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One-sentence summary: 

Single yeast cells signal consistently over time, indicating that their signaling pathways 

transmit information precisely. 
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Abstract 

Different isogenic cells have been shown to exhibit widely varying responses to the same 

extracellular signal. Based on the assumption that this variation arises from noise in the 

signaling pathways that cells use to transmit information from surface to nucleus, recent 

publications asserted that single cells cannot detect their surroundings accurately. Here, 

we analyze existing data on gene expression induced by the Saccharomyces cerevisiae 

pheromone response system, finding that individual cells signal consistently over time, 

implying that response variation arises primarily from stable cell-to-cell differences 

rather than signaling noise. Individual cells transmit at least 2.7 bits of information 

through the pheromone response system, enabling each cell to distinguish between at 

least 6 pheromone concentrations. In principle, cells can gain further precision by 

internally referencing these responses with measurements of constitutively expressed 

genes. Combination with prior results shows that only about 6% of total response 

variation arises from signaling pathway noise. 

 

Main text 

Cell signaling systems sense extracellular conditions and transmit information about 

them into the cell. The cell then uses the information to make decisions, such as whether 

to grow, undergo apoptosis, or differentiate. Incorrect decisions can lead to an 

undesirable fate, so one would reasonably expect that cell signaling systems would have 

evolved to transmit information accurately, as indeed was the assumption for many years 

(e.g. ref. [1]). 

However, the actual amount of information transmitted through cell signaling 

systems was not been quantified until recently, when several groups of researchers 

applied chemical stimuli to isogenic collections of single cells and measured the 

responses [2-5]. They observed wide variation, which they quantified with information 

theory (see refs. [6-10]) to show that the channel capacity for a single cell, meaning the 

maximum information that can be discerned about the stimulus level based on one cell’s 

response, is only about one bit. This number corresponds to two states, implying that a 

cell’s response is adequate for determining whether a stimulus is present or not, but 
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cannot give further detail about its concentration. This suggested that single cells cannot 

sense their surroundings precisely but may need to combine information from multiple 

sources to choose appropriate responses [2, 11, 12]. 

We propose a different interpretation, which is that the highly variable responses 

arise from temporally stable cell-to-cell differences instead of noisy biochemical signals. 

In this interpretation, which agrees with substantial prior work [13-16], individual cells 

behave differently from each other, but each is able to distinguish between different 

external conditions reasonably precisely by itself. By extension, individual cells might be 

able to make well-informed decisions on their own from relatively few inputs. 

We tested this possibility by analyzing published data on signaling by the yeast 

(Saccharomyces cerevisae) pheromone response system (PRS). This system, shown in 

Figure 1A, is a prototypical G-protein signaling system, bears close homology to many 

mammalian signaling systems and has been studied thoroughly by us and others [17-21]. 

It transmits information about pheromone (a-factor) binding at cell surface receptors to 

the cell nucleus, where the signal then induces expression of several genes. The cells that 

we investigated expressed yellow fluorescent protein (YFP) from a pheromone-

responsive promoter (PPRM1) and either red or cyan fluorescent protein (RFP or CFP) from 

the constitutive PACT1 promoter [18, 19] (see Supplementary Materials section 1 (SM-1)). 

We used two data sets in our analysis, from essentially identical cells. The first, 

from ref. [19] and shown in Figure 1B, represents the steady-state dose-response function 

for the PRS. It was collected using flow cytometry in which each cell’s response was 

computed as the ratio of pheromone-induced YFP expression to constitutive RFP 

expression in the same cell, which was then averaged over many cells. We required a 

dose-response function that was defined everywhere rather than only at discrete 

pheromone concentrations, so we used a Hill function fit to these experimental data (from 

ref. [20]) in our analysis rather than the raw data themselves (SM-2). 

The second data set, described in refs. [18, 22], represents single-cell responses to 

pheromone stimulation. At each of 5 pheromone concentrations, these data report the 

YFP and CFP fluorescence intensities of roughly 100 individual yeast cells at 14 equally 

spaced time points after pheromone addition, measured by microscopy (Fig. 1C). We 
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minimally filtered the data to remove entries for dead cells, badly segmented cells, and 

outlier measurements (SM-3). Figure 1D shows the YFP expression for 90 individual 

cells, each as a separate line, after stimulation by 20 nM pheromone. It shows that YFP 

concentrations stayed low initially and then increased nearly linearly over time for at 

least 3 hours. As neither pheromone nor intracellular YFP were degraded significantly 

during these experiments, the PRS within each cell must have signaled at a nearly 

constant rate. Figure 1E shows that the CFP concentration, from a constitutively 

expressed promoter in the same cells, did not respond to pheromone stimulation but only 

increased slightly due to cell growth. 

We quantified signaling fidelity in two ways. The first, shown with yellow shading 

in Figure 2, treated all variation as signaling uncertainty, while ignoring the difference 

between cell-to-cell variation and within-cell signaling noise, to allow a meaningful 

comparison with prior results [2-5]. The second, shown with green shading, distinguished 

between these two types of variation so that we could quantify information transmission 

within single cells. 

Combined variation. From the single-cell data for YFP fluorescence (hereafter, just 

“single-cell data”; Fig. 2A), we computed the mean and standard deviation YFP 

fluorescence for the entire cell population at each time point and pheromone dose. A 

scatter plot of these data (Fig. 2E, yellow points) shows a linear relationship, implying a 

constant coefficient of variation (hpop. = 0.466) between the mean responses of the cell 

population and the variation across the population. This agrees with prior work that 

focused on high-abundance proteins and is consistent with the idea that variation is 

dominated by extrinsic noise, including cell-to-cell variation [3, 18, 23, 24] (intrinsic 

noise, such as protein expression that varies due to mRNA fluctuations, results in the 

coefficient of variation decreasing in proportion to the square root of the mean value). 

We also normalized the single-cell data by subtracting the population mean at each 

time point (Fig. 2B) and then dividing by the population standard deviation at each time 

point (Fig. 2C). Each of these normalized fluorescence values represents the brightness of 

a particular cell relative to the population as a whole, at any given time point. These 
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values exhibited a bimodal distribution (Fig. 2D), likely arising from cells in different 

growth phases. 

Next, we computed what we call a signal-response-variation (SRV) curve (Fig. 2G; 

SM-4). Here, the mean response is the steady-state dose-response curve, the response 

standard deviation comes from the hpop. value of 0.466, and the shape of the response 

distribution at any given pheromone concentration is the bimodal distribution of YFP 

fluorescence values. Shading in the SRV curve represents the probability of observing 

response r given that the signal is s, which is called the conditional response probability 

and written as p(r|s). We computed the channel capacity from the conditional response 

that is shown in the SRV curve using the Blahut-Arimoto algorithm [25, 26] (SM-5), 

finding a result of 1.35 bits, which we call the population channel capacity. This means 

that knowledge of the YFP fluorescence from any randomly chosen single cell is 

sufficient to convey about 1.35 bits of information about the pheromone concentration. 

This corresponds to 2.5 different states (21.35), so knowing the YFP fluorescence from one 

cell can generally indicate whether pheromone is present or absent but does not give 

much more detail than that. This agrees with the about 1 bit of channel capacity found in 

previous studies of other cells [2-5]. 

Separated variation. To separate the effects of cell-to-cell variation from within-cell 

signaling noise, we assumed that the different slopes of the single-cell data traces shown 

in Figure 2A arose from temporally stable cell-to-cell variation and that the small 

“wiggles” within each of these traces represented signaling noise. In principle, these 

wiggle sizes could be computed by fitting smooth lines to the YFP fluorescence data and 

then computing residuals from them. However, such an approach would introduce 

artifacts from the necessarily imperfect fits to the non-linear time dependence. Thus, we 

chose a less direct but more neutral approach. Starting with the normalized data (Fig. 2C), 

we computed the difference between each normalized data point and the mean value for 

that cell over time to yield the normalized single-cell noise value for each data point. 

