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Abstract

The identification of causal genetic variants for common diseases improves understanding

of disease biology. Here we use data from the BLUEPRINT project to identify regu-

latory quantitative trait loci (QTL) for three primary human immune cell types and

use these to fine-map putative causal variants for twelve immune-mediated diseases. We

identify 340 unique, non major histocompatibility complex (MHC) disease loci that colo-

calise with high (>98%) posterior probability with regulatory QTLs, and apply Bayesian

frameworks to fine-map associations at each locus. We show that fine-mapping applied

to regulatory QTLs yields smaller credible set sizes and higher posterior probabilities for

candidate causal variants compared to disease summary statistics. We also describe a sys-

tematic under-representation of insertion/deletion (INDEL) polymorphisms in credible

sets derived from publicly available disease meta-analysis when compared to QTLs based

on genome-sequencing data. Overall, our findings suggest that fine-mapping applied to

disease-colocalising regulatory QTLs can enhance the discovery of putative causal disease

variants and provide insights into the underlying causal genes and molecular mechanisms.

Introduction

Immune-mediated diseases (IMDs), including autoimmune diseases, are chronic health conditions that

affect around up to 9.4% of the world population1,2. In many chronic and debilitating immune-

mediated disorders, genetic predisposition and diverse environmental factors trigger an abnormal

immune response, which eventually destroy healthy tissues3,4. Thousands of genetic loci influencing

susceptibility to different IMDs have been discovered to date by genome-wide association studies

(GWAS). For a small subset of loci, genetic associations have already yielded novel insights into likely

pathophysiological mechanisms underpinning disease predisposition5,6, for instance linking NFKB

pathway genes (NFKB1 and TNFAIP3 ) and TNF-receptor gene (TNFR1 ) to risk of inflammatory

bowel disease, multiple sclerosis and ankylosing spondylitis6–8. However, the causal variants and the

molecular mechanisms underpinning GWAS associations remain largely unknown, hindering efforts to

develop new treatments. The prioritisation of the most likely causal variants, and the identification of

the putative molecular mechanisms through which causal variants act to deregulate immune pathways,

are the necessary next steps to harness the power of these genetic discoveries.

Fine-mapping algorithms are used to prioritize causal variants for common complex diseases or

traits by estimating the probability of a genetic variant being causal for a given phenotype, conditional

on all associated variants in a given genomic region. Recently, statistical fine-mapping approaches have

been used to resolve causal variants at IMD loci9–11. However, many of the risk variants discovered

to date are common (defined here as having minor allele frequencies [MAF] ≥ 5%), and exhibit high

levels of linkage disequilibrium (LD) with other nearby variants. This limits our ability to resolve

causal variants based on disease summary statistics data alone6,9,12.

Common disease risk loci are preferentially found in non-coding regions of the genome, suggesting

that the majority of these variants may exert their effects on disease through gene regulation13–16.

Gene regulation traits (principally gene expression, splicing and chromatin phenotypes) provide a first
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Figure 1: Study workflow. Figure describes the overview of study design. We first compiled publicly
available IMD loci for 13 diseases and re-computed QTLs as part of the BLUEPRINT phase 2 data.
We then performed statistical colocalisation on QTL and IMD loci, and used these regulatory QTLs
to explain putative path from genetic variants to disease. Finally, we performed genetic fine-mapping
to identify potential causal variants and also evaluated if regulatory QTLs lead to improvements in
fine-mapping compared to disease summary statistics alone.

readout of the activity of genetic variants in cell-defined contexts, which can be captured using QTL

mapping. Gene expression and splicing QTLs (eQTLs and psiQTLs) often colocalise with disease

association signals17–20. Further, evidence for colocalisation extends beyond gene expression and

splicing, to QTLs for DNA methylation and histone modifications (e.g., marking active enhancers and

promoters), providing information complementary to eQTLs to link regulatory elements to the genes

they control20,21. When there is a shared genetic signal, these gene regulation QTLs can be leveraged

to improve the resolution of fine-mapping.

