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Abstract. The high resolution of single-cell DNA sequencing (scDNA-seq) offers great potential to
resolve intra-tumor heterogeneity by distinguishing clonal populations based on their mutation profiles.
However, the increasing size of scDNA-seq data sets and technical limitations, such as high error rates
and a large proportion of missing values, complicate this task and limit the applicability of existing
methods. Here we introduce BnpC, a novel non-parametric method to cluster individual cells into
clones and infer their genotypes based on their noisy mutation profiles. BnpC employs a Dirichlet
process mixture model coupled with a Markov chain Monte Carlo sampling scheme, including a modified
split-merge move and a novel posterior estimator to predict clones and genotypes. We benchmarked
our method comprehensively against state-of-the-art methods on simulated data using various data
sizes, and applied it to three cancer scDNA-seq data sets. On simulated data, BnpC compared favorably
against current methods in terms of accuracy, runtime, and scalability. Its inferred genotypes were the
most accurate, and it was the only method able to run and produce results on data sets with 10,000
cells. On tumor scDNA-seq data, BnpC was able to identify clonal populations missed by the original
cluster analysis but supported by supplementary experimental data. With ever growing scDNA-seq data
sets, scalable and accurate methods such as BnpC will become increasingly relevant, not only to resolve
intra-tumor heterogeneity but also as a pre-processing step to reduce data size. BnpC is freely available
under MIT license at https://github.com/cbg-ethz/BnpC.

Keywords: single-cell DNA sequencing · clustering · genotyping · non-parametric Bayes · Chinese Restaurant
Process · Dirichlet Process Mixture Model · Markov chain Monte Carlo
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1 Introduction

Cancer is an evolutionary process characterized by the accumulation of mutations that drive tumor initiation,
progression, and treatment resistance [1]. The interplay between variation and selection ultimately leads to
multiple coexisting cell populations (clones) that differ in their genotypes [2, 3]. This genomic heterogeneity,
also known as intra-tumor heterogeneity (ITH), poses major challenges for cancer treatment as parts of the
tumor may already be therapy-resistant [4, 5]. Therefore, it is beneficial to identify the clonal composition of
the tumor and to adapt the treatment accordingly.

Recent advances in the field of single-cell DNA sequencing (scDNA-seq) have led to new insights into
cancer evolution and ITH. Examples include the detection of rare subclones in breast cancer patients [6],
the identification of novel treatment resistance clones in glioblastomas [7], and major advancements in the
reconstruction of cancer evolution [8]. Compared to bulk sequencing, scDNA-seq offers the possibility to
directly access clonal genotypes at the cellular level and to more easily detect branching in clonal evolution.
However, scDNA-seq data tends to be very noisy. Experimental procedures, such as DNA amplification, but
also analytic ones like alignment and mutation calling introduce a large fraction of errors in the data as well
as missing values [9]. Errors can be either missed true mutations, namely false negatives (FN), or mutations
not present in a cell but falsely reported, namely false positives (FP). Characteristic of scDNA-seq data are
high FN rates, arising from the technical failure to measure both alleles at a mutated locus, and a large
fraction of missing values, resulting from non-uniform coverage and drop-outs.

Generic clustering algorithms, such as partitioning or density-based methods, do not account for scDNA-
seq characteristics and are therefore unsuitable for this type of data. Hence, various methods were recently
introduced tailored to single-cell mutation profiles, i.e. the absence or presence of called mutations in each
cell. These approaches differ in their main objective, model choice, and inference scheme. The majority of
them focuses on resolving the phylogenetic relationship among cells and in doing so can also provide clusters
and genotypes [10–14]. Currently, the only method focusing entirely on clustering and genotyping is SCG [15],
which uses a parametric model and applies mean field variational inference (VI) to learn genotypes and the
clonal composition. Alternatively, the centroid-basted clustering approach celluloid [16] adapts k-modes with
a novel dissimilarity for scDNA-seq data but does not provide any genotyping. The probabilistic frameworks
BitPhylogeny [17] and SiCloneFit [18], and the nested effects model OncoNEM [19] jointly cluster cells into
clones and infer their phylogenetic relations. Despite these successes, the growing size of scDNA-seq data
sets challenges the scalability of these methods, compromising their accuracy and efficiency. Especially the
inference of phylogenetic relations is a computational expensive task that scales poorly with data size due to
difficulties in the tree search.