Then, at each time point and pheromone dose, we computed the root mean square (rms) 

average of these noise values over all cells. Finally, we removed the normalization by 

multiplying each rms average noise value by the population standard deviation. The 
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result is an average of the noise amount (or wiggle size) over all cells, at each time point 

and pheromone dose, in units of YFP fluorescence. Figure 2E shows the results with 

green dots, plotting these single-cell standard deviations against the mean fluorescence 

values. It again shows a linear relationship between the mean and standard deviations, but 

now with a coefficient of variation of hs.c. = 0.131. Much as before, the linear relationship 

is consistent with variation being dominated by extrinsic noise rather than the intrinsic 

noise that arises from the stochastic birth and death processes of individual transcripts or 

proteins [24, 27]. 

We also computed the distribution of single-cell noise values about the respective 

single-cell mean values. To account for the fact that brighter cells exhibited more noise, 

we divided the normalized single-cell noise values by the normalized single-cell mean 

values to yield noise values that could be compared between different cells, as well as 

between different time points and pheromone doses. Figure 2F shows the distribution of 

these single-cell noise values. It agrees reasonably well with a Gaussian, likely indicating 

that single-cell noise values arise from a sum of many factors, such as biochemical 

stochasticity in different signaling proteins and various types of measurement error. 

Combining these results created an SRV curve for a typical single cell (Fig. 2H; 

SM-6), meaning one whose response matches that of the population average and whose 

deviations arising from noise agree with the average deviations. In particular, this typical 

cell’s noise deviations are Gaussian distributed and have a coefficient of variation of hs.c.. 

The single-cell channel capacity, computed from this SRV curve, is 2.66 bits. This value 

represents the amount of information that is transmitted from a typical cell’s pheromone 

receptors to its induced protein expression. It implies that a typical cell can signal 

precisely enough to distinguish between at least 6 different pheromone concentrations 

(22.66). Because the data also included measurement noise, 2.66 bits is a lower limit and 

the true single-cell channel capacity may be substantially higher. This finding that cells 

can signal precisely is consistent with experimental results [28-31]. 

The difference between the two channel capacity results is akin to the formal 

difference between accuracy and precision. Accuracy represents the closeness of 

measurements to a true value whereas precision represents measurement reproducibility. 
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A scientist who measured the pheromone concentration by using the YFP fluorescence 

from one yeast cell would get a fairly inaccurate result, conveying only 1.35 bits of 

information. However, if the scientist had previously calibrated this cell’s response using 

some known pheromone concentration, then a new measurement would convey 2.66 bits 

of information due to good signaling precision. 

If a cell is only exposed to pheromone once in its life, then it would seem that its 

ability to transmit signals precisely would be wasted because it could still only estimate 

the external pheromone concentration to 1.35 bits. However, cells may be able to do 

better than this using the fact that expression levels of different genes tend to be 

correlated [18, 27, 32]. For example, one might imagine that a cell could compare the 

expression of a pheromone-responsive gene with that of a constitutively expressed gene, 

using the latter as an internal standard. We investigated this possibility by quantifying the 

information that a cell would learn if its YFP fluorescence value were divided by the 

simultaneously measured CFP value, computing the population and single-cell channel 

capacities as before. This normalization increased the population channel capacity to 2.01 

bits, implying that a cell could accurately distinguish about 4 different pheromone 

concentrations with a single measurement. It also increased the single-cell channel 

capacity to 2.92 bits, enabling a cell to distinguish about 8 different pheromone 

concentrations. Such cellular comparison is not wholly unreasonable, given the fact that 

the PRS is already able to sense the fraction of receptors bound by ligand, as opposed to 

only the absolute number of bound receptors [6, 33]. By extension, cells could use 

multiple internal standards, and/or standards that correlate particularly closely with 

pheromone-responsive gene expression, to further improve information transmission. 

Cells could also improve signaling precision (but not accuracy) by measuring pheromone 

repeatedly to improve information content by signal averaging [15] (SM-8). 

We wondered whether all cells signal similarly or if those that express more YFP 

might be able to signal more precisely than those that express less. To test this, we 

grouped cells into low, medium, and high brightness categories based on their normalized 

mean YFP fluorescence values (Fig. 2C). Repeating the single-cell channel capacity 

calculations showed that the channel capacity was slightly higher for cells in medium and 
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high brightness groups, but not by much (Fig. 3). This shows that the vast majority of 

these cells signaled precisely, regardless of their gene expression capacity. 

In previous work [18], we showed that total variance in pheromone-responsive 

expression, h2(y), can be expressed as a sum of four variances: h2(L) and h2(G) represent 

cell-to-cell variation in the capacity of the signaling pathway to transmit signals and in 

the capacity of the gene expression system to express genes, respectively, and h2(l) and 

h2(g) represent stochastic noise within the signaling pathway and in gene expression, 

respectively (an additional term accounts for correlations between pathway and 

expression capacity, but is often ignored, including here; see SM-7). In this formalism, 

our hpop. value gets squared to give h2(y) = 0.217, which agrees well with prior results 

[18]. Also, our hs.c. value gets squared to give h2s.c. = 0.017. Dividing this by h2(y) shows 

that only about 8% of the total variation arises from noise within a cell, while 92% of 

variation arises from cell-to-cell differences. Furthermore, the single cell variance can be 

broken down as h2s.c. = h2(l)+h2(g), and the gene expression noise is about 2% of total 

variation [18], which shows that about 6% of total output variation arises from signaling 

pathway noise. Thus, again, we find that signaling pathway noise is a small contributor to 

the total response variation. 

Based on the structural similarities between different eukaryotic signaling systems, 

along with the finding that the channel capacity for populations of cells is consistently 

about 1 bit, we suspect that our finding of precise signaling in single yeast cells applies to 

other signaling systems as well. If so, a wide variety of individual cells might be able to 

make well-informed decisions on their own. 
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Figure captions 

1. (A) The yeast PRS in mating type a cells. Pheromone (a-factor) binds to G-protein 

coupled receptors (Ste2), causing dissociation of heterotrimeric G-proteins 

(Gpa1/Ste18/Ste4), which recruits Ste5 scaffold proteins to the cell membrane and 

induces signaling through a MAP kinase cascade (Ste11, Ste7, Fus3, and Kss1); the MAP 

kinases activate Ste12 transcription factors which then promote expression of 

pheromone-responsive genes, in this case leading to YFP expression [17]. The 

pheromone concentration is the signal and YFP fluorescence is the response. (B) Dose-

response curve for the PRS. Points represent experimental data from ref. [19] and the line 

represents a Hill function fit to the data from ref. [20]. Points and fit were scaled to 

approach a maximum of 1. (C) Microscope image of YFP fluorescence from several cells 

at 0, 15, 45, and 90 minutes after measurement began, showing temporally consistent 

variation. Copied with permission from ref. [18]. (D) YFP fluorescence from 90 

individual cells over time after pheromone addition, quantified in arbitrary fluorescence 

units (F.U.). (E) CFP fluorescence, expressed from a constitutive promoter, from the 

same 90 individual cells. Data for panels D and E were measured for ref. [18] and made 

publically available in ref. [22]. 

 

2. Channel capacity computation method. (A) Filtered single-cell YFP fluorescence data, 

where each line represents fluorescence from a single cell over time; a representative cell 

is shown in black. Each layer represents a different pheromone dose. (B) The same data, 

but with the population mean (all cells at a given time point and pheromone dose) 

fluorescence values subtracted; the same cell is shown in black. (C) The normalized 

single-cell data, in which fluorescence difference values were divided by the population 

standard deviation; the same cell is shown in black. (D) Distribution of normalized 

fluorescence values from panel C. The line is a best fit with a sum of two Gaussians. (E) 

Correlation between mean and standard deviation values for the cell population in yellow 

and an average single cell in green. Each point represents a single time point and 

pheromone concentration. Lines are best fits that were constrained to intersect the origin. 

(F) Distribution of normalized fluorescence values about the normalized single-cell mean 
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values, scaled with the single-cell standard deviations. The line is a best fit with a single 

Gaussian. (G) Signal-response-variation (SRV) curve for the cell population. Shading 

represents the conditional response probability, p(r|s), the solid line represents the mean 

of this distribution, , and the dashed line represents the standard deviation of this 

distribution. (H) SRV curve for an average single cell, showing lower variation and hence 

greater information transfer. 