The main advantage of using QTLs for fine-mapping causal variants is that they typically exhibit

larger effect sizes per variant than complex disease odds ratios22,23, thus achieving the same statistical

power by using order of magnitude smaller numbers of individuals than GWAS-based fine-mapping

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2020. ; https://doi.org/10.1101/2020.01.15.907436doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.907436
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kundu et al. Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for twelve immune-mediated diseases

studies. Further, the smaller size of these studies makes it economically feasible to derive regula-

tory QTLs from complete genetic maps based on whole genome sequencing (WGS), thus potentially

increasing the resolution of fine-mapping compared to datasets based on sparser imputation panels.

Here we sought to quantify the value of regulatory QTLs to resolve causal variants across a range

of common immune-mediated diseases, where compared to currently-available gold-standard disease

datasets based on meta-analyses of many smaller studies (Figure 1). We show that QTL data

improves resolution of causal variants compared to disease summary statistics alone, and identifies

putative effector genes, cell types, and regulatory mechanisms for causal variant, thus enhancing

interpretation of putative causal functional effects for disease variants.

Results

The BLUEPRINT human variation phase 2 dataset

As part of the BLUEPRINT project, we previously generated regulatory datasets for three primary

human immune cell types (i.e., CD14+ monocyte, CD16+ neutrophil, and CD4+ T-cell), including

transcription, histone binding and DNA methylation phenotypes across 197 individuals drawn from

a UK-based bioresource20. In the Chen et al. study20, conservative parameters were applied to call

variants from low-read depth (7x) WGS data, at the expense of sensitivity of variant discovery. To

increase sensitivity to discover potential causal variants, here we reprocessed the WGS dataset using

an alternative set of parameters (99.6% and 90% truth sensitivity for single nucleotide polymorphisms

(SNPs) and INDELs, respectively) and performed an additional genotype refinement step24 followed

by an imputation strategy using the combined UK10K and 1000 Genomes Project Phase 3 (UK10K +

1KGP3) haplotype reference panel (Methods; Supplementary Figs. 1-2). The resulting ‘phase 2’

dataset contains a total 9,228,816 variants (8,320,384 SNPs and 908,432 INDELs; approximately 1.4

million more SNPs and almost 10 times more INDELs when compared to the phase 1 data; Supple-

mentary Table 1 and Supplementary Fig. 3). We applied linear mixed models25 to recompute

QTLs using the phase 2 genetic variants and different classes of regulatory features, including for

gene expression levels (eQTLs), percent spliced-in (psiQTL), H3K27ac and H3K4me1 histone bind-

ing (hQTL), and DNA methylation (mQTL). We tested cis-associations in 1Mb windows centered on

each feature (e.g., gene, methylation probe) in three different primary blood cell types, i.e., monocyte,

neutrophil, and T-cell (Methods). The phase 2 dataset captures 99% of phase 1 QTL signals at

5% global False Discovery Rate (gFDR) correction, considering sentinel variants that are either the

same as in phase 1, or a close proxy (r2 ≥ 0.8; Methods; Supplementary Fig. 4). The phase

2 data and QTL summary statistics are released through the European Genome-phenome Archive

(EGA accession number: EGAD00001005192, EGAD00001005199, and EGAD00001005200).

