequencies and lighter

colors represent higher frequencies. Error bars are SEM across participants.

Figure 4–Figure supplement 1. Amplitude spectra and coherence plots for y-hand movements.
Figure 4–Figure supplement 2. Amplitude spectra of x-hand movements from single subjects.

Participants Performed Continuous Control to Track the Target205

Although participants could learn to successfully perform the tracking task under both perturbations,206

it is not necessarily clear that they achieved this using continuous control; the target moved primarily207

at low frequencies (0.1–0.65 Hz) which by design had larger amplitude and lower velocity. This could208

potentially have allowed participants to track the target through intermittent “catch-up” movements209

that were strategically planned similar to explicit re-aiming of point-to-point movements (Craik,210

1947; Miall et al., 1993a; Russell and Sternad, 2001). While it is difficult to rule this out based on211

the trajectory alignment analysis, the tracking task was designed to be amenable to a more more212

fine-grained analysis of participants’ behavior using frequency-domain system identification that213

would allow us to examine the continuity of movements.214

We examined the amplitude spectra of participants’ hand movements after transforming the215

time-domain data to the frequency domain using the discrete Fourier transform and compared216

these amplitude spectra to that of the target (Figure 4A). This allowed us to check whether the217

dynamics of participants’ tracking behavior was close to linear. If the relationship between hand218

and target movement was linear this would imply that the hand moved at the same frequencies as219

the target and, consequently, would suggest that participants were faithfully tracking the target220

using continuous movements. In contrast, if the relationship was nonlinear (e.g., the hand moved at221
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different frequencies than the target), this would suggest that participants were using an alternative222

tracking strategy. Note that coupling across axes (e.g., x-hand movements in both the x and y-axes223

at a given frequency) would not indicate nonlinear behavior; at a given frequency, the participant’s224

goal during learning is to remap responses in one axis to the other. Thus, coupling would indicate225

an imperfect, though possibly linear, sensorimotor mapping.226

At baseline, both groups of participants moved almost exclusively at the frequencies of the target227

(Figure 4A: x-hand data, Figure 4–Figure Supplement 1: y-hand data, Figure 4–Figure Supplement 2:228

single-subject data). More specifically, x-handmovements primarily occurred at x-target frequencies229

and y-handmovements primarily occurred at y-target frequencies, as would be expected for tracking230

behavior at baseline. The introduction of the perturbation led to a broadband increase in amplitude231

across all frequencies for both groups (Figure 4A, “Early”), indicating some nonlinear behavior as232

one might expect, particularly during early learning. However, the peaks at the target frequencies233

were still clearly identifiable. These nonlinearities abated with practice (Figure 4A, “Late”) and234

remained modest after the perturbation was removed (Figure 4A, “Post”).235

We further quantified how linear participants’ responses were by computing the spectral coher-236

ence between target and hand movement (Roddey et al., 2000). Although the coherence was low237

during early learning, it was close to the maximum value of 1 at baseline, late learning, and post-238

learning (Figure 4B: x-hand data, Figure 4–Figure Supplement 1: y-hand data). Altogether, these239

data are consistent with a linear relationship between target motion and hand motion, suggesting240

that both the rotation and mirror-reversal groups’ tracking movements were continuous and that241

participants did not use an intermittent strategy to perform the task.242

Adaptation and De Novo Learning Exhibit Distinct Signatures in the Frequency Do-243

main244

Because tracking behavior was approximately linear, this provided validation for using linear245

systems analysis to more deeply explore how learning altered participants’ control capabilities.246

While learning likely results in nonlinear changes to motor controllers, the movements we observed247

(i.e., the product of learning) were linear. This allowed us to treat each trial as a snapshot of248

participants’ input–output relationship between target and hand movement. While recent studies249

have shown that learning can occur on very fast timescales (Crevecoeur et al., 2020a,b), we believe250

the magnitude of these learning effects are small enough that each 40 second trial approximately251

captures a single state of the input–output relationship. Furthermore, such within-trial learning252

effects would likely be restricted only to the earliest blocks of exposure to the perturbation.253

To perfectly compensate for either the rotation or the mirror reversal, movement at x-target254

frequencies needed to be remapped from x-hand movements to y-hand movements, and vice255

versa at y-target frequencies. During early learning, participants in the rotation group did produce256

x-hand movements in response to y-target frequencies, but also inappropriately continued to257

produce x-hand movements at x-target frequencies (Figure 4A). By late learning, the amplitude of258

x-hand movement further increased at y-target frequencies and decreased at x-target frequencies.259

Behavior for the mirror-reversal group followed a similar pattern, albeit with less pronounced peaks260

in the amplitude spectrum during early learning.261

After the perturbation was removed (Post-learning), the rotation group exhibited x-hand move-262

ments at both x- and y-target frequencies, unlike baseline where movements were largely restricted263

to x-target frequencies (Figure 4A), indicating aftereffects, consistent with our earlier, trajectory-264

alignment analysis. In contrast, the amplitude spectrum of the mirror-reversal group’s x-hand265

movements was similar to baseline, confirming that any aftereffects were negligible. These features266

of the amplitude spectra, and the differences across groups, were qualitatively the same for y-hand267

movements (Figure 4–Figure Supplement 1) and were also evident in individual subjects (Figure268

4–Figure Supplement 2).269

Although the amplitude spectra illustrate important features of learning, they do not carry270

information about the directionality of movements and thus do not distinguish learning of the271
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Figure 5. Adaptation and de novo learning exhibit distinct frequency-dependent signatures. We estimated how participants transformed target
motion into hand movement across different frequencies (i.e., gain matrix analysis). For all panels, neighboring x- and y-target frequencies were
paired together in numerical order. The resulting 7 frequency pairings were (x then y frequencies reported in each parentheses in Hz): (0.1, 0.15),
(0.25, 0.35), (0.55, 0.65), (0.85, 0.95), (1.15, 1.45), (1.55, 1.85), (2.05, 2.15). See Methods for details on how gain matrices were fit. A. Visualizations of
the estimated gain matrices relating target motion to hand motion across frequencies. These visualizations were generated from one trial of each

listed block, averaged across participants. Green and purple arrows depict hand responses to x- and y-target frequencies, respectively. Darker
colors represent lower frequencies and lighter colors represent higher frequencies. The gain matrices associated with these visualizations can be

found in Figure 5–Figure Supplement 2. B. Average of the two off-diagonal values of the gain matrices at different points during learning. Darker
colors represent lower frequencies and lighter colors represent higher frequencies. Grey boxes indicate when the rotation or mirror reversal were

applied. Error bars are SEM across participants. C. (Top) Estimated compensation angle for the rotation group as a function of frequency at
different points during learning. (Bottom) Gain of movement orthogonal to the mirror axis for the mirror-reversal group. Green and black dashed

lines show ideal compensation when the perturbation is or is not applied, respectively. Darker colors represent lower frequencies and lighter

colors represent higher frequencies. Error bars are SEM across participants.