Here, we introduce BnpC, a fully Bayesian method to analyse large-scale scDNA-seq data sets and to
accurately determine the clonal composition and genotypes, handling noisy data and an unknown number
of clones non-parametrically. We benchmark our approach against state-of-the-art methods on simulated
data using various data sizes and demonstrate that BnpC outperforms current methods in terms of accuracy,
runtime, and scalability. We also reanalyze published scDNA-seq data, and with our method not only manage
to recapitulate the original results, but we also resolve populations that in the original publications were
detected only with additional data or after manual pre-processing steps.

2 Methods

2.1 Model

BnpC takes as input a binary matrix with missing values X = (xij) ∈ {0, 1,−}N×M of N cells and M
mutations, where 0 indicates the absence of a mutation, 1 its presence, and − a missing value (Fig. 1 A). We
assume that the N cells were sampled from an unknown number K of clones, each with a distinct mutation
profile θk ∈ [0, 1]M , coming from a prior distribution G0. The probabilities of observing a FP or FN in the
cell data are given by the parameters α and β, respectively, with prior distributions as stated in Figure 1
B. The assignment of cells to clones is represented by a vector c, where ci = k is the assignment of cell i
to clone k. To model the cell assignments c, we use a Chinese Restaurant Process (CRP) [20]. The CRP is
a probability distribution over partitions of the natural numbers, which in our model are cell assignments.
Because each partition is a possible way of clustering cells, the CRP serves as a prior distribution for grouping
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cells into clones. The concentration parameter α0 of the CRP determines the probability of assigning a cell to
a novel clone.

With the parameters described above, we can formulate the likelihood of BnpC as

P (X|θ, c, α, β) =
N∏
i=1

M∏
j=1

θci,j

[
(1− β)xi,j · β1−xi,j

]
+ (1− θci,j)

[
(1− α)1−xi,j · αxi,j

]
(1)

where the first term accounts for the presence of a mutation in a clone and the observation of a true positive
or FN, and the second term accounts for the absence of a mutation in a clone and the observation of a true
negative or a FP. Missing values are skipped.

The full posterior distribution over the latent variables factorizes as

P (θ, c, α, β, α0|X,H) ∝ P (X|θ, c, α, β) P (θ|G0)P (c|α0)P (α0)P (α|µα, σα)P (β|µβ , σβ) (2)

where µα, σα, µβ , and σβ are fixed hyperparameters.

2.2 Inference

As the posterior distribution (eq. 2) is not analytically tractable, we employ a Markov chain Monte Carlo
(MCMC) sampling scheme, in particular a generalised Gibbs sampler, to obtain samples from the posterior
distribution. Cluster parameters and error rates are updated via Metropolis-Hastings moves; the concentration
parameter α0 is learned as described in [21]; cell assignments are updated with Gibbs sampling and a modified
non-conjugate split-merge move [22, 23].

We modified the split-merge move introduced by Jain and Neal [24] to increase the probability of merging
small clones. We first choose which move to perform. For a split move, two cells are drawn from a clone
selected proportionally to its size; for a merge move, two cells are drawn from different clones, themselves
selected in a manner inversely proportional to their size. This increases the probability of merging spurious
clones. To account for these changes, the proposals’ ratio in Metropolis-Hastings update is modified as follows.
For a split move, we introduce the ratio

K̃iK̃j

(
∑
l K̃l)2

·

(
|K|
N

(
|K|
2

)−1)−1
. (3)

The second term describes the probability of choosing clone K (of size |K|) according to its size, and choosing
two cells (i and j) from it. After the split, let Ki and Kj denote the two different clones to which i and j

belong. Let K̃i =
(
|Ki|
N

)−1
represent the inverse clone size of the clone with cell i. The first term in Eq. 3

denotes the probability of choosing the clone with cells i and j to reverse the split move.
Similarly, for a merge move we extend the Metropolis-Hastings ratio with the following factor:

|K|
N

1

|K|(|K| − 1)
·

(
K̃iK̃j

(
∑
l K̃l)2

1

|Ki||Kj |

)−1
. (4)

Here, the second term accounts for choosing two distinct clones in a manner inversely proportional to their
size, and then two cells i and j uniformly from each clone. The first term undoes the merge move by selecting
the merged clone K according to its size, and selecting cells i and j from it.