Colocalisation of regulatory QTLs with immune-mediated disease loci

We first sought to identify IMD loci sharing a genetic signal with the phase 2 QTL data. We re-

trieved publicly available GWAS summary statistics for 13 IMDs, including seven previously analysed

in Chen et al.20 (celiac disease [CEL], Crohn’s disease [CD], inflammatory bowel disease [IBD], mul-

tiple sclerosis [MS], rheumatoid arthritis [RA], type 1 diabetes [T1D], and ulcerative colitis [UC])
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Figure 2: Details of IMD-QTL colocalisation. a, Number of IMD loci colocalised with five differ-
ent QTLs across three different cell types. None of the JIA loci showed any strong colocalisation
(PPcoloc ≥ 0.98) evidence. The table indicates the number of unique IMD loci colocalised with at
least one QTL in one cell type out of the total number of loci tested (in parenthesis) along with the
data sources (GWAS, Immunochip, or both) of these loci. b, Number of unique IMD loci colocalised
with QTL and cell type information. The cell type specificity of each QTL is depicted in pi charts.
This figure shows except mQTLs, all other QTLs are relatively specific to a certain cell type.

and six not previously investigated (ankylosing spondylitis [AS], juvenile idiopathic arthritis [JIA],

narcolepsy [NAR], primary biliary cirrhosis [PBC], psoriasis [PSO], and systemic lupus erythemato-

sus [SLE])8,26–44. Overall, we considered a total of 31 datasets, including 18 datasets (updated Jan

2019, Supplementary Table 2) generated via commercial genotype arrays, and 13 generated using

bespoke-content arrays (Immunochip)45,46.

To identify IMD loci that are likely to share a causal variant with one or more of our regulatory

QTLs, we first systematically searched the genome-wide statistics to identify loci where the IMD

sentinel SNP or a proxy (r2 ≥ 0.8; Methods) is also a sentinel variant in the QTL dataset. We

excluded the human leukocyte antigen (HLA) region where standard SNP tagging approaches do

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2020. ; https://doi.org/10.1101/2020.01.15.907436doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.907436
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kundu et al. Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for twelve immune-mediated diseases

not perform consistently well47. This approach identified 5,257 LD-overlapping IMD/QTL pairs.

We then used a Bayesian colocalisation method (pw-gwas48) to compute prior probabilities of each

regional model from the maximum log-likelihood function of all variants in the tested region. Among

the 5,257 pairs, 4,819 (92%, corresponding to 340 IMD associations) had robust statistical support for

colocalisation (≥ 98% posterior probability [PPcoloc]), while 438 (8%) had robust statistical support

for linkage, indicates that the signals for IMD and QTL are independent (Methods; Figure 2a;

Supplementary Figs. 5-6 and Supplementary Tables 3-4). Colocalisation was observed across

all three immune cell types at 167 (49%) of the 340 loci, across two cell types at 70 (21%) loci, and

specific to one of the three cell types at 103 (30%) loci (Figure 2b). To explore the cell type specificity

of the colocalisations across a wider set of cell types and tissues, we further compared the immune cell

eQTLs to a multi-tissue eQTL panel (GTEx consortium v7; Methods). We tested 211 immune cell

eQTLs (total 150 genes) colocalising with 132 distinct IMD loci (72 distinct disease loci). Of these,

more than half (109 eQTLs for 82 genes) were only observed in our immune cell types. Approximately

one quarter (48 eQTLs for 36 genes) were shown to colocalise with eQTLs in a small number (≤ 4)

of additional cell types. The remaining quarter (54 eQTLs for 32 genes) were highly pleiotropic (i.e.,

seen in 5+ more tissues; Supplementary Fig. 7 and Supplementary Table 5).

Regulatory QTLs more accurately define disease causal variants compared to dis-

ease summary statistics

To compare fine-mapping results across disease and regulatory data, we first focused on a set of 124

loci where the density of genetic variants in the QTL and corresponding IMD summary statistics were

comparable. Specifically, we required that at least 80% of the genetic variants found in each 1Mb QTL

genomic interval were also found in the IMD dataset, and vice-versa. For simplicity, we also focused

only on regions containing a single association signal, as inferred by stepwise conditional analysis for

IMD loci or exact conditional tests based on individual-level genetic data for QTLs (Methods).