 

3. Channel capacity as a function of mean expression. We divided cells into low, medium, 

and high YFP expression groups based upon their normalized YFP fluorescence values 

and computed the single-cell channel capacity for each group of cells. 

 

 

r s( )
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Individual yeast cells signal at different levels but each with good precision 
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1. Experimental data 
1.1. Experimental dose-response data 

The data that we used for our steady-state dose-response curve was originally 
presented in Figure 2a of ref. (1), where it was shown with triangle symbols and 
described as “reporter gene expression output corrected for known sources of cell-to-cell 
variation (pathway output P)”. Richard Yu gave us the original data values for use in this 
and other work (see below and the supplementary information of ref. (2)). The original 
work did not describe some aspects of these data in detail, so we describe them here 
based upon information in ref. (1), the supplementary information for that paper, and 
personal communications with Richard Yu and Gustavo Pesce. 

The data were collected on S. cerevisiae haploid strain RY2073 (not strain ACL379, 
as reported in ref. (2)). RY2073 was derived from TCY3154, which is from ACL379, 
which is from YAS245-5C, which is a W303 derivative. The RY2073 strain has the 
following genotype, from the supplementary information of ref. (1): 

 
    MATa bar1Δ PAct1-mRFP::LYP1::ura3 prm1Δ::YFP::his3mx6 PPrm1CFP::TRP1 
 
In more detail, RY2073 is mating type a, has the BAR1 gene removed (to prevent 
pheromone degradation by Bar1 protein), has the LYP1 gene removed (to confer 
resistance to the yeast poison thialysine), has the PAct1 promoter and mRFP gene 
inserted at the LYP1 site (for constitutive expression of mRFP), has the URA3 gene also 
inserted at the LYP1 site (for selection on uracil-deficient plates), has the PRM1 gene 
removed (a pheromone-responsive gene that codes for a protein that is involved in 
membrane fusion during mating), has the YFP-His3MX6 gene inserted into the PRM1 
site and under control of the PPrm1 promoter (for pheromone-responsive YFP expression), 
and has a CFP gene that is expressed from another PPrm1 promoter and placed adjacent 
to the wild-type TRP1 gene. 

Fluorescence data were collected on these cells by sonicating exponentially 
growing cultures, diluting cells into fresh media, and then incubating them with 
appropriate concentrations of pheromone. Gene expression was stopped after 3 hours 
(for the steady-state signaling condition) by adding cycloheximide. RFP and YFP 
fluorescence was then measured on individual cells using high throughput flow 
cytometry. CFP fluorescence was not of interest and so was not intentionally excited and 
was blocked using optical filters. 

These resulting experimental data were filtered to remove dead cells (about 2-6% 
of cells burst while trying to make a shmoo), which have a distinctive fluorescence 
pattern. The ratios of YFP to RFP fluorescence values for the remaining cells were used 
in the remainder of the analysis. The following table, also presented in ref. (2), lists these 
data values. The column labeled “<y>/<r>” represents the fluorescence value ratios and 
the column labeled “response” shows our re-scaled version of the raw data. It was 
adjusted so that the basal response would equal the experimental value when no 
pheromone was added and scaled to make the maximum of a Hill function that was fit to 
these data equal to 1 (see SM-2). 
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Table SM-1.1. Dose-response data for yeast PRS. 
 
 [a] (nM) <y>/<r> response [a] (nM) <y>/<r> response 
 0 0.466 0.0470 0.00141 0.563 0.0571 
 1E-10 0.467 0.0471 0.00260 0.582 0.0590 
 1.84E-10 0.468 0.0472 0.00478 0.617 0.0627 
 3.39E-10 0.480 0.0485 0.00880 0.647 0.0658 
 6.23E-10 0.470 0.0475 0.0162 0.704 0.0716 
 1.15E-09 0.468 0.0473 0.0298 0.753 0.0767 
 2.11E-09 0.404 0.0406 0.0333 0.715 0.0728 
 3.88E-09 0.438 0.0441 0.0467 0.758 0.0772 
 7.14E-09 0.455 0.0459 0.0653 0.820 0.0837 
 1.31E-08 0.448 0.0452 0.0915 0.873 0.0891 
 2.42E-08 0.466 0.0470 0.128 0.995 0.102 
 4.45E-08 0.462 0.0466 0.179 1.10 0.113 
 8.18E-08 0.748 0.0762 0.251 1.26 0.130 
 1.51E-07 0.664 0.0675 0.351 1.44 0.147 
 2.77E-07 0.476 0.0481 0.492 1.68 0.173 
 5.10E-07 0.475 0.0480 0.689 1.86 0.191 
 9.38E-07 0.478 0.0483 0.964 2.38 0.245 
 1.73E-06 0.478 0.0483 1.35 3.23 0.333 
 3.18E-06 0.471 0.0475 1.89 3.87 0.399 
 5.84E-06 0.475 0.0479 2.65 5.15 0.532 
 1.08E-05 0.471 0.0476 3.70 6.17 0.637 
 1.98E-05 0.471 0.0475 5.19 7.15 0.739 
 3.64E-05 0.479 0.0484 7.26 7.59 0.784 
 6.70E-05 0.480 0.0485 10.2 8.58 0.886 
 1.23E-04 0.474 0.0478 20.3 8.95 0.925 
 2.27E-04 0.488 0.0493 40.7 9.43 0.975 
 4.17E-04 0.510 0.0516 81.3 9.57 0.990 
 7.68E-04 0.529 0.0536    

 
1.2 Experimental single-cell data 

The single-cell data that we used were originally presented in ref. (3). They are 
also publically available as example data for the RCell software package, described in 
ref. (4), where this data set is called the ACL394 data set. They are described in the 
Rcell metadata file (we loaded the data into Rcell and then entered “help(X)” to view the 
data description) as follows (with typos corrected): 

 
“This dataset was generated by Cell-ID, from an experiment done in 2004 by 
Alejandro Colman-Lerner and Andrew Gordon at the Molecular Science Institute 
(MSI). Saccharomices cerevisiae yeast cells of strain TCY3154 (MATa, bar1, 
prm1::Pprm1-YFP::HIS+, trp1::Pact1-CFP::TRP1) were stimulated with different 
doses of alpha-factor pheromone 10 minutes before the first time point. Images 
where acquired every 15 minutes for 3.5 hours. In the dataset there are 3 positions 
per treatment. The strain TCY3154 was derived from ACL394, a W303 derivative.” 

 
The TCY3154 haploid yeast strain was derived from ACLY394, which was derived 

from ACLY387, which was derived from ACLY379, which is a W303 derivative (the 
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ACLY and ACL prefixes were used interchangeably, so this ACLY379 parent strain is 
the same as the ACL379 parent of RY2073 described above). The genotype of 
TCY3154, from the supplementary information of ref. (3) is: 
 

    MATa bar1Δ cdc28-as2 ∆prm1::PPRM1-YFP-his5+ trp1::pPACT1-CFP::TRP1  

 
In more detail, TCY3154 is mating type a, has the BAR1 gene removed, expresses 
Cdc28-as2 from the CDC28 gene (this replaced the wildtype gene and allows 1-NM-PP1 
inhibitor to be added to suppress the activity of the Cdc28 protein, thus stopping 
progression through the cell cycle), has the PRM1 gene replaced by a YFP-His3MX6 
gene inserted into the PRM1 site and under control of the PPrm1 promoter, and has a 
CFP gene that is under the control of the constitutive PACT1 promoter and placed in the 
trp1 genomic locus. 