To assess convergence, we implemented an updated version of the Gelman-Rubin diagnostic [25] and
compared posterior means of scalar quantities from multiple chains with random starting positions (Fig. S4).
BnpC can be run for a given number of MCMC iterations, with a given time limit, or until the convergence
diagnostics drop below a given threshold.

2.3 Estimators

Downstream analyses and interpretation generally require a single clustering and genotypes for all cells, and
thus the posterior samples obtained with our model need to be summarized. To provide an estimate of the
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inferred clones we followed an approach inspired by MPEAR [26]. We first inferred the number of clones as
the rounded posterior mean from our non-parametric model and then performed agglomerative clustering
on the posterior co-occurrence matrix. The genotypes were subsequently inferred independently for each
clone from a selected subset of posterior samples. For each clone, we selected posterior samples based on two
criteria: (1) all cells assigned to the clone are clustered together; (2) no other cell is clustered with these cells.
If no posterior sample fulfills both criteria, we selected samples fulfilling only the first criterion. The final
genotype is the rounded mean over the cluster parameters from the selected posterior samples. While biased,
this estimator performed well in practice. We evaluated it against MPEAR, maximum likelihood (ML), and
maximum a posteriori (MAP). All of the mentioned estimators are implemented in BnpC and the user can
choose which one to use.

3 Results

3.1 Benchmarking on simulated data

We generated 180 data sets varying the numbers of cells (1250, 2500, 5000, 10000), mutations (200, 350,
500), and clones (25, 50, 75) to assess BnpCs scalability, run time, and performance. Each combination was
simulated five times with fixed FN, FP, and missing value rates at 0.3, 0.001, and 0.2, respectively. The
underlying phylogeny was also fixed (minimal trunk size of 0.1 and mutation rate of 0.25). A description
of the simulation process is provided in the Supplementary Material (Section Simulations). All algorithms
were run four times per data set with different seeds. Clustering accuracy was evaluated using the V-
Measure [27], where high values correlate with more accurate clusterings. Genotyping accuracy was measured
as 1−Hamming distance/(#cells ·#mutations) between the predicted cellular genotypes and the true ones
(higher values correlate with more accurate genotypes).

We benchmarked BnpC against SCG [15] with binarized output and SiCloneFit [18]. Celluloid clustering
with the silhouette method for clone number determination was excluded as it does not provide genotypes
and performed poorly (Fig. S8). Methods aiming to resolve phylogenetic relations were excluded as they only
provide genotypes directly, while the inference of clones from phylogenetic trees is a non-trivial task. We
also excluded BitPhylogeny and OncoNEM, which jointly infer clones and their phylogenetic relations, as
both were previously shown to produce less accurate results than SCG and SiCloneFit [15, 18]. BnpC was
run for 0.25, 0.5, 1, 2, 4, and 8 hours. SCG was run with a large number of iterations (> 10× 106) to reach
convergence in every run, which SCG measures by the improvement over iterations. We were only able to run
SiCloneFit for 10 steps on the data set with the smallest number of cells, where its runtime already exceeded
48 hours (Fig 2). Therefore, we excluded SiCloneFit from the benchmarks on larger data sets. Algorithms
were run on a high performance computing cluster, each algorithm ran on a single core with a maximum of
128GiB memory and 2.4GHz CPU.