Figure 5–Figure supplement 1. Example gain matrices for each block and frequency
Figure 5–Figure supplement 2. Gain matrix analysis performed on single-subject data

two different perturbations; perfect compensation would lead to identical amplitude spectra for272

each perturbation. In order to distinguish these responses, we needed to determine not just273

the amplitude, but the direction of the response along each axis, i.e. whether it was positive or274

negative. We used phase information to disambiguate the direction of the response (the sign of275

the gain) by assuming that the phase of the response at each frequency would remain similar to276

baseline throughout learning. We then used this information to estimate signed gain matrices which277

describe the linear transformations relating target and hand motion (Figure 5–Figure Supplement278

1). These matrices relay similar information as the alignment matrices in Figure 3 except here,279

different transformations were estimated for different frequencies of movement. To construct280

these gain matrices, the hand responses from neighboring pairs of x- and y-target frequencies281

were grouped together. This grouping was performed because target movement at any given282

frequency was one dimensional, but target movement across two neighboring frequencies was283

two dimensional; examining hand/target movements in this way thus provided two-dimensional284

insight into how the rotation/mirroring of hand responses varied across the frequency spectrum285
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(see "Frequency-domain analysis" in Methods for details).286

Similar to the trajectory-alignment analysis, these gain matrices should be close to the identity287

matrix at baseline but equal the inverse of the matrix describing the perturbation if participants are288

able to perfectly compensate for the perturbation. We again visualized these estimated frequency-289

dependent gain matrices through their effect on the unit x and y vectors (the columns of the gain290

matrices; Figure 5A: average across subjects, Figure 5–Figure Supplement 2: single subjects), only291

now we include a set of vectors for each pair of neighboring frequencies.292

At baseline, participants in both groups responded to x- and y-target motion by moving their293

hands in the x- and y-axes, respectively, with similar performance across all target frequencies.294

Late in learning, for the rotation group, participants successfully compensated for the perturbation295

- apparent through the fact that all vectors rotated clockwise during learning. The extent of296

compensation, however, was not uniform across frequencies but was more complete at low297

frequencies (darker arrows) than at high frequencies (lighter arrows). For the mirror-reversal group,298

compensation during late learning occurred most successfully at low frequencies, apparent as the299

darker vectors flipping across the mirror axis relative to baseline. At high frequencies, however,300

responses failed to flip across the mirror axis and remained similar to baseline.301

To quantify these observations statistically, we focused again on the off-diagonal elements of302

the estimated gain matrices. The rotation group’s gain matrices were altered in the appropriate303

direction to counter the perturbation at all frequencies (Figure 5B; linear mixed effects model [see304

"Statistics" in methods for details about the structure of the model]: 3-way interaction between305

block and frequency, F (12, 360) = 3.20, p = 0.0002; data split by frequency for post hoc Tukey’s306

range test: Bonferroni-adjusted p < 0.0001 for all frequencies). Although the mirror-reversal group’s307

low-frequency gain matrices were also altered in the appropriate direction (Tukey’s range test:308

Bonferroni-adjusted p < 0.0003 for lowest 3 frequencies), the high-frequency gain matrices were not309

significantly different from baseline (Tukey’s range test: Bonferroni-adjusted p > 0.2 for highest 4310

frequencies; baseline gain range: −0.18–0.18; late-learning gain range: −0.25–0.66).311

Fitting a rotation matrix to the rotation group’s gain matrix at each frequency revealed that312

participants’ baseline compensation angle was close to 0° at all frequencies (Figure 5C). By late313

learning, compensation was nearly perfect at the lowest frequency but was only partial at higher314

frequencies. For the mirror-reversal group, the gains of participants’ low-frequency movements315

orthogonal to the mirror axis were positive at baseline and became negative during learning,316

appropriate to counter the perturbation. At high frequencies, by contrast, the gain reduced slightly317

during learning but never became negative. Thus, both groups of participants were successful at318

compensating at low frequencies, but at high frequencies, the rotation group was only partially319

successful and the mirror-reversal group was largely unsuccessful.320

Post-learning, the rotation group’s off-diagonal gains were significantly different from baseline321

for all frequencies except the lowest frequency (Figure 5B; Tukey’s range test: Bonferroni-adjusted322

p < 0.005 for highest 6 frequencies), indicating aftereffects. A similar trend was evident in partici-323

pants’ estimated compensation angles (Figure 5C). By contrast, the mirror-reversal group’s matrices324

were not significantly different from baseline across all frequencies (Figure 5B; Tukey’s range test:325

Bonferroni-adjusted p > 0.9 for all frequencies; baseline gain range: −0.18–0.18; post-learning gain326

range: −0.49 to 0.37). The gains orthogonal to the mirroring axis were also similar to baseline across327

all frequencies, indicating the absence of aftereffects (Figure 5C).328

To summarize, compensation for the visuomotor rotation resulted in reach-direction afteref-329

fects of similar magnitude to that reported in previous studies (Figure 5). Compensation was also330

expressed at both low and high frequencies of movement (Figure 5B). The fact that participants331

exhibited low-frequency compensation is, to some extent, not surprising because the low frequen-332

cies in our task required movements that were slower than that at high frequencies. However,333

previous studies have demonstrated that adaptation generalizes strongly to rapid online corrective334

movements (Ahmadi-Pajouh et al., 2012; Cluff and Scott, 2013; Telgen et al., 2014), which would335

be reflected in our experiment as an ability to perform tracking at high frequencies. Thus, these336
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Figure 6. Making point-to-point reaches improves tracking performance, especially under mirror reversal. A. Participants learned to counter either
a visuomotor rotation (n = 10) or mirror-reversal (n = 10). The experimental design was similar to the main experiment except point-to-point
reaching practice was almost entirely eliminated; between the early- and late-learning tracking blocks, participants only performed 15

point-to-point reaches. The purpose of these reaches was not for training but simply to assess learning in the point-to-point task. B–D. Gain matrix
analysis, identical to that in Figure 5, performed on data from the follow-up experiment. B. Visualization of the gain matrix from one trial of each
listed block, averaged across participants. C. Off-diagonal elements of the gain matrices, averaged across participants. D. Estimated rotation angle
for the rotation group’s gain matrices (upper) and gain orthogonal to mirroring axis for the mirror-reversal group (lower), averaged across

participants. All error bars in this figure are SEM across participants.