From ref. (3), exponentially growing TCY3154 cells were sonicated, to separate 
clumped cells, and then deposited into glass-bottomed 96-well sample plates that had 
been pre-coated with concanavalin-A. Cells were allowed to settle and bind for 10 
minutes, after which unbound cells were washed off. Cells were imaged using an 
inverted fluorescence microscope from which three or more image fields per well were 
manually selected. Next, the authors acquired time 0 images and changed to medium 
with a-factor (final concentration of 1.25, 2.5, 5, 10, or 20 nM). Images, at each of the 
image fields, were collected automatically 10 minutes after that and then every 15 
minutes subsequently for a total of 14 time points. The first images in the data set that 
we used were the ones collected 10 minutes after pheromone addition. 
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2. Hill function fit to experimental dose-response data 
2.1. Hill function fitting procedure 

Curve fitting to the experimental dose-response data points is described in the 
supplementary information for ref. (2) and repeated here. We fit the YFP to RFP ratio 
data, listed in the column labeled <y>/<r> in Table SM-1.1, with a 4-parameter Hill 
function by manually adjusting parameters in Microsoft Excel until the least-squares 
difference between the curve and the data was minimized. This function is 

 

 , 

 

where  is the mean response over all cells as a function of the signal, s is the signal 
or pheromone concentration, B is the Hill function baseline, A is the Hill function 
amplitude, E is the Hill function EC50 (the signal value that produces half-maximal 
response), and N is the Hill coefficient. We scaled the result so that the baseline would 
equal the response that arose with no pheromone addition, which was 4.7% of the 
maximal response, and also so that the fitted response would asymptotically approach a 
maximum value of 100% (i.e. A+B = 1.0). Best fit values are B = 0.047, A = 0.953, E = 
2.67 nM, and N = 1.24. This fit has an rms error of 0.18%, showing excellent agreement 
with the data. 

 
2.2. Justification for basing results on fits to data rather than the raw data 

The channel capacity results found in this work were based on multiple fits to data 
rather than the raw data themselves. The most important reason for this approach was 
that it produced an SRV curve that was continuous over all signal values rather than 
being defined at only the 5 pheromone concentrations that were experimentally 
investigated for the single-cell data. Using the raw data would have artificially lowered 
channel capacity results. In particular, it would have capped channel capacity results to 
log2(5) = 2.3 bits (the signal entropy), even if the variation had been very low. The 
interpolations and extrapolations that were inherent to the fits removed these artifacts. 
Also, we wanted to quantify the channel capacity during steady-state signaling, which is 
accurately represented in the dose-response curve that we used but would be 
complicated to infer from the single-cell data due to time-dependent dose-response 
behaviors in the PRS (5). 
  

r s( ) = B + A sN

EN + sN

r s( )
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3. Initial processing and filtering of experimental single-cell data 
3.1 Removing dead cells and segmentation errors 

Microscope images for the experimental single-cell data were processed in several 
steps. First, Colman-Lerner, Gordon, and coworkers imported them into CELL-ID for 
image segmentation and fluorescence quantification (3, 6). The CELL-ID output was 
called the ACL394 data set and was made available with the Rcell download package 
(4). 

We imported the ACL394 data set into Rcell, where we applied minimal filtering 
while following the procedure recommended in ref. (4). This removed “badly found and 
spurious cells,” which are image structures that CELL-ID incorrectly identified as cells, 
such as dead cells and portions of cells that CELL-ID segmented incorrectly. The first 
filter removed cells that had highly non-circular images. The following figure shows the 
distribution of non-circularity values (called fft.stat) for cell images in the ACL394 data 
set (the figure is copied from the Rcell.pdf document, from the Rcell download package). 
It shows that nearly all cells had non-circularity values of 0.5 or less, while a few were 
more non-circular. Rcell removed images with non-circularity values greater than 0.5, 
which was 1.1% of the images. 

 

 
 
The second filter removed cell images that appeared in only some but not all of the 14 
time frames, again because this is indicative of badly found and spurious cells (4). This 
filter removed 21.5% of the cell images. See the Rcell.pdf file, from the Rcell download 
package, for details. The resulting filtered data are called the ACL394filtered data set 
and are also available as part of the Rcell package. 
 
3.2 Correcting fluorescence values 

Using the ACL394filtered data set, we subtracted off the background fluorescence 
values for both the YFP and CFP images by following the advice given in the 
transform.pdf file, from the Rcell download package. In particular, we entered “X<-
transform(X,f.total.y=f.tot.y-f.bg.y*a.tot)” in R for the YFP data, where this 
means that we created the variable f.total.y and set it equal to the raw fluorescence 
value, f.tot.y, minus the product of the background fluorescence level, f.bg.y, and the 
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cell area, a.tot. Similarly, we corrected the CFP data with the statement “X<-
transform(X,f.total.c=f.tot.c-f.bg.c*a.tot)”. We exported the resulting cell 
fluorescence values from R and imported them into Mathematica. 

At this point, our data represented the experimental YFP and CFP fluorescence 
values, integrated over entire cell areas and corrected for background fluorescence, for 
each of about 100 cells at 14 different time points, for 5 different pheromone 
concentrations. The following table (Table SM-2.1) shows the actual number of cells in 
the ACL394filtered data set at each pheromone concentration (the same cells were 
investigated repeatedly for the 14 time points, but different cells were used for the 5 
pheromone concentrations). 

 
Table SM-2.1. Filtering to remove badly found and spurious cells. 

a-factor number of cells in 
(nM) ACL394filtered 
1.25 100 
2.5 114 
5 113 
10 117 
20 103 

 
3.3 Removing cells with outlier data points 

These data still contained cell fluorescence values that were clearly in error. For 
example, the following figure shows YFP fluorescence values over time for the first 20 
cells in the data set that were exposed to 20 nM a-factor, with a separate trace for each 
cell. 
 

 
 
Clearly, most of these cells show a reasonably smooth increase of YFP fluorescence, as 
one would expect (YFP is expressed by pheromone-responsive genes and is not 
degraded to any significant extent). However, the cell that is shown in blue near the 
center of the group of lines appears to have YFP fluorescence that increased suddenly 
between time points 8 and 9, and then decreased a similar amount between points 9 
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and 10, and then increased again between time points 13 and 14. This does not make 
physical sense, but presumably arose from imaging errors at time points 9 and 13. 

We removed cells that exhibited this type of artifact from the data set. For each cell, 
we computed the change in fluorescence between each pair of adjacent time points and 
then subtracted the mean slope of the time course; we labeled these values as ∆YFP 
and ∆CFP fluorescence. For example, the same 20 single-cell time traces shown above 
led to the following figure for the ∆YFP fluorescence values: 
 

 
 
Again, the blue trace stands out as an outlier. We addressed it, and others like it, by 
removing all cells from the data set for which the absolute value of any ∆YFP or ∆CFP 
value was in the top 1% of all difference values. For example, the following histogram 
shows the distribution of difference values for the YFP data at 20 nM a-factor. 1% of 
these data were outside of the range from -1.003´106 to 1.003´106 fluorescence units, 
so we removed the cells that contributed those data points from the data set. Looking 
back at the previous figure, it can be seen that two points of the blue trace shown above 
had ∆YFP values that exceeded this threshold and no points for the other traces 
exceeded it, in agreement with the qualitative assessment that the blue trace is an 
outlier and the others are not. 
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The particular thresholds were different for the other pheromone concentrations and for 
the CFP data, but in all cases they separated the overwhelming bulk of the distribution 
from extreme outliers. This filtering removed about 11% of the cells from the data set. 
The following table shows the numbers of remaining cells at each pheromone 
concentration. 

 
Table SM-2.2. Filtering to remove extreme outlier cells. 

a-factor number of cells in number of cells after 
(nM) ACL394filtered outlier filtering 
1.25 100 87 
2.5 114 105 
5 113 102 
10 117 104 
20 103 90 
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4. Population SRV curve computation 
4.1 Un-normalized data and coefficients of variation 

The following figures show the filtered YFP (left) and CFP (right) single-cell 
fluorescence data at 1.25, 2.5, 5, 10, and 20 nM a-factor, respectively. The x-axis shows 
the time in minutes and the y-axis shows fluorescence in arbitrary fluorescence units. 
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As described in the main text, we computed the mean and standard deviation 
fluorescence values for each time point and each pheromone concentration, in each 
case averaging over all cells measured for that time point and pheromone concentration. 
This led to 70 (5´14) data points for the YFP data, which we call the population mean 
and standard deviation values. Defining y(s,i,t) as the YFP fluorescence value for 
pheromone level s, cell number i, and time point number t, the population mean and 
population standard deviations are, respectively 

  

  

where angle brackets denote a mean over the variable that is listed in the subscript and 
ni(s) is the number of cells that were investigated for pheromone level s (roughly equal to 
100). 