We carried out fine-mapping separately on QTL and IMD summary statistics, setting the number

of input causal variants to one per locus (Methods). We used two Bayesian fine-mapping frameworks,

namely FINEMAP51, which uses an efficient shotgun stochastic search algorithm, and CAVIARBF52,

which uses an exhaustive search algorithm. Both methods yielded near-identical results after pa-

rameter optimization (Methods; Supplementary Fig. 8 and Supplementary Table 6), so for

simplicity we present here the FINEMAP results.

At each colocalised locus, we derived 95% credible sets from QTL and IMD summary statistics

separately. Namely, for each fine-mapping experiment, we ranked each variant by decreasing fine-

mapping posterior probability (PPfm), and selected the minimal set of variants that jointly accounted

for ≥ 95% PPfm. We first compared the size of the 95% credible sets between the QTL and IMD

fine-mapping (Figure 3a). When considering the minimal credible set out of all QTLs colocalising

with each given IMD locus (i.e. spanning five traits and three cell types), QTLs yielded 2,741 variants

across 124 loci, and IMDs yielded 4,902 variants (t-test P = 4.8× 10−4; Figure 3a). Overall, QTLs

produced smaller credible sets than IMD for 70% (87/124) of colocalising loci. Furthermore, on

average the top variant in each QTL credible set achieved a higher PPfm compared to that from

the colocalising IMD (mean PPfm = 0.40 vs 0.27, t-test P = 1.9 × 10−5; Figure 3b). Out of 124
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Figure 3: Fine-mapping of QTL and IMD loci. a, Credible set size comparison between QTLs and
IMD loci. For QTLs, we considered the smallest credible set derived from five different QTLs in
three different cell types. b, Comparison of the top most variant for each credible set, which achieved
highest posterior probability (PPfm) in QTL and IMD fine-mapping. In both figures (a and b), a two
sided t-test showed there is a significant difference in two credible sets. c, Number of variants in QTL
and IMD credible sets depicted for colocalised loci. This figure indicates QTL fine-mapping achieves
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Figure 3: (continued..) smaller credible sets than IMD fine-mapping. For example, 44 disease loci
were fine-mapped to maximum five variants credible set where the equivalent credible set size was
achievable for only 16 disease loci by IMD fine-mapping. The proportion of credible set size for
each QTL is also reported. d, Venn diagram showing the overlapping variants in the credible sets
between QTL and IMD loci. e, Posterior probability (PPfm) distribution of shared (intersection)
and specific variants for QTL and IMD credible sets. A t-test is used to calculate significance (P)
values. f, Proportion of variants (SNP/INDEL) in shared, specific QTL, and IMD credible sets.
g,h, Pathogenic score (via NCBoost49) and functional significance score (via DeepSEA50) distributions
of variants where the credible set ≤ 50 are depicted in different posterior probability bins. Both figures
indicate that the variants with higher PPfm were also yielded higher pathogenic and/or functional
significance score, and the differences were statistically significant (Wilcoxon test).

colocalising loci, QTL fine-mapping resolved 14 (11%), 30 (24%) and 39 (32%) loci to credible sets

of 1, 2-5, 6-20 variants, respectively, compared to 2 (2%), 14 (11%) and 43 (35%) for IMD summary

statistics (Figure 3c). The same trend of smaller credible sets for QTLs was observed when compared

to a recent fine-mapping study in IBD based on a larger sample size9 (Methods; Supplementary

Fig. 9 and Supplementary Table 7).

We next compared posterior probabilities for putative causal variants in the 95% credible sets.