Figure 6–Figure supplement 1. Gain matrix analysis performed on single-subject data for the follow-up experiment

data suggest that rotation learning engages adaptation, in agreement with previous studies. In337

contrast, the mirror-reversal group did not exhibit aftereffects and only expressed compensation at338

low frequencies. The lack of aftereffects suggests that participants did not learn through adaptation339

of an existing controller, but instead learned by building a new controller from scratch—i.e., through340

de novo learning (Figure 1A).341

This de novo learning process also appeared to contribute to learning in the rotation group.342

The aftereffects in this group (∼25°) only accounted for a fraction of the overall compensation343

achieved by this group (∼70°), suggesting that an additional component of learning also contributed344

to learning to compensate for the rotation. Examining the time course of learning for both groups345

in Figure 5B, while the rotation group’s gains were overall higher than the mirror-reversal group’s,346

there was a striking similarity in the frequency-dependent pattern of learning between the two347

groups. We therefore suggest that the residual learning not accounted for by adaptation was348

attributable to the same de novo learning process that drove learning under the mirror reversal.349

Making Point-to-Point Reaches Improves Tracking Performance, Especially under350

Mirror Reversal351

Although the data suggest participants did not heavily rely on an aiming strategy while tracking,352

participants likely did use such a strategy to learn to counter the rotation/mirror reversal while353

performing point-to-point reaches. How important might such cognitive strategies be for ultimately354

learning the tracking task? To test this, we performed a follow-up experiment with twenty additional355
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participants. This experiment was similar to the main experiment except for the fact that partici-356

pants experienced the rotation or mirror reversal almost exclusively in the tracking task, receiving357

minimal practice in the point-to-point task (Figure 6A).358

In comparison to the main experiment, the total amount of compensation expressed during359

learning was blunted in both groups (Figure 6B-D: average across subjects; Figure 6–Figure Supple-360

ment 1: single subjects). Comparing the the off-diagonal gain at different frequencies of movement,361

the decrement in gain from the main experiment to the follow-up experiment was similar between362

groups (comparing gains for each group between Figures 5B and 6C). However, the overall trend363

in learning was different; while the rotation group’s performance improved from early to late364

learning, particularly at low frequencies (linear mixed effects model [see "Statistics" in methods for365

details about the structure of the model]: 3-way interaction between block, group, and frequency,366

F (18, 461) = 3.20, p < 0.0001; Tukey’s range test: Bonferroni-adjusted p < 0.05 for two out of seven367

frequencies), the mirror-reversal group’s performance plateaued by early learning (Tukey’s range368

test: Bonferroni-adjusted p = 1 for all frequencies; Figure 6C). Figures 6B and D also demonstrate a369

similar difference in learning trends. These results are consistent with previous work comparing370

the generalization of rotation learning from pointing to tracking tasks and vice versa (Abeele and371

Bock, 2003). Ultimately, this suggests that training in the point-to-point task played a critical role in372

acquiring the ability to track the target under a mirror-reversal learning, but had a lesser impact for373

learning the rotation.374

It is also worth noting that the follow-up experiment reproduced many of the same behavioral375

phenomena evident in the main experiment. The rotation group exhibited aftereffects, albeit376

only within the middle bandwidth of frequencies (Tukey’s range test: Bonferroni-adjusted p < 0.05377

for three out of seven frequencies), while the mirror-reversal group did not (Tukey’s range test:378

Bonferroni-adjusted p = 1 for all seven frequencies). The rotation group exhibited compensation379

at high frequencies (Tukey’s range test: Bonferroni-adjusted p < 0.05 for two out of three highest380

frequencies) whereas the mirror-reversal group did not (Tukey’s range test: Bonferroni-adjusted381

p = 1 for highest three frequencies). In other words, the follow-up experiment provides evidence382

that the effects we observed in the main experiment are robust and replicable.383

Discussion384

In the present study, we tested whether participants could learn to successfully control a cursor385

to pursue a continuously moving target under either rotated or mirror-reversed visual feedback.386

Although previous work has established that participants can learn to compensate for these387

perturbations during point-to-point movements, this compensation often seems to be depend upon388

the use of re-aiming strategies—a solution that is time-consuming and therefore does not seem389

feasible in a task in which goals are constantly changing. Although it is possible that participants390

might have performed the tracking task through numerous, intermittent catch-up movements, we391

found that, under both perturbations, participants’ tracking behavior was close to linear across392

all frequencies (as quantified by spectral coherence), implying instead that they tracked the target393

smoothly and continuously. As expected, we found that participants who learned to counter the394

visuomotor rotation exhibited strong aftereffects once the perturbation was removed, amounting395

to an approximately 25° rotation of hand motion relative to target motion—consistent with previous396

findings in point-to-point tasks (Taylor et al., 2010; Fernández-Ruiz et al., 2011; Taylor and Ivry,397

2011; Bond and Taylor, 2015). In contrast, participants who learned to compensate for the mirror-398

reversal showed no aftereffects, suggesting that they did not engage adaptation of their existing399

controller, but instead learned to compensate by establishing a de novo controller.400

One potential caveat of our results is that if the mirror-reversal group expressed a quickly401

decaying aftereffect (e.g., decaying within a single trial), the temporal resolution of our analysis402

(tracking analysis performed in 40 second bins) may not have been fine enough to capture such a403

phenomenon. Indeed, prior work has demonstrated that motor learning can occur on very fast404

timescales, even when learning to counter random, unexpected perturbations (Crevecoeur et al.,405
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2020a,b). However, the timescale of decay that would be necessary to give rise to such a result is406

so starkly different from that in the rotation group (on the order of several minutes) that it seems407

unlikely the same learning mechanism can account for behavior in both groups of participants. In408

summary, our results corroborate previous findings which suggest that people learn to counter409

rotations and mirror reversals of visual feedback in qualitatively different ways.410