On the data sets with 1250 cells and 50 clones (Fig. 2 A, C), BnpC predicted genotypes best in all cases
and clones in two-third of the cases. Additionally, BnpCs predictions showed the least variance. SCG had
the shortest runtime but also inferred genotypes the least accurate. On all data sets, SCGs clustering scored
higher than SiCloneFits and on data sets with 200 mutations also higher than BnpCs. SiCloneFits average
runtime was ≥ 48 hours and varied highly between runs. On the 2500 cell data sets (Fig. 2 B, D), the accuracy
of predictions followed the same trend. BnpCs runtime to reach its highest scores was comparable to SCGs.

On the 5000 cell data sets, BnpC predicted genotypes better than SCG in all cases and achieved its
maximum clustering and genotyping accuracy at shorter runtimes than SCG (Fig. S2 A, C). Moreover, we
were not able to run SCG on the largest data sets of 5000 cells and 500 mutations due to insufficient memory
allocation. On the 10000 cell data sets (Fig. S2 B, D), BnpC was the only method able to obtain results. Its
predictions did not improve after 2 h and were ≥ 0.98 for the genotyping and ≥ 0.83 for the clustering.

Additionally, we benchmarked BnpC on smaller data sets of 50 mutations, 200 cells, and 10 clones, varying
in evolutionary histories, error rates and missing value fraction (Fig. S8). In general, trends of the previous
benchmarking on larger data sets recurred. BnpC predicted genotypes best except for high FN and missing
value rates, where SiCloneFit performed best. On average, SCG predicted clusters best but genotypes worst,
especially at a large fraction of FP. SiCloneFit predicted genotypes and clones less accurate than BnpC, except
for the previously mentioned cases. We observed the same trends independent of the simulated evolutionary
histories. Unsurprisingly, the simulation of different evolutionary histories showed that frequent and early
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branching events, resulting in clones with highly diverse mutation profiles, lead to a higher clustering accuracy
of all methods than linear evolution and late branching events.

To evaluate the scalability of BnpC, we investigated the runtime per MCMC step according to the data
size (Fig. S9). On the benchmarking data sets, BnpCs runtime increased linearly with data size, independently
of the number of clones in the data.

We also evaluated the performance of our novel estimator on simulated data. The quality of the inferred
clones varied only slightly between the estimators, not favoring any in particular (Fig. S11). To evaluate the
genotype inference, we compared our estimator against ML and MAP since MPEAR only produces clusters.
In all cases, our novel estimator achieved better genotyping than the point estimators, independently of the
error rates and fraction of missing values (Fig. S12). All estimators showed the same trends regarding varying
error rates and missing values, with higher rates resulting in less accurate inferences, and vice versa.

3.2 BnpC performance on tumor scDNA-seq

We analyzed the sequencing data of five patients with childhood leukemia [28], one high-grade serous ovarian
cancer (HGSOC) patient [29] and two colorectal cancer (CRC) patients [30].

Acute Lymphoblastic Leukemia We reanalyzed scDNA-seq data of five Acute Lymphoblastic Leukemia
(ALL) patients [28]. The data contains between 16 and 105 mutations and between 96 and 143 cells per
patient. Gawad et al. used a combination of a multivariate Bernoulli model and the Jaccard distance to
predict the clonal composition and to infer genotypes. Inferred genotypes and clones by Gawad et al. as
well as the ones inferred by BnpC are displayed in Fig. S10. Genotypes and clones predicted by BnpC are
largely in accordance with those previously determined. BnpC predicted some additional clones of small size.
BnpC predictions were of partly higher resolution. Specifically for patient 4, BnpC was able to detect an
additional clone (orange) differing from the closest clone by five mutations (Fig. 3 A). The identification of
this particular clone results in a different and more accurate evolutionary pattern, as a common ancestor for
the two tumor branches is obtained (Fig. 3 B). Gawad et al. confirmed the existence of this additional clone
in their subsequent analysis by incorporating copy number data. These findings show that our approach is
sensitive to small clones and able to recover biological meaningful results.