Overall, 1,682 variants were in both the IMD and QTL credible sets, corresponding to approximately

two-thirds of all QTL and one-third of all IMD credible variants respectively (intersection set; Figure

3d). Within the intersection set, variants had marginally higher posterior probabilities in the QTL

compared to the IMD analysis (shared QTL PPfm mean = 0.042 and shared IMD PPfm mean =

0.031, t-test P = 3.2× 10−4, Figure 3e). Variants only included in the IMD credible sets had lower

overall PPfm (mean = 0.02) compared to variants in the intersection set (mean = 0.031, t-test P =

4× 10−8; Figure 3e). Conversely, credible variants in the QTL-specific set had similar PPs to those

in the high-confidence intersection set (mean = 0.047, t-test P = 0.21; Figure 3e; Supplementary

Fig. 10). Importantly, 12.5% of the candidate causal variants in the QTL-specific set were INDELs,

compared to 1.49% in the intersection set and 5.25% in the IMD-specific set (Figure 3f). This likely

reflects the systematic removal of INDELs in many published studies, and suggests that this category

of putative causal variants may be systematically omitted in fine-mapping studies based on published

disease summary statistics.

To predict pathogenicity of the variants in QTL data where the credible set size ≤ 50, we used a

supervised learning based method, NCBoost49, which uses a number of features relevant to natural

selection along with interspecies conservation scores derived from different evolutionary timescales.

When annotating variants in QTL credible sets using NCBoost, we found that variants in the highest

fine-mapping posterior probability group (PPfm = 0.5−1) had greater overall pathogenic scores (me-

dian = 0.065) compared to variants with intermediate (PPfm = 0.25−0.5, median = 0.044, Wilcoxon

test P = 0.077), low (PPfm = 0.1−0.25, median = 0.032, P = 8.9×10−7) or very low (PPfm = 0−0.1,

median = 0.031, P = 2.6 × 10−8) posterior probability group (Figure 3g). Furthermore, we used a

deep-learning based method, DeepSEA50, which predicts variant effects based on various chromatin

features (e.g., transcription factor binding, histone marks, and DNase I hypersensitive sites) in multiple

human cell types. DeepSEA combines these chromatin features along with evolutionary conservation

to measure a functional significance score for each variant. Variants in the highest posterior proba-
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Figure 4: Fine-mapping of the BACH2 locus in CD4+ T-cells. a, The locuszoom plot of the BACH2
locus using eQTL and MS data with 500kb flanking region surrounding the sentinel SNP rs72928038.
Pairwise LD (r2) was calculated using BLUEPRINT data. The rs72928038 is an intronic variant
of BACH2 and also known to be a risk allele (A) for MS44 and T1D41. The locus was strongly
colocalised (PPcoloc ≥ 0.98) between IMDs (MS and T1D) and multiple QTLs (i.e., eQTL, psiQTL,
hQTL(H3K27ac) and mQTL) in naive T-cells. b, The sentinel variant, rs72928038, resides near the
Transcriptional Start Site (TSS) of BACH2. A significant chromatin interaction between rs72928038
and promoter of the BACH2 (Chicago score of 9.28) was observed in naive CD4+ T-cell using PCHi-C
data53, which shows a strong regulatory effect. The figure was generated by using CHiCP web server54.
c, Heatmap shows posterior probability of the fine-mapped variants (PPfm) in the respective credible
sets (colour intensity: PPfm smallest - light blue to PPfm largest - deep blue). White colour indicates the
variants were not part of the respective credible sets. Due to lack of variant density in T1D summary
statistics, many variants were not tested for fine-mapping analysis (grey). The locus could not be
fine-mapped confidently with MS summary statistics, yielded a credible set of 40 variants (rs72928038
being the top variant; PPfm = 0.3), whereas a single variant (rs72928038; PPfm = 0.98) credible set
was achieved by using eQTL data. The rs72928038 appeared to be the most likely causal variant in all
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Figure 4: (continued..) other data sets as well, except psiQTL (second highest; PPfm = 0.24). d,
Transcript expression levels for psiQTLs. The two variants rs10944479 (r2 = 0.87 with rs72928038) and
rs6908626 (r2 = 0.95 with rs72928038) were part of the psiQTL and hQTL(H3K27ac) credible sets (c).
These two variants along with the sentinel variant were characterized by an increased exon-skipping of
BACH2 exon 8 (coordinates - 6:90,798,680−90,798,772). The psiQTLs indicate a significant increase
in the relative contribution of a processed transcript to the total transcriptional output of the BACH2.