Frequency-Domain Signatures of Adaptation and De Novo Learning411

The pattern of compensation under the rotation and mirror-reversal was frequency specific (Figure412

5B), with the nature of compensation at high frequencies revealing distinct signatures of adaptation413

and de novo learning between the two groups. At low frequencies, both groups of participants414

successfully compensated for their perturbations. But at high frequencies, only the rotation group415

was able to compensate; behavior for the mirror-reversal group at high frequencies was similar416

to baseline behavior. There were similarities, however, in the overall time course and frequency417

dependence of learning under each perturbation (Figure 5B), with both groups exhibiting a steady418

increase in compensation over time, particularly at lower frequencies. Additionally, both groups’419

compensation exhibited a similar gradation as a function of frequency, decreasing as frequency420

increased.421

We believe these results show that distinct learning processes drove two separate components422

of learning. One component, present only in the rotation group, was expressed uniformly at423

all frequencies and likely reflects a parametric adjustment of an existing baseline controller, i.e.,424

adaptation. This interpretation is consistent with studies demonstrating that adaptation of point-to-425

point movements generalizes to corrections for unexpected perturbations (Ahmadi-Pajouh et al.,426

2012; Cluff and Scott, 2013; Telgen et al., 2014). A second component of learning contributed427

to compensation in both groups of participants. This component was expressed primarily at428

low frequencies, exhibited a gradation as a function of frequency, and was not associated with429

aftereffects. We suggest this component corresponds to formation of a de novo controller for the430

task. The mirror-reversal group’s behavior in Figure 5B demonstrates the frequency-dependent431

characteristics of this de novo learned controller and how those characteristics evolve with practice.432

The failure to compensate at high frequencies under themirror-reversal is consistent with the ob-433

servation that people who have learned to make point-to-point movements under mirror-reversed434

feedback are unable to generate appropriate rapid corrections to unexpected perturbations (Tel-435

gen et al., 2014; Kasuga et al., 2015; Gritsenko and Kalaska, 2010). However, importantly, in the436

tracking task, participants were able to generate appropriate motor output continuously, rather437

than in a discrete manner, as in the point-to-point task. Although compensation for the rotation438

bore many hallmarks of adaptation, it also exhibited features of de novo learning seen in the439

mirror-reversal group, suggesting that participants in the rotation group employed a combination440

of the two learning processes. Our data thus support previous suggestions that residual learning441

under a visuomotor rotation that cannot be attributed to implicit adaptation may rely on the same442

mechanisms as those used for de novo learning (Krakauer et al., 2019).443

Potential Control Architectures Supporting Multiple Components of Learning444

The properties of adaptation and de novo learning we have identified here can potentially be445

explained by the existence of two distinct control pathways, each capable of different forms of446

plasticity but with differing sensorimotor delays. An inability to compensate at high frequencies447

(when tracking an unpredictable stimulus; see Roth et al. (2011)) suggests higher phase lags,448

potentially due to greater sensorimotor delays or slower system dynamics; as phase lags approach449

the period of oscillation, it becomes impossible to exert precise control at that frequency. One450

pathway may be fast but can only be recalibrated through adaptation while the other pathway is451

slower but can be reconfigured to implement arbitrary new controllers.452

These two control pathways might correspond to feedforward control (generating motor output453

based purely on target motion) and feedback control (generating motor output based on the cursor454

13 of 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2020. ; https://doi.org/10.1101/2020.01.15.906545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.906545
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

location and/or distance between cursor and target). Feedback control is slower than feedforward455

control due to the additional delays associated with observing the effects of one’s earlier motor456

commands on the current cursor position. The observed pattern of behavior may thus be due457

to a fast but inflexible feedforward controller that responds rapidly to target motion, but always458

expresses baseline behavior (potentially recalibrated via implicit adaptation) interacting with a slow459

but reconfigurable feedback controller that responds to both target motion and the current cursor460

position. At low frequencies, the target maymove slowly enough that any inappropriate feedforward461

control to track the target is masked by corrective feedback responses. But at high frequencies, the462

target may move too fast for feedback control to be exerted, leaving only inappropriate feedforward463

responses.464

An alternative possibility is that there may be multiple feedforward controllers (and/or feedback465

controllers) incurring different delays. A fast but inflexible baseline controller (amenable to recalibra-466

tion through adaptation) might interact with a slower but more flexible controller. This organization467

parallels dual-process theories of learning and action selection (Hardwick et al., 2019; Day and468

Lyon, 2000; Huberdeau et al., 2015) and raises the possibility that the de novo learning exhibited by469

our participants might be, in some sense, cognitive in nature. Cognitive processes are generally470

conceived of in terms of discrete associations that require time-consuming, deliberative processing471

to compute—consistent with the use of re-aiming strategies (McDougle et al., 2016; Huberdeau472

et al., 2015). It is possible, however, for action selection to occur rapidly but still be considered473

cognitive. For instance, it has been proposed that stimulus-response associations can be “cached”474

in working memory, enabling a cognitive response to be deployed rapidly and without deliberation475

(McDougle and Taylor, 2019). Caching associations in this way appears to be limited to just 2–7476

elements (McDougle and Taylor, 2019; Collins and Frank, 2012), raising doubts as to whether such477

a mechanism could support a feedback controller that must generate output in continuous time478

and space. Nevertheless, recent theories have framed prefrontal cortex as a general-purpose479

network capable of learning to perform arbitrary computations on its inputs (Wang et al., 2018).480

From this perspective, it does not seem infeasible that such a network could learn to implement an481

arbitrary continuous feedback controller that could reasonably be considered cognitive.482

Role of Re-Aiming Strategies in Acquisition versus Execution of a De Novo Con-483

troller484

Although participants likely could not have used an aiming strategy to execute continuous tracking485

movements, they could have used such a strategy to acquire the controller necessary to perform486

these movements. In a follow-up experiment, we tested whether limited practice in the point-to-487

point task would impair how well participants could learn to counter the rotation/mirror reversal.488