High-Grade Serous Ovarian Cancer The HGSOC data of patient 9 from the McPherson data set [29]
was obtained by whole-genome sequencing of five samples taken from three tumor sites: left ovary, right ovary,
and omentum. The data consists of 420 cells, 43 SNVs, and five breakpoints. We compared our predictions to
the results obtained by Roth et al. using SCG. Their initial clustering analysis identified a normal population
and eight tumor clones, of which they filtered out three clones due to a high fraction of missing values in the
corresponding cells (mean ≥ 20% SNV events missing per cell).

BnpC was able to produce the same findings as SCG [15] without applying any additional filtering step
(Fig. S13). By excluding the three clusters, 28 cells which represent 7% of the patient data were discarded.

The clonal prevalence shows differences between the two samples coming from the left ovary (LOv)
(Fig. S13 B). Populations within one of the two samples (LOv2) contain the amplification in ERBB2, while
the other (LOv1) does not. These populations harboring the amplification correspond to clones 0 (purple)
and 1 (orange). Knowing that the primary site of the tumor was in the left ovary and that all other clones
carry this amplification, our findings are in accordance with Roth et al.

Colorectal Cancer Patients CRC0827 and CRC0907 from Wu et al. [30] were collected by single-cell Whole
Exome Sequencing on CRC tissue samples (C1 and C2) and matched normal tissue (N). Additional samples
from normal polyp (NP, CRC0907) and adenomatous polyp tissue (AP, CRC0827) were sequenced for the
analysis. While BnpC recapitulated the results for patient CRC0827, we identified an additional clone for
patient CRC0907 (green clone in Fig. 4). This new clone suggests another step in the clonal evolution of
the tumor. For patient CRC0907, Wu et al. identified two tumor clones harboring somatic mutations. They
subsequently analyzed a subset of functionally related mutations to CRC development and separated them
into unique clonal (detected by bulk sequencing) and unique subclonal (not detected). The results obtained
from BnpC allows us to further classify the unique subclonal mutations into early subclonal (contained in

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.01.15.907345doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.907345
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Borgsmüller et al.

the green clone) or late subclonal events (only present in the blue clone). Therefore, our method suggests
an early mutation of LAMA4 compared to the other subclonal mutations annotated by Wu et al. (PDE3A,
AB13BP, LHCGR, and CFHR5), which are only present in the later evolved population. Besides, we observed
one of their annotated unique clonal mutations (STXBP1) to be present only in the blue clone, suggesting a
later acquisition of the mutation. In summary, these results indicate that BnpC can give new insights into
the evolution of the tumor and the order in which mutations are acquired by better identifying the clonal
composition within tumor samples.

4 Discussion

The identification of the heterogeneous tumor composition and the clonal genotypes is potentially advantageous
for cancer treatment. ScDNA-seq provides the opportunity to resolve ITH in greater detail and to detect
rare clones, despite experimental protocols still producing a high fraction of FN and missing events. We
have introduced the novel non-parametric probabilistic method BnpC, specially designed for accurate and
scalable clustering and genotyping of large-scale scDNA-seq data. The method implements a modification of
a non-conjugate split-merge move and employs a novel estimator inferring from the posterior distribution for
more accurate genotype predictions.

We compared our method with the state-of-the-art methods SCG and SiCloneFit on simulated and
biological data. On synthetic data, BnpCs recovered genotypes with the smallest error in all cases, and
inferred clusters most precisely in the majority of scenarios. In some cases, SCG’s clustering performance was
better, but its genotypes were less accurate. Inferring imprecise genotypes has a larger effect on downstream
analyses than suboptimal clusters, and may mislead biological interpretation.

On biological data, our method did not only reproduce previous findings for three different data sets but
identified additional clones not detected in the original analysis but confirmed by additional data in Patient 4
from Gawad et al. These findings highlight that more accurate analytic methods can identify signal and lead
to biological conclusions which can otherwise only be drawn from additional experimental data. Additionally,
we demonstrated that BnpC is able to recapitulate previous results for patient 9 from McPherson et al.
without the manual pre-processing step conducted in the original analysis. This is of special interest, for
example, for an automated analysis pipeline, where one tries to minimize manual intervention without losing
accuracy.