Although not described in the main text, we also did the same thing with the CFP 
data, producing 70 more data points. The following figure shows both the YFP and CFP 
data, with YFP in yellow and CFP in cyan. 

 
 
This figure shows that the YFP data exhibited a wider variation of both mean and 
standard deviations than the CFP data, but that they had almost identical coefficients of 
variation. Best-fit lines, which were constrained to go through the origin, had slopes 
(CVpop. values or, equivalently, hpop.) of 0.466 for YFP and 0.443 for CFP. We also fit 

µpop. s,t( ) = y s,i,t( )
i

σ pop. s,t( ) =
y s,i,t( )− µpop. s,t( )⎡⎣ ⎤⎦

2

i
∑

ni s( )−1 ≈ y s,i,t( )− µpop. s,t( )⎡⎣ ⎤⎦
2

i
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these lines with unconstrained y-intercepts and found that the best-fit intercept 
parameters were not statistically significant (p-values of 0.75 for YFP and 0.22 for CFP), 
so we neglected these intercepts in further work. Although the similarity between YFP 
and CFP was interesting, we did not make use of it in this work, but focused primarily on 
the YFP data. We investigated the scatter of YFP and CFP points about the best-fit lines 
in this figure and did not find significant trends with respect to either the time after 
pheromone addition or pheromone dose. 

The CVpop. values of 0.466 and 0.443 are comparable to those found in prior work, 
which generally ranged from about 0.2 to about 0.7 (3, 7, 8). 

 
4.2 Normalized data and bimodal distribution of normalized fluorescence 

The following figures show the normalized YFP (left) and CFP (right) single-cell 
fluorescence data at 1.25, 2.5, 5, 10, and 20 nM a-factor, respectively. Data were 
normalized by subtracting the mean fluorescence value from each data point and then 
dividing by the standard deviation, where both means and standard deviations were 
computed separately at each time point and pheromone dose. As a result, the 
normalized data have a mean of zero and a standard deviation of 1 at each time point 
and pheromone dose, when considering the statistics over all cells. As equations, the 
normalized data values are 

  

where the tilde denotes normalization. In these figures, the x-axis shows the time in 
minutes and the y-axis shows normalized fluorescence. 
 

    

    

 
!y s,i,t( ) = y s,i,t( )− µpop. s,t( )

σ pop. s,t( )
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We computed the distribution of these normalized points about the population 
mean values (equal to 0 in the normalized data) from these data. As described in the 
main text, the distribution for all of the normalized YFP data points was strongly bimodal 
and fit well by a sum of two Gaussians. The best-fit parameters for these Gaussians 
were: area of 0.708, mean of 0.458, and standard deviation of 0.656 for one, and area of 
0.283, mean of -1.200, and standard deviation of 0.488 for the other. Further 
investigation showed that this distribution varied some with different pheromone 
concentrations and measurement time, but was always bimodal and reasonably similar. 
For example, the following figures show the distributions at 1.25, 5, and 20 nM a-factor, 
in each case including values from all time points. Each figure shows the same sum of 
Gaussians that best fit the complete data set. 
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Similarly, the following figures show the distributions at 10 minutes, 115 minutes, and 
220 minutes (time points 1, 7, and 14) after pheromone addition, in each case including 
values from all pheromone doses. Again, each figure shows the same sum of Gaussians 
that best fit the complete data set. 
 

   
 
In addition, the distribution for normalized CFP fluorescence values was bimodal as well. 
It is shown in the following figure, now including all time points and pheromone doses, 
again with the black line showing the same sum of Gaussians. 
 

 
 
We suspect that this bimodal distribution arose from cells that were arrested in the G1 
and G2 phases of the cell cycle. 

 
4.3 Signal-response variation curve 

We computed the signal-response-variation (SRV) curve as described in the main 
text, using the Hill function fit to the steady-state dose-response data (SM-2), the 
measured coefficient of variation for YFP (SM-4.1), and the fit to the bimodal YFP 
fluorescence distribution (SM-4.2). We repeat the SRV curve here: 
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Shading in this figure qualitatively represents the conditional probability that some 
specific cell will respond with response (fluorescence) r, given that the signal 
(pheromone) level is s, written as p(r|s). However, the shading was scaled in this figure 
to give the same maximum darkness at each signal level. In fact, the conditional 
probability integrates to 1 at each signal level, 

 , 

so it would be more correct to show this figure with the same cumulative darkness at 
each signal level. However, doing so would lead to extremely dark shading at low 
pheromone concentrations and imperceptibly faint shading at high pheromone 
concentrations, making the figure difficult to interpret. Thus, we chose this alternate 
scaling method for clarity.  

p r | s( )dr
r
∫ = 1
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5. Channel capacity computation 
5.1 Conditional probability function, p(r|s) 

We computed the channel capacity from the p(r|s) function, which is the conditional 
probability of observing response r, given that the signal value is equal to s. The signal-
response-variation (SRV) curves that we presented are graphical depictions of this 
conditional probability distribution. We defined the p(r|s) function from three components. 

First,  is the mean response for given signal, averaged over many cells, 
meaning that it is the conventional dose-response curve. In practice, we used 

   

where B = 0.047, A = 0.953, E = 2.67 nM, and N = 1.24, as described in the main text 
and explained further in SM-2. The second component is the coefficient of variation, 
written here as h (it is denoted CV in the main text, but is clearer in equations as h). In 
principle, the coefficient of variation could have been a function of the mean response 
level and/or the signal value, but the experimental results showed that it was actually a 
constant (SM-4.1), so it is shown that way here. Third, we defined f(r',s) as the 
distribution of individual responses about the mean response, scaled so that its standard 
deviation is equal to s. As equations, this means that the moments of the distribution of 
f(r',s) are 

   

   

  . 

In practice, we used the following bimodal distribution when computing the conditional 
probability for the cell population, 

   

where A1 = 0.708, µ1 = 0.458, s1 = 0.656, A2 = 0.283, µ2 = -1.200, and s2 = 0.488. This 
bimodal distribution is identical to the one shown in the main text Figure 2D and 
described in SM-4.2 when s = 1, and is re-proportioned to be narrower or wider with 
smaller or larger s values. When computing the conditional probability for single cells, 
we used a standard normalized Gaussian distribution, 

  . 

Both of these functions obey the moments that are specified above. Finally, we 
combined these components to give the conditional probability distribution as 

r s( )

r s( ) = B + A sN

EN + sN

f ′r ,σ( )d ′r
′r
∫ = 1

′r f ′r ,σ( )d ′r
′r
∫ = 0

′r 2 f ′r ,σ( )d ′r
′r
∫ =σ 2

f ′r ,σ( ) = A1
σσ 1 2π

exp −
′r − µ1( )2
2 σσ 1( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ A2
σσ 2 2π

exp −
′r − µ2( )2
2 σσ 2( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f ′r ,σ( ) = 1
σ 2π

exp − ′r 2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥
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  . 

 
5.2 Principle of channel capacity computation 

The mutual information between signal and response cannot be computed from the 
conditional probability distribution alone but also requires the signal distribution, p(s). 
Ideally, the distribution of signals that yeast actually observe in nature would be known, 
and could be used for p(s). However, this natural signal distribution is not known, so an 
alternative approach is to find the p(s) function that maximizes the mutual information. At 
this optimum, the mutual information is called the channel capacity. Because of the 
difference between natural signal distributions and the optimal ones, channel capacity 
values are upper limits to the mutual information that is actually transmitted by a natural 
signal. There are also some benefits to focusing on the channel capacity rather than the 
mutual information that occurs in nature. In particular, the fact that it doesn’t make any 
assumptions about the natural signal distribution removes a potential source of error and 
also makes it easier to compare different results with each other. 

Vice versa, calculated channel capacity results are also lower limits for the true 
channel capacities because signaling noise that is measured includes contributions from 
the actual signaling noise within a cell and experimental noise. 

To optimize the mutual information over the possible signal distribution functions, 
one needs to start with an initial signal distribution that can be improved upon. We 
defined this initial signal distribution, denoted p1(s), as 

   

where N is a normalization constant set so that 

  . 