Indeed, we found both groups’ performance suffered from the lack of point-to-point practice,489

but whereas the rotation group exhibited moderate improvement from early to late learning, the490

mirror-reversal group did not improve past early learning. The mirror-reversal group’s lack of491

learning suggests that re-aiming may be important for initially building a de novo controller. But492

with point-to-point practice, participants demonstrated tracking improvements under the mirror493

reversal, suggesting that re-aiming may not be a necessary component of the tracking controller494

after the initial phase of learning. Likewise, the rotation group may have exhibited a decrement495

in tracking performance without point-to-point training because this prevented the engagement496

of re-aiming strategies that may ordinarily facilitate learning of a de novo controller, even if the497

eventually learned controller does not rely on any form of re-aiming. Improvement in tracking498

performance in this rotation group could be due to adaptation, which is thought to be driven only499

by sensory prediction errors which would be present and, presumably, also driving learning even500

during the tracking task. The poor performance in both groups may also have been attributable to501

participants simply spending less total time practicing their respective perturbations. However, if502

time on task was the only variable driving learning, then the mirror-reversal group’s performance503

should have improved from early learning to late learning, which it did not.504
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A re-aiming strategy may be important for building a de novo controller because this process505

may rely on the deliberative computations performed when planning upcoming movements.506

Alternatively, it may be easier for people to evaluate the quality of straight-line reaches (e.g., reach507

direction, movement time, task error) compared to random tracking movements, allowing them to508

update the parameters of a nascent controller using these quality metrics. In any case, our data509

suggest that cognitive strategies/processes may serve a critical role in facilitating de novo learning510

even if the eventually learned controller does not depend on re-aiming strategies.511

System Identification as a Tool for Characterizing Motor Learning512

Our characterization of learning made use of frequency-based system identification, a powerful tool513

that has been previously used to study biological motor control such as insect flight (Sponberg et al.,514

2015; Roth et al., 2016), electric fish refuge tracking (Cowan and Fortune, 2007;Madhav et al., 2013),515

human posture (Oie et al., 2002; Kiemel et al., 2006), and human reaching (Zimmet et al., 2019).516

This approach has a number of practical advantages over other methods for studying motor control517

(e.g., point-to-point reaches)—including time-efficiency for data collection and the availability of a518

rich suite of tools in the frequency domain (Schoukens et al., 2004). However, to our knowledge,519

frequency-based system identification has not previously been applied to investigate motor learning.520

Here, we have demonstrated that this approach can not only recapitulate the results of previous521

studies but also extend these results to identify distinct components of control. Our approach522

is also general as it can be applied to assess learning of arbitrary linear visuomotor mappings523

(e.g., 15° rotation, body-machine interfaces (Mussa-Ivaldi et al., 2011)). Under previous approaches,524

characterizing the quality of movements under different types of learnedmappings (rotation, mirror-525

reversal) has necessitated different ad hoc analyses that cannot be directly compared (Telgen et al.,526

2014). In contrast, our frequency-based approach provides a general method to characterize527

behavior under rotations, mirror-reversals, or any linear mapping from effectors to a cursor.528

While the system identification approach used in the present study does capture learning, the529

results obtained using this approach do warrant careful interpretation. In particular, one must not530

interpret the empirical relationship that we measure between the target and hand as equivalent to531

the input–output relationship of the brain’s motor controller. The former measures the response532

of the entire sensorimotor system to external input. The latter only measures how the controller533

sends motor commands to the body in response to input from the environment/internal feedback.534

Estimating the latter relationship requires a more nuanced approach that takes into account the535

closed-loop topology (Roth et al., 2014). Despite this, changes to the controller are still revealed536

using our approach; assuming that learning only drives changes in the input–output relationship537

of the controller—as opposed to, for example, the plant or the visual system—any changes in the538

overall target–hand relationship will reflect changes to the controller. Thus, our approach is a valid539

way to investigate learning.540

Although the primary goal of our frequency-based analysis was to establish how participants541

mapped target motion into hand motion, system identification yields more detailed information542

than this; in principle, it provides complete knowledge of a linear system in that knowing how the543

system responds to sinusoidal input at different frequencies enables one to predict how the system544

will respond to arbitrary inputs. This data can be used to formally compare different possible545

control system architectures (Zimmet et al., 2019) supporting learning, and we plan to explore this546

more detailed analysis in future work.547

De Novo Learning and Real-World Skill Learning548

We have used the term “de novo learning” to refer to any mechanism, aside from implicit adaptation,549

that leads to the creation of a new controller. We propose that de novo learning proceeds initially550

through explicit processes before becoming cached or automatized into a more procedural form.551

There are, however, a number of alternative mechanisms that could be engaged to establish a new552

controller. One proposal is that de novo learning occurs by simultaneously updating forward and553
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inverse models by simple gradient descent (Pierella et al., 2019). Another possibility is that a new554

controller could be learned through reinforcement learning. In motor learning tasks, reinforcement555

has been demonstrated to engage a learning mechanism that is independent of implicit adaptation556

(Izawa and Shadmehr, 2011; Cashaback et al., 2017; Holland et al., 2018) potentially via basal-557

ganglia-dependent mechanisms (Schultz et al., 1997; Hikosaka et al., 2002). Such reinforcement558

could provide a basis for forming a new controller. Although prior work on motor learning has559

focused on simply learning the required direction for a point-to-point movement, theoretical560

frameworks for reinforcement learning have been extended to continuous time and space to learn561

continuous controllers for robotics (Doya, 2000; Theodorou et al., 2010; Smart and Kaelbling, 2000;562

Todorov, 2009), and such theories could be applicable to how people learned continuous control in563

our experiment.564

Although we have described the mirror-reversal task as requiring de novo learning, we acknowl-565

edge that there are many types of learning which might be described as de novo learning that this566

task does not capture. For example, many skills, such as playing the cello, challenge one to learn567

how to execute new movement patterns that one has never executed before (Costa, 2011). This568

is not the case in the tracking task which only challenges one to select movements one already569

knows how to execute. Also, in many cases, one must learn to use information from new sensory570

modalities for control (van Vugt and Ostry, 2018; Bach-y-Rita and W. Kercel, 2003), such as using571

auditory feedback to adjust one’s finger positioning while playing the cello. Our task, by contrast,572

only uses very familiar visual cues. Nevertheless, we believe that learning a new controller that573

maps familiar sensory feedback to well-practiced actions in a novel way is a critical element of574

many real-world learning tasks (e.g., driving a car, playing video games) and should be considered a575

fundamental aspect of any de novo learning.576

Ultimately, our goal is to understand real-world skill learning. We believe that studying learning577

in continuous tracking tasks is important to bring us closer to this goal since a critical component of578

many skills is the ability to continuously control an effector in response to ongoing external events,579

like in juggling or riding a bicycle. Studies of well-practiced human behavior in continuous control580

tasks has a long history, such as those examining the dynamics of pilot and vehicle interactions581