A limitation of the BnpC model is the absence of a phylogenetic structure on cells. The information given
by the mutation order could be used to correct errors in the data or to infer missing values. It is possible
that this is why SiCloneFit is more robust to noise in the data on small data sets. However, approaches
that use a tree structure are computationally expensive and scale poorly with data size, as seen in the
benchmarking. The trade-off between accuracy, runtime, and possible optimizations needs to be investigated
further. A possible extension of BnpC could be the incorporation of doublets, two single cells pooled and
measured together during sequencing. Currently, doublets would be reported as separate clones. Identifying
and handling them explicitly as doublets could improve the clustering and genotyping, especially of the clones
corresponding with the two doublet cells.

In summary, the non-parametric nature and sampling scheme of our model results in robust clonal compo-
sition and genotype predictions in reasonable computational time. Besides their relevance for personalized
treatment, the inferred clusters and genotypes can be used to reduce data size significantly, thereby facilitating
downstream analyses. Therefore, a potential application of BnpC on large-scale data sets, would be as a
pre-processing step for the inference of phylogenetic trees or large-scale scDNA-seq data. Additionally, not
assuming a tree-structure makes our method applicable to other fields. For example, our method could be
used for the analysis of methylation profiles or the analysis of microbiome data, where the input matrix
indicates the presence or absence of species in samples.

As scDNA-seq data size continues to grow due to biotechnological progress, scalable and accurate inference,
as provided by BnpC, will be increasingly relevant. Thus far, BnpC is the only method to predict clonal
genotypes accurately on large data sets within a reasonable time. It was the only method capable of running
and obtaining results for the 10,000 cell data set in reasonable time and its runtime scaled linearly with data
size.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.01.15.907345doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.907345
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bayesian non-parametric clustering of single-cell mutation profiles 7

5 Software availability

BnpC was implemented in Python 3.7 and is freely available under MIT license at: https://github.com/cbg-
ethz/BnpC.

6 Supplementary Material

Additional figures, a description of the simulation scheme, and a comparison of the probabilistic models of
used methods.
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Fig. 1: BnpC model overview. A) The model’s input is a binary mutation matrix, where each row represents a
mutation and each column represents a single cell. Possible values are 0, indicating the absence of a mutation,
1, indicating the presence of a mutation, and missing values. B) BnpC’s probabilistic graphical model. The
binary input data X, consisting of N cells and M clones, contains a fraction of FP and FN entries, indicated
by α and β, respectively. G0 is a base distribution over the genotypes θ of an infinite number of clones. c is
the assignment of cells to the clones, sampled from a CRP with concentration parameter α0, and f(·) is the
model’s likelihood. Shaded nodes represent observed or fixed values, while the values of unshaded nodes are
learned using MCMC. C) BnpC predicts clonal composition, corresponding genotypes, and the population
structure.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.01.15.907345doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.907345
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 Borgsmüller et al.

Fig. 2: Clustering accuracy measured by the V-Measure and genotyping accuracy measured by 1 −
Hamming distance/#cells · #mutations of BnpC, SCG and SiCloneFit. A, B) Genotyping accuracy. C,
D) Clustering accuracy. Measured on 30 simulated data sets with six different sizes (five data sets per size):
A, C) 1250 cells and B, D) 2500 cells, and 200, 350, and 500 mutations. All data sets contained 50 distinct
clones, a FN rate of 30%, a FP rate of 0.1%, and a missing value fraction of 20%. Algorithms were run 4 times
per data set.
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Fig. 3: A) Clones and genotypes inferred by BnpC for patient 4 of the Gawad data set. Heatmap depicts absence
(white) or presence (red) of mutations for every mutation (row) in every cell (column). B) Resulting minimum
spanning tree from the clonal genotypes as obtained in Gawad et al. Gene labels in the tree determine either
mutations leading to a new clone (black) or known ALL driver genes (red). Node size corresponds with the
clonal size.

Fig. 4: Inferred clones and genotypes by BnpC for patients CRC0827 A) and CRC0907 B) of the Wu data set.
Heatmap depicts absence (white) or presence (red) of mutations for every mutation (row) in every cell (column).
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