The first term of this signal distribution definition makes the probability inversely 
proportional to the amount of noise, so signals that are subject to lower noise are used 
preferentially. The second term of the initial signal distribution equation makes the 
probability proportional to the slope of the dose-response curve because this leads to a 
uniform probability distribution over the responses. This latter procedure, known as 
histogram equalization in digital image processing, optimizes the information transfer in 
the case of uniform noise (9). This initial signal distributions is equal to the optimal signal 
distribution, meaning the one that gives the greatest possible mutual information, if, and 
only if, the variation is much less than the mean response (10). 

The mutual information between signal and response, I(s;r), is (11) 

  . 

where p(r) is called the response probability distribution and represents the probability 
density of observing response r while considering all signal values. It is 

  . 

p r | s( ) = f r − r s( ),ηr s( )( )

p1 s( ) = N 1
ηr s( )

d
ds
r s( )

p1 s( )ds
s
∫ = 1

I r;s( ) = p r | s( ) p s( )log2
p r | s( )
p r( ) dr

r
∫ ds

s
∫

p r( ) = p r | s( ) p s( )ds
s
∫
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We iteratively optimized the signal distribution using the Blahut-Arimoto algorithm. 
As explained in ref. (12), the Blahut-Arimoto algorithm is based upon a variational 
optimization of the mutual information. Its procedure involves the alternation of two 
calculations. First, the signal distribution is updated from iteration n to n+1 with the 
equation 

   

where Z is a normalization constant, defined so that 

  . 

Second, the response distribution is updated using the same equation as above, 

  . 

While it is possible to constrain the signal distribution during the optimization, such as to 
add a cost to particular signals or to enforce a certain degree of smoothness (12), we did 
not do so in this work. As a result, we computed the global optimal channel capacity, 
rather than values that depended upon essentially arbitrary choices of constraints. 
 
5.3 Numerical channel capacity computation 

In practice, these integrals need to be computed numerically. We did so, in the 
Mathematica software, by partitioning signal values from 10-4 to 104 (nM of pheromone) 
with a logarithmic step size of 0.05 (e.g. possible signal values were at 10-4, 10-3.95, 10-
3.9, ..., 103.95, 104); these are equally spaced along the logarithmic dose axes that are 
conventionally used to show dose-response curves. We also partitioned response 
values from -1 to 4 in linear steps of 0.05. Negative response values are physically 
nonsensical but are mathematically necessary because the assumption of Gaussian 
variation makes negative responses possible, although improbable (this is another 
reason why the channel capacity computations are upper limits for the actual mutual 
information). We tabulated the p(s) function using the signal value partitions, the p(r) 
function using the response value partitions, and the p(r|s) function as a matrix using 
both partitions. The following figures show the initial signal distribution, the initial 
response distribution, and p(r|s), all for the channel capacity computation for the cell 
population: 

 

          

pn+1 s( ) = 1
Z
exp p r | s( )ln p r | s( ) pn s( )

pn r( )r
∫ dr
⎡

⎣
⎢

⎤

⎦
⎥

pn+1 s( )ds
s
∫ = 1

pn+1 r( ) = p r | s( ) pn+1 s( )ds
s
∫
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We optimized the signal distribution using discrete versions of the above 

equations: 

   

where Z is defined so that 

  . 

Also, 

  . 

We recorded the mutual information during the optimization, computing it from the 
equation 

   

We performed 200 iterations of optimization, at which point the mutual information had 
nearly stopped changing, shown with blue points in the following figure: 
 

pn+1 s( ) = 1
Z
exp p r | s( )ln p r | s( ) pn s( )

pn r( )r
∑⎡
⎣
⎢

⎤

⎦
⎥

pn+1 s( )
s
∑ = 1

pn+1 r( ) = p r | s( ) pn+1 s( )
s
∑

I r;s( ) = p r | s( ) p s( )log2
p r | s( )
p r( )s

∑
r
∑
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The amount of mutual information increase during optimization depended upon the 
amount of variation but was always reasonably modest. In particular, it increased from 
1.10 to 1.35 bits for the cell population calculation, where the variation was large, and it 
increased from 2.52 to 2.66 bits for the single-cell calculation, where the variation was 
much smaller. The mutual information did not quite stop changing even after 200 
iterations, so we fit these mutual information data points to a rational function of the form 

   

where n is the iteration number and a, b, and c are fit parameters. Taking this equation 
to the limit of infinite iterations shows that I(∞) = c, meaning that c is the channel 
capacity. These fit parameters are the channel capacity values that we presented in the 
main text. 

Interestingly, the signal distribution evolved substantially during the optimization, 
changing from a simple smooth unimodal distribution to a widely spaced and spiky 
distribution. It also did not stop evolving with more iterations, but continued becoming 
more widely spaced and more spiky, as seen in the following figure, 
 

 
 

I n( ) = c + a
1+ bn
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The lines show the signal distribution at iteration 1 (red), 2 (orange), 5 (yellow), 10 
(green), 20 (blue), 50 (magenta), 100 (purple), and 200 (black). Note that the channel 
capacity for this calculation was only 1.35 bits, which corresponds to 21.35 = 2.5 
distinguishable signals. However, the final signal distribution has 6 peaks in it and would 
likely have many more if we had continued the optimization. 

In contrast to the signal distribution, the response distribution did not change 
appreciably after the first several iterations, as shown below, 
 

 
 
The lines and colors are the same as for the signal distribution. The fact that neither the 
response distribution nor the mutual information changed substantially during 
optimization, even as the signal distribution went from a smooth unimodal distribution to 
a very spiky one, indicates that the precise shape of the signal distribution is not 
particularly important. Thus, the fact that we did not constrain the signal distribution 
during optimization cannot have made a substantial difference to the computed channel 
capacity. 
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6. Single-cell SRV curve computation 
We computed the single-cell variation in a few different ways, all of which yielded 

similar results. The method shown in the main text is arguably the best method, although 
the others are somewhat simpler and also informative so we describe them here as well. 
This section presents some mathematical definitions first, then the other two methods, 
and finally details of the method that is presented in the main text. 

 
6.1. Normalized single-cell noise values 

The normalized fluorescence traces (main text Fig. 2C) generally have minimal 
overall slope but instead show noise about relatively constant values. To compute this 
noise, we started by quantifying the mean value of each cell’s normalized fluorescence. 
The normalized single-cell mean value for cell number i at pheromone level s is 

. 

The following figure shows a black line that is a representative set of normalized 
fluorescence values for a single cell and a solid blue line that represents the normalized 
single-cell mean for the same cell. Normalized single-cell noise values are differences 
between normalized fluorescence values and these mean values, 

  . 

We also calculated the standard deviation of the normalized single-cell fluorescence 
values about the mean values to yield the normalized single-cell standard deviations. 
These values are 

   

where nt is the number of time points, and are shown in the following figure with dashed 
blue lines. 

 
 
6.2 Mean of normalized single-cell standard deviations 

In one approach to quantify single-cell variation, we focused on the normalized 
single-cell standard deviations, in which the normalized single-cell noise values are 

 
!µs.c. s,i( ) = !y s,i,t( ) t

 Δ!y s,i,t( ) = !y s,i,t( )− !µs.c. s,i( )

 
!σ s.c. s,i( ) =

Δ!y2 s,i,t( )
t
∑

nt −1
≈ Δ!y2 s,i,t( )

t
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averaged over time. The following figures show that the normalized single-cell means 
and standard deviations exhibited a positive correlation in which the brighter cells 
exhibited greater fluorescence variability. Each yellow or cyan point represents one cell 
and results are aggregated for all pheromone concentrations. These figures show that 
this trend was similar for fluorescence from YFP (left) and CFP (right). 

 

    
 
We also graphed these scatter plots at individual pheromone concentrations and found 
similar distributions of points and similar correlations in all cases. 

We defined a “typical” cell as a hypothetical cell that has a normalized single-cell 
mean fluorescence that is equal to the mean of those values for all cells (equal to 0, due 
to the normalization process), and that has a normalized single-cell standard deviation 
that is the mean of those values for all cells. As equations, this typical cell has 
normalized mean and standard deviation values equal to 

   

  . 