(McRuer and Jex, 1967). However, most existing paradigms for studying motor learning have582

examined only point-to-point movements. We believe the tracking task presented here offers a583

simple but powerful approach for characterizing how we learn a new continuous controller and, as584

such, provides an important new direction for advancing our understanding of how real-world skills585

are acquired.586

Methods and Materials587

Participants588

40 right-handed, healthy participants over 18 years of age were recruited for this study (24.28 ± 5.06589

years old; 19 male, 21 female), 20 for the main experiment (Figures 2–5) and 20 for the follow-up590

experiment (Figure 6). Participants all reported having no history of neurological disorders. All591

methods were approved by the Johns Hopkins School of Medicine Institutional Review Board.592

Tasks593

Participants made planar movements with their right arm, which was supported by a frictionless air594

sled on a table, to control a cursor on an LCD monitor (60 Hz). Participants viewed the cursor on a595

horizontal mirror which reflected the monitor (Figure 1B). Hand movement was monitored with596

a Flock of Birds magnetic tracker (Ascension Technology, VT, USA) at 130 Hz. The (positive) x axis597

was defined as rightward, and the y axis, forward. The cursor was controlled under three different598

hand-to-cursor mappings: 1) veridical, 2) 90° visuomotor rotation, and 3) mirror reversal about the599

45° oblique axis in the (x, y) = (1, 1) direction. Participants were divided evenly into two groups, one600

that experienced the visuomotor rotation (n = 10; 4 male, 6 female) and one that experienced the601
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mirror reversal (n = 10; 6 male, 4 female). Both groups were exposed to the perturbed cursors while602

performing two different tasks: 1) the point-to-point task, and 2) the tracking task.603

Point-to-point task604

To start a trial, participants were required to move their cursor (circle of radius 2.5 mm) into a target605

(grey circle of radius 10 mm) that appeared in the center of the screen. After 500 ms, the target606

appeared 12 cm away from the starting location in a random direction. Participants were instructed607

to move in a straight line, as quickly and accurately as possible to the new target. Once the cursor608

remained stationary (speed < 0.065 m/s) in the new target for 1 sec, the target appeared in a new609

location 12 cm away, but constrained to lie within a 20 cm × 20 cm workspace. Each block used610

different, random target locations from other blocks. Blocks in the main experiment consisted611

of 150 reaches while blocks in the follow-up experiment (Figure 6) consisted of 15 reaches. To612

encourage participants to move quickly to each target, we provided feedback at the end of each613

trial about the peak velocity they attained during their reaches, giving positive feedback (a pleasant614

tone and the target turning yellow) if the peak velocity exceeded roughly 0.39 m/s and negative615

feedback (no tone and the target turning blue) if the peak velocity was below that threshold.616

Tracking task617

At the start of each trial, a motionless target (grey circle of radius 8 mm) appeared in the center of618

the screen, and the trial was initiated when the participant’s cursor (circle of radius 2.5 mm) was619

stationary (speed < 0.065 m/s) in the target. From then, the target began to move for 46 seconds620

in a continuous, pseudo-random trajectory. The first 5 seconds was a ramp period where the621

amplitude of the cursor increased linearly from 0 to its full value, and for the remaining 41 seconds,622

the target moved at full amplitude. The target moved in a two-dimensional, sum-of-sinusoids623

trajectory; fourteen sinusoids of different frequencies, amplitudes and phases were summed to624

determine target movement in the x-axis (frequencies (Hz): 0.1, 0.25, 0.55, 0.85, 1.15, 1.55, 2.05;625

amplitudes (cm): 2.31, 2.31, 2.31, 1.76, 1.30, 0.97, 0.73, respectively), and the y-axis (frequencies626

(Hz): 0.15, 0.35, 0.65, 0.95, 1.45, 1.85, 2.15; amplitudes (cm): 2.31, 2.31, 2.31, 1.58, 1.03, 0.81, 0.70,627

respectively). Different frequencies were used for the x- and y-axes so that hand movements at628

a given frequency could be attributed to either x- or y-axis target movements. All frequencies629

were prime multiples of 0.05 Hz to ensure that the harmonics of any target frequency would not630

overlap with any other target frequency. The amplitudes of the sinusoids for all but the lowest631

frequencies were proportional to the inverse of their frequency to ensure that each individual632

sinusoid had similar peak velocity. We set a ceiling amplitude for low frequencies in order to prevent633

target movements that were too large for participants to comfortably track. Note that due to the634

construction of the input signal, there were no low-order harmonic relations between any of the635

component sinusoids on the input, making it likely that nonlinearities in the tracking dynamics636

would manifest as easily discernible harmonic interactions (i.e. extraneous peaks in the output637

spectra). Moreover, care was taken to avoid “frequency leakage” by designing discrete Fourier638

transform windows that were integer multiples of the base period (20 s), improving our ability to639

detect such nonlinearities.640

Participants were instructed to keep their cursor inside the target for as long as possible during641

the trial. The target’s color changed to yellow anytime the cursor was inside the target to provide642

feedback for their success. One block of the tracking task consisted of eight, 46-second trials,643

and the same target trajectory was used for every trial within a block. For different blocks, we644

randomized the phases, but not the frequencies, of target sinusoids to produce different trajectories.645

We produced five different target trajectories for participants to track in the six tracking blocks.646

The trajectory used for baseline and post-learning were the same to allow a better comparison for647

aftereffects. All participants tracked the same five target trajectories, but the order in which they648

experienced these trajectories was randomized in order to minimize any phase-dependent learning649

effects.650
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Experiment651

We first assessed the baseline control of both groups of participants by having them perform one652

block of the tracking task followed by one block of the point-to-point task under veridical cursor653

feedback. We then applied either the visuomotor rotation or mirror reversal to the cursor, and654

used the tracking task to measure their control capabilities during early learning. Afterwards, we655

alternated three times between blocks of point-to-point training and blocks of tracking. In total,656

each participant received 450 point-to-point reaches of training under perturbed cursor feedback.657

Finally, we measured aftereffects post-learning by returning to the veridical mapping and using the658

tracking task.659

Data Analysis660

Analyses were performed in MATLAB R2018b (The Mathworks, Natick, MA, USA) and R version 4.0.2661

(RStudio, Inc., Boston, MA, USA) (R Core Team, 2016; Lenth, 2015; Pinheiro et al., 2016; Lenth, 2016).662

Figures were created using Adobe Illustrator (Adobe Inc., San Jose, CA, USA).663

Trajectory-alignment analysis664

In the point-to-point task, we assessed performance by calculating the angular error between665

the cursor’s initial movement direction and the target direction relative to the start position. To666

determine the cursor’s initial movement direction, we computed the direction of the cursor’s667

instantaneous velocity vector ∼150 ms after the time of movement initiation. Movement initiation668

was defined as the time when the cursor left the start circle on a given trial.669

In the tracking task, we assessed performance by measuring the average mean-squared error670

between the hand and target positions for every trial. For the alignment matrix analysis, we fit671

a matrix, M̂ =

[

a b
c d

]

, that minimized the mean-squared error between the hand and target672

trajectories for every trial. In the latter analysis, the mean-squared error was additionally minimized673

in time by delaying the target trajectory relative to the hand. (While the time-delay allowed for674

the fairest possible comparison between the hand and target trajectories in subsequent analysis,675

changing or eliminating the alignment did not qualitatively change our results.) We estimated M̂ as676

M̂ = argmin
M

{[

Hx

Hy

]

−M

[

Tx
Ty

]}

(1)677

where H and T represent hand and target trajectories. These estimated M̂ ’s were averaged678

element-wise across participants to generate the alignment matrices shown in Figure 3A. These679

matrices were visualized by plotting their column vectors, also shown in Figure 3A.680

The off-diagonal elements of each participant’s alignment matrix were used to calculate the681

off-diagonal scaling, S, in Figure 3B:682

Srotation =
−b + c
2

, Smirror =
b + c
2

. (2)683

Compensation angles, �, for the rotation group’s alignment matrices were found using the singular684

value decomposition, SVD(⋅). This is a standard approach which, as described in Umeyama (1991),685

identifies a pure rotation, R, that best describes M̂ irrespective of other transformations (e.g.,686

dilation, shear) (Figure 3C, left). Briefly,687

UΣV T = SVD(M̂T ), (3)688

689

R = V U T
(4)690

where U and V contain the left and right singular vectors and Σ contains the singular values.691

Note that R is a rotation matrix only if det(M̂T ) ≥ 0, but R is a reflection matrix when det(M̂T ) < 0.692

Although Umeyama (1991) have described a method whereby all R can be forced to be a rotation693
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matrix, we did not want to impose nonexistent structure onto R and, thus, did not analyze trials694

which yielded reflection matrices. However, this was not a major issue for the analysis as nearly all695

trials yielded rotation matrices. Subsequently, � was calculated as696

� = atan2(R2,1, R1,1) (5)697

where atan2(⋅) is the 2-argument arctangent.698

Finally, for the mirror-reversal group, the scaling orthogonal to the mirror axis was found by699

computing how the matrix transformed the unit vector along the orthogonal axis (Figure 3C, right):700

Sorthogonal =
1
2

(

[

1 −1
]

[

a b
c d

][

1
−1

])

= 1
2
(a − b − c + d). (6)701

Frequency-domain analysis702

To analyze trajectories in the frequency domain, we applied the discrete Fourier transform to703

the target and hand trajectories in every tracking trial. This produced a set of complex numbers704

representing the amplitude and phase of the signal at every frequency. We only analyzed the first705

40 seconds of the trajectory that followed the 5-second ramp period so that our analysis period706

was equivalent to an integer multiple of the base period (20 s). This ensured that we would obtain707

clean estimates of the sinusoids at each target frequency. Amplitude spectra were generated by708

taking double the modulus of the Fourier-transformed hand trajectories at positive frequencies.709

Spectral coherence was calculated between the target and hand trajectories (Stoica and Moses,710

2005). To do so, we evaluated the single-input multi-output coherence at every frequency of target711

motion, determining how target motion in one axis elicited hand movement in both axes. This712

best captured the linearity of participants’ behavior as using hand movement in only one axis for713

the analysis would only partially capture participants’ responses to target movement at a given714

frequency. Calculations were performed using a 1040-sample Blackman-Harris window with 50%715

overlap between segments.716

During each 40 s stimulus period, we assumed the relationship between target position and717

hand position behavior was well approximated by linear, time-invariant dynamics; this assumption718

was tested using the coherence analysis described above. Under this assumption, pure sinusoidal719

target motion at each frequency should be translated into pure sinusoidal hand motion at the same720

frequency but with different magnitude and phase. The relationship between hand and target can721

therefore be described in terms of a 2×2matrix of transfer functions describing the behavior of the722

system at each possible frequency:723

[

Hx(!)
Hy(!)

]

= P (!)

[

Tx(!)
Ty(!)

]

, P (!) =

[

pxx(!) pxy(!)
pyx(!) pyy(!)

]

. (7)724

Here,H(!) and T (!) are the Fourier transforms of the time-domain hand and target trajectories,725

respectively, and ! is the frequency of movement. Each element of P (!) represents a transfer726

function relating a particular axis of target motion to a particular axis of hand motion; the first and727

second subscripts represent the hand- and target-movement axes, respectively. Each such transfer728

function is a complex-valued function of frequency, which can further be decomposed into gain729

and phase components, e.g.:730

pxy(!) = gxy(!)e�xy(!), (8)731

where gxy(!) describes the gain (ratio of amplitudes) between y-target and x-hand motion as a732

function of frequency, and �xy(!) describes the corresponding difference in the phase of oscillation.733

We estimated the elements of P (!) for frequencies at which the target moved by first noting734

that, for x-axis frequencies !, Ty(!) = 0. Consequently,735

[

Hx(!)
Hy(!)

]

=

[

pxx(!)Tx(!)
pyx(!)Tx(!)

]

, (9)736
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and we can therefore estimate pxx(!) and pyx(!) as:737

pxx(!) =
Hx(!)
Tx(!)

, pyx(!) =
Hy(!)
Tx(!)