The above scatter plot figures depict this typical cell with red dots. This typical cell has 
normalized single-cell standard deviation of  = 0.304 for YFP and, less 
importantly, 0.228 for CFP. These values are in normalized units, where a value of 1 
represents the population standard deviation. A complication is there is a different 
population standard deviation at each time point and pheromone dose. Thus, we 
multiplied  by the population standard deviation, spop.(s,c), for each time point 
and pheromone dose to remove the normalization and convert the value to fluorescence 
units, yielding a list of single-cell standard deviations, all for the same typical cell. We 
then divided these standard deviations by the respective population mean fluorescence 
values (because we assumed that the fluorescence of a typical cell is equal to that of the 
population mean) to yield the single-cell coefficient of variation for a typical cell. As an 
equation, these transformations are 

  . 

However, we found previously that the population coefficient of variation is independent 
of time or pheromone dose (SM-4) and so can be written as 

 
!µs.c.,mean = !µs.c. s,i( ) s,i

= 0

 
!σ s.c.,mean = !σ s.c. s,i( ) s,i

 !σ s.c.,mean

 !σ s.c.,mean

 
ηs.c. = !σ s.c.,meanσ pop. t, s( ) 1

µpop. t, s( )
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  . 

This identity simplifies the single-cell coefficient of variation to 

  . 

Using this equation, the single-cell coefficients of variation were 0.142 for YFP and 0.101 
for CFP. The channel capacity computation described in SM-5 then shows that the YFP 
coefficient of variation corresponds to a channel capacity of 2.60 bits (The channel 
capacity cannot be computed for CFP because pheromone does not induce CFP 
expression). 
 
6.3 Median of normalized single-cell standard deviations 

The prior calculation was based on the definition that a typical cell is the one that 
has the mean amount of fluorescence variation. On the other hand, the median 
fluorescence variation may be more representative of a typical cell because it treats 
each of the measured cells equally rather than placing a greater emphasis on ones with 
unusually large variations; also, some of these large variations likely arose from imaging 
artifacts that were not caught by the data filtering procedures described above in SM-3. 

The median normalized single-cell standard deviations, shown with black dots in 
the above scatter plot figures, were slightly lower than the mean values due to there 
being more outliers with high variation than with low variation. In particular,  = 
0.264 for YFP and  = 0.204 for CFP. This change does not affect the rest of 
the computation described above, so the single-cell coefficient of variation in this 
calculation method is 

  . 

Values were 0.123 for YFP and 0.090 for CFP. The YFP value corresponds to a channel 
capacity of 2.73 bits, which is slightly larger than the 2.60 bits shown above for a mean 
cell. 

 
6.4 RMS average noise approach (main text approach) 

Both of the prior methods, in which a typical cell is defined as having either the 
mean or median variation, have the drawbacks that they implicitly assume that the 
single-cell coefficient of variation is independent of both time and pheromone dose. This 
occurs because the means and medians are computed from the aggregate of all 
normalized data values, without considering the possibility of trends over time or 
pheromone dose. To address this potential problem, we explicitly checked for trends and 
observed that they were insignificant. Nevertheless, a better approach, and the one that 
we describe in the main text, is to rearrange the data analysis steps slightly to yield 
separate single-cell mean and standard deviation values for each time point and 
pheromone dose. These can then be fit to find the single-cell coefficient of variation, 
paralleling the approach that we followed when computing the population coefficient of 
variation. 

This procedure started again with the normalized data. Instead of computing 

ηpop. =
σ pop. t, s( )
µpop. t, s( )

 ηs.c. = !σ s.c.,meanηpop.

 !σ s.c.,median

 !σ s.c.,median,CFP

 ηs.c. = !σ s.c.,medianηpop.
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standard deviations for individual cells, we instead computed a standard deviation for 
each time point and pheromone dose, taking one normalized value for each cell and 
combining these values over all of the cells, 

 
 . 

Because this computation combines results from all cells, it still represents the variation 
for a hypothetical average cell. We then removed the normalization by multiplying by the 
population standard deviation, 

  , 

yielding the average noise amounts for each pheromone concentration and at each time 
point, now in fluorescence units. Meanwhile, we defined the single-cell mean 
fluorescence values to be the same as the population mean fluorescence values, again 
because the focus here is on a typical cell, 

   

The following figure shows a scatter plot of these single-cell means and standard 
deviations, with one point for each time value and pheromone concentration. The upper 
points, in yellow and cyan, are the same ones shown before for the cell population. The 
lower points, in green for YFP and cyan for CFP, represent the single-cell data. 
 

 
 
This figure shows a high degree of correlation between single-cell means and single-cell 
standard deviations, suggesting that the coefficient of variation is a constant value. To 
confirm this, we fit the data with a line that was not constrained to intersect the origin and 
found that the y-intercept was much less than its standard error and had a P-value of 
0.61, both of which showed that the y-intercept was insignificant. Fitting these data to 
line that was constrained to intersect the origin showed that the single-cell coefficient of 
variation was 0.131 for YFP and 0.104 for CFP. The YFP value corresponds to a 
channel capacity of 2.66 bits, a value that is very similar to those from the two 
approaches described above.  

 
!σ s.c.,rms s,t( ) = Δ!y2 s,i,t( )

i

 σ s.c. s,t( ) =σ pop. s,t( ) !σ s.c.,rms s,t( )

µs.c. s,t( ) = µpop. s,t( )
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7. Other sources of variation 
7.1. Experimental artifacts 

We were unable to differentiate biochemical noise from experimental noise, where 
this latter source represents the unpredictable errors that arise from the measurement 
process. 

However, we did observe some variation in the data that clearly arose from 
experimental artifacts. This variation was particularly obvious during the second data 
filtering process (described in SM-3.3), when we removed cells with outlier fluorescence 
values. The following figures show the fluorescence difference values (essentially 
derivatives of the time-dependent fluorescence) for the YFP data on the left and the CFP 
data on the right for the cells measured at 20 nM a-factor, with one line for each cell. 
These lines are color coded to represent the three different microscope positions that 
were used while collecting these data. Clearly, the fluorescence differences are highly 
correlated for different cells that are at the same microscope position but generally 
weakly correlated for cells at different microscope positions. Furthermore, the YFP and 
CFP data show the same trends. For example, the blue traces are all high for both YFP 
and CFP at time point 9 and all low at time points 8 and 10. 
 

     
 

We removed these correlations from the data in preliminary work, but doing so led 
to additional artifacts and did not affect the results substantially. Thus, we left these 
artifacts in the data for all of the work described here. Their presence leads to a known 
source of experimental variation which necessarily decreased the channel capacity 
calculation results. This implies that the given channel capacity results are upper limits to 
the true values. These artifacts added variation to the single-cell traces but did not affect 
cell-to-cell variation significantly, so they undoubtedly had a much larger effect on the 
single-cell calculation of channel capacity (2.66 bits) than on the population calculation 
of channel capacity (1.35 bits). On the other hand, they probably did not affect the 
channel capacity calculation when using internal referencing (2.92 bits) because the 
CFP and YFP data exhibited similar artifacts and so these would have been removed by 
the internal referencing procedure. 

 
7.2. Pathway and expression subsystems 

The work presented here analyzes data that were collected as part of work 
presented by Colman-Lerner et al. in ref. (3). Those authors analyzed the data in a 
somewhat different manner, using it to separate the total fluorescence variation 
observed in yeast cells into its different sources. For cell i, they showed that the amount 
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of PRS reporter protein (essentially the YFP fluorescence value, not accounting for 
experimental noise) at time ∆T after pheromone stimulation should equal 

   

where Pi is the power of the PRS pathway, which is a function of both the pheromone 
input concentration and the ability of the pathway to transmit signals, and Ei is the power 
of the cell’s gene expression system. These two power terms can be subdivided into 
values that are consistent over time for a single cell but might vary between individual 
cells, which are called capacity terms, and values that vary stochastically over time, 
which are called noise terms. Thus, 

   

   

where Li is the pathway capacity, li is the pathway noise, Gi is the expression capacity, 
and gi is the expression noise. Variation in these values is quantified using the coefficient 
of variation, h, or its squared value, h2. The total YFP fluorescence variation for a 
population of cells, h2(y), arises from variation in all of these noise terms, so 

  . 