. (10)738

These quantities are also known as phasors, complex numbers which describe the gain and739

phase relationship between the hand and target. We estimated pyx(!) and pyy(!) analogously at740

y-frequencies of target motion.741

These estimates yielded two elements of the overall transformation matrix P (!) at each fre-742

quency of target movement. In order to construct a full 2 × 2 matrix, we paired the gains from743

neighboring x- and y-frequencies, assuming that participants’ behavior would be approximately the744

same at neighboring frequencies. For example, the pair of gains from the lowest x-target frequency745

(0.1 Hz) was grouped with the analogous gains from the lowest y-target frequency (0.15 Hz) to746

construct a 2 × 2matrix.747

The spatial transformation of target motion into hand motion at each frequency is described by748

the gain of each element of P (!). However, gain and phase data can lead to certain ambiguities;749

for example, a positive gain with a phase of � radians is indistinguishable from a negative gain750

with a phase of 0. Conventionally, this is resolved by assuming that gain is positive. In our task,751

however, the sign of the gain was crucial to disambiguate the directionality of the hand responses752

(e.g., whether the hand moved left or right in response to upward target motion). We used phase753

information to disambiguate positive from negative gains. Specifically, we assumed that the phase754

lag of the hand response at a given frequency would be similar across both axes of hand movement755

and throughout the experiment, but the gain would vary:756

pxx(!) ≈ gxx(!)e�̃(!), pyx(!) ≈ gyx(!)e�̃(!). (11)757

For a given movement frequency, �̃(!) was set to be the same as the mean phase lag during the758

baseline block, where the gain was unambiguously positive. This assumption enabled us to estimate759

a signed gain for each phasor using a least-squares approach. This method thus yielded estimated760

gains for each axis of hand motion, at each target frequency, and at each point during learning.761

As we did for the transfer-function matrix P (!), we paired the estimated gains from neighboring762

frequencies to obtain a series of seven gain matrices describing, geometrically, how target motion763

was translated into hand motion from low to high frequencies. Similar to the alignment matrix764

analysis, visualizations of these gain matrices were constructed by plotting the column vectors765

of the matrices. Off-diagonal gain, rotation angle, and gain orthogonal to the mirroring axis—all766

shown in Fig 5—were calculated in the same way as in Equations 2–6.767

Statistics768

The primary statistical tests for the main and follow-up experiments were performed using linear769

mixed-effects models. Primary mixed-effects models were fit using data from three parts of the770

study: 1) alignment matrix analysis in the main experiment, 2) gain matrix analysis in the main771

experiment, and 3) gain matrix analysis in the follow-up experiment. The data used in these models772

were the off-diagonal values of the transformation and gain matrices. In all models, data from the773

first trial of baseline, the last trial of late learning, and the first trial of post-learning were analyzed.774

For the follow-up experiment, we also included data from the first trial of early learning. Additionally,775

we removed outliers (25 out of 560 data points) from the follow-up experiment data as the effects776

demonstrated by most subjects were either greatly magnified or attenuated by one or two subjects.777

Outliers were defined as data that was 1.5 interquartile ranges outside the data from a given trial778

and group. Outlier rejection was not performed on data from the main experiment. Using Wilkinson779

notation, the structure of the model for the alignment matrix analysis was [off-diagonal scaling]780

∼ [block of learning] * [perturbation group] while the structure for both gain matrix analyses was781

[off-diagonal gain] ∼ [block of learning] * [perturbation group] * [frequency of movement]. Data782

were grouped within subjects.783
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We subsequently performed post-hoc statistical comparisons as needed for each of the linear784

mixed-effects models. For the alignment matrix analysis, we performed pairwise comparisons using785

Tukey’s range test. For the gain matrix analysis in the main and follow-up experiments, there was786

a 3-way interaction between frequency and the other regressors, so we fit seven different mixed-787

effects models for each frequency of movement post-hoc. We performed pairwise comparisons on788

these frequency-specific models using Tukey’s range test, Bonferroni correcting by the number of789

fitted models (i.e., 7).790
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Figure 4–Figure supplement 1. Amplitude spectra and coherence plots for y-hand movements.
A. Amplitude spectra of y-hand movements (black) averaged across participants from one trial in
each listed block. The amplitudes and frequencies of target movement are indicated by diamonds

(yellow: x-target; blue: y-target). Hand responses at the x- (yellow circles) and y-target (blue circles)
frequencies are connected by lines, respectively, for ease of visualization. B. Spectral coherence
between y-target movement and both x- and y-hand movement. Darker colors represent lower
frequencies and lighter colors represent higher frequencies. Error bars are SEM across participants.
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Figure 4–Figure supplement 2. Amplitude spectra of x-hand movements from single subjects.
A. Amplitude spectra (black) averaged across participants from one trial in each listed block. The
amplitudes and frequencies of target movement are indicated by diamonds (yellow: x-target;
blue: y-target). Hand responses at the x- (yellow circles) and y-target (blue circles) frequencies are
connected by lines, respectively, for ease of visualization.
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Figure 5–Figure supplement 1. Gain matrices fitted for different frequencies of hand movement.
Each element within a 2 × 2matrix is the gain estimated between hand and target movement at
a particular frequency. Each row of matrices displays the data from one trial of a tracking block

(averaged across participants) and each column is a frequency (frequencies increase from left

to right). Although only one trial of each block is depicted, other trials within each block were

qualitatively similar. Figure 5A was created by plotting the left column vector of each matrix as a

green arrow and the right column vector as a purple arrow.
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Figure 5–Figure supplement 2. Gain matrix analysis, identical to the one performed in Figure 5
except performed on a single subject from each group. A. Visualizations of gain matrices from
a single trial in each listed block. B. Average of the off-diagonal values of the gain matrix. C.
Compensation angle for the rotation group and gain orthogonal to the mirror axis for the mirror-

reversal group. Note compensation angles could not be estimated for every trial using our singular

value decomposition approach, so several data points are missing in the figure (see "Trajectory-

alignment analysis" for details on this approach).
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Figure 6–Figure supplement 1. Gain matrix analysis, identical to the one performed in Figure 6
except performed on a single subject from each group. A. Visualizations of gain matrices from
a single trial in each listed block. B. Average of the off-diagonal values of the gain matrix. C.
Compensation angle for the rotation group and gain orthogonal to the mirror axis for the mirror-

reversal group. Note compensation angles could not be estimated for every trial using our singular

value decomposition approach (see "Trajectory-alignment analysis" for details on this approach), so

several data points are missing in the figure.
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