The h2 values are added because the variance of the sum of two independent random 
variables is the sum of their variances. The final term accounts for the possibility that the 
pathway capacity, L, is correlated with the expression capacity, G, with correlation 
coefficient r(L,G); this term is often ignored in practice. 

Colman-Lerner et al. used correlations between CFP and YFP fluorescence in two 
types of experiments, one with both fluorophores induced by pheromone and one with 
only YFP induced by pheromone, to find that h2(y) = 0.17, h2(G) = 0.14, h2(P) = 0.029, 
and h2(g) = 0.002 (from their main text p. 702). This means that most of the total 
observed variation arose from cell-to-cell differences in expression capacity, much less 
arose from variations in pathway power, and only about 1% arose from expression noise. 
These values varied some with different yeast strains, over time, and with different 
pheromone concentrations, but always showed the same trends. 

This work quantified two main noise values, the population coefficient of variation, 
hpop. (SM-4), and the single-cell coefficient of variation, hs.c. (SM-6), finding hpop. = 0.466 
and hs.c. = 0.131. Squaring these values gives  h2pop. = 0.217 and h2s.c. = 0.017. Taking 
the ratio of these two numbers shows that 8% of the total variation arises from signaling 
noise within a cell and 92% of the variation arises from cell-to-cell differences. 

All sources of variation contribute to the population variation, so h2pop. = h2(y) and, 
indeed, our result is comparable to the one found by Colman-Lerner et al.  The single-
cell variation arises from stochastic variation in both the pathway power and the 
expression system, so h2s.c. = h2(l) + h2(g). If we accept the result that 1% of the total 
variation arises from gene expression noise, h2(g), then this implies that 7% of the total 
variation arises from variation in pathway power, h2(l). On the other hand, Table 1 of 
Colman-Lerner et al. shows that h2(g) was typically closer to 2% of the total variation, 
which would then decrease the contribution of h2(l) to about 6%. 

yi = PiΔT × Ei

Pi = Li + λi
Ei = Gi + γ i

η2 y( ) =η2 L( ) +η2 λ( ) +η2 G( ) +η2 γ( ) + 2ρ L,G( )η L( )η G( )
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Taking these results together shows that total variation can be subdivided into 
about 82% gene expression capacity, 10% pathway capacity, 6% pathway noise, and 
2% gene expression noise. 

In part of this work, we considered information transmission when a cell uses an 
internal standard to calibrate gene expression from a pheromone responsive gene. We 
investigated this by dividing the YFP fluorescence values by CFP fluorescence values 
and then computing coefficients of variation and channel capacity values from those 
results. The population coefficient of variation was hpop. = 0.251 and the single cell 
coefficient of variation was hs.c. = 0.102, which square to equal h2pop. = 0.063 and h2s.c. = 
0.0104. Calibration removes the gene expression capacity contribution from this 
population variation, making it equal to about h2pop. = h2(L) + h2(l), where this ignores 
the portion of h2(g) that is different for different genes within the same cell (intrinsic 
noise) but keeps the portion that is the same for different genes but varies stochastically 
over time. Using results found above with just the YFP data, h2(L) » 0.022 and h2(l) » 
0.013, which add to 0.035. The value with calibration, 0.063, is in modest agreement 
with this prediction but is somewhat larger, probably indicating that the h2(G) fraction 
was overestimated slightly. Similarly, calibration makes the single cell variation equal to 
about h2s.c. = h2(l), for which the YFP data lead to a prediction of 0.013. In this case, the 
value with calibration, 0.0102, is similar to the prediction but a little smaller, probably 
indicating that the pathway noise was overestimated slightly. 
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8. Signaling over time 
In general, the cell fluorescence values considered here represent the sum of two 

components. The first is a deterministic or “true” response that depends on the 
pheromone dose, the time since pheromone was added, and a cell-specific scaling 
factor that is constant over time. The second is stochastic noise that arises in the cell 
signaling pathway, the cell expression machinery, and the experimental measurement. 
The stochastic noise limits one’s ability to determine the true response, and hence to 
determine the applied pheromone signal. 

If the stochastic noise varies quickly enough that its value at each 15 minute 
measurement point is independent of its values at prior measurement points, then each 
measurement would represent an independent observation. In this case, averaging over 
multiple measurements would improve the estimate of the true response, with the 
standard error of the estimate decreasing as the square root of the number of 
measurements. Another way of expressing the same result is that the information that 
one would learn about the true response would increase linearly with additional 
measurements. 

Real noise values are rarely independent of all prior noise values, but are instead 
influenced by prior values for some period of time. For example, YFP and CFP have 
maturation times of about 30 minutes, so high protein expression at one time point leads 
to increased production of mature fluorescent proteins over, roughly, the next 30 to 60 
minutes but has a diminishing influence afterward. In cases where old events are 
“forgotten” at a constant rate, which is typical, the autocorrelation function of the 
measured responses decays exponentially, from a value of 1 at a time difference of 0 
and approaching 0 for long time differences. The characteristic time of this exponential, t, 
is called the autocorrelation time. Noise values become nearly independent of each 
other every t time units, so continuous measurements of the response create 
information about the true response at a rate that is the number of bits for one 
measurement times 1/t. 

To attempt to quantify t, we computed the autocorrelation functions for the 
normalized YFP and CFP data sets, which is shown below. 

 

   
Yellow lines represent autocorrelation functions for YFP data, in each case averaged 
over all cells and computed separately at each pheromone dose, and cyan lines are 
similar but for CFP data. The black line represents the average of all YFP and CFP 
autocorrelation functions. 
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This curve shape is surprising because it does not show simple exponential decay. 
Instead, the negative autocorrelation values that have a minimum value at around 2 
hours appears to indicate some sort of oscillation, where positive deviations at one time 
tend to produce negative deviations 2 hours later and vice versa. However, further 
investigation showed that they are actually an artifact of using a short time series. To 
both determine this and quantify the autocorrelation time, we created a synthetic data 
set with 200 “cells”, where each cell’s response at time point j was defined as 

   

where N is a Gaussian distributed random value with zero mean and unit standard 
deviation and a is a “memory” parameter that is equal to zero if prior values are forgotten 
immediately and 1 if prior values are remembered forever. This function has 
autocorrelation time t = -1/ln a. We used 14 time points, as for the actual data, and 
adjusted the a parameter until the autocorrelation function for this synthetic data set, 
shown with the red line in the following figure, matched that of the real data, shown with 
the black line. Light blue lines represent autocorrelation functions for a few individual 
model cells. 
 

   
 
The model agreed very closely with the experimental data when a was set to 1, and did 
not agree for other values of a. This implies that the autocorrelation time is infinite, so old 
noise values are never forgotten. 

In retrospect, this makes sense because intracellular YFP and CFP amounts are 
cumulative, so that any stochastic variation at one time point contributes to the 
fluorescence at all future time points. The figure shown below investigates this effect 
further by showing the root mean square deviation of normalized YFP and CFP 
experimental data away from the values for the same cells at their initial time points. As 
usual, YFP data are shown in yellow and CFP in cyan, and there is a separate line for 
each pheromone dose level. Dashed black lines are guides to the eye, showing curves 
that are proportional to t1/2. 

 

y0 = N
yj+1 = ayj + N
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If the stochastic noise were forgotten after time t, then these curves would be expected 
to level off exponentially to approach a flat line, also with characteristic time t. On the 
other hand, if the stochastic model described above were correct and a was equal to 1, 
then the model responses would be random walks and the standard deviation would 
increase as t1/2. In fact, the YFP responses partially level off after about 50 minutes but 
then continue increasing at a slow but constant rate, implying that the actual situation is 
somewhere between these limiting cases. 

These results have several implications for information transmission. First, taking 
multiple measurements is still a useful way to reduce the effects of noise, but the 
information about the response does not grow linearly with the number of measurements. 
Instead, measurements become less informative over time because the responses 
include more cumulative noise. Second, the coefficient of variation values that were 
quantified elsewhere in this work are not fixed quantities but depend weakly on the time 
duration of the experiment, due to the fact that the rms deviations of the normalized data 
increase over time. Finally, measurements taken shortly after pheromone addition are 
likely to be more informative than those taken later, again due to cumulative noise. 
However, this effect is partially offset by the fact that signals are stronger later on. 
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