bility group (PPfm = 0.5 − 1) were assessed as more functionally significant (median of significance

score = 0.055) compared to other groups (PPfm = 0.25 − 0.5, median = 0.138, Wilcoxon test P =

3.1× 10−6; PPfm = 0.1− 0.25, median = 0.119, P = 2.5× 10−9; PPfm = 0− 0.1, median = 0.147, P

= 1.4 × 10−15; Figure 3h). Together these analyses suggest our identified causal variants are more

likely to be functional and have larger pathogenic effects. The pathogenic and functional significance

scores for variants in QTL credible sets are reported in Supplementary Table 8.

A fine mapping resource for immune-mediated diseases

To generate a fine-mapping resource for IMDs, we extended the fine-mapping analysis to the complete

set of 340 colocalising IMD loci, thus removing the requirement for the QTL and IMD datasets to

have a similar density of markers. Overall, we investigated 4,819 QTL-IMD pairs that colocalised with

at least one QTL from at least one cell type at gFDR ≤ 5%. Out of the 340 loci, QTL fine-mapping

resolved 36 (11%), 74 (22%), and 112 (33%) loci to 95% credible sets of 1, 2 − 5, 6 − 20 variants,

respectively (Supplementary Table 6), adding to our understanding of causal variants in IMDs.

Out of all 18 loci that we considered well resolved using QTL data (credible set size ≤ 5) but not

using IMD summary data (credible set size ≥ 20), there were seven loci implicating either one eQTL

and/or psiQTL. One of the examples was the BACH2 (transcription regulator protein) locus. The A

allele at the intronic variant rs72928038 increases risk for MS44 and T1D41, and the disease associ-

ations were confidently colocalised with multiple QTLs (eQTL: decreasing gene expression, psiQTL,

hQTL(H3K27ac) and mQTL; PPcoloc ≥ 0.98; Figure 4a; Supplementary Fig. 11), predominantly

in naive CD4+ T-cells. The sentinel variant, rs72928038, lies in the intron closest to the transcriptional

start site of BACH2. Using T-cell Promoter Capture Hi-C (PCHi-C) data53, we observed a signif-

icant chromatin interaction between rs72928038 and the BACH2 promoter (Chicago score = 9.28),

supporting a spatial contact between the two (Figure 4b). Fine-mapping of the locus using QTL

data yielded smaller credible sets for expression (n=1 variant; rs72928038; PPfm = 0.98), methylation

(n=2), splicing (n=3), and H3K27ac (n=3) compared to fine-mapping using MS summary statistics44

(n=40 variants; Table 1; Figure 4c), where rs72928038 achieved the highest PPfm of 0.3. In T1D

fine-mapping, rs72928038 was also the most likely causal variant (PPfm = 0.73), although in this case

the summary data was very sparse and the majority of the variants in the region were not tested41

(Figure 4c). For psiQTL, there were three variants in high LD (r2 ≥ 0.84) in the credible sets:

rs6908626 (PPfm = 0.5), rs72928038 (PPfm = 0.24) and rs10944479 (PPfm = 0.24). The psiQTLs

was predicted to elicit a significant increase in the relative contribution of a processed transcript to the

total transcriptional output of BACH2 in homozygous carriers of the effect alleles (ENST00000481150;

P = 6× 10−4 for rs10944479, P = 7× 10−3 for rs6908626, P = 1× 10−3 for rs72928038; 5% in hom

REF vs 10% in hom ALT). This suggests that the effect of the downregulation of the eQTL is ex-
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Figure 5: Fine-mapping of the ITGA4 locus in monocyte. a,b, Fine-mapping of IBD associated
ITGA4 locus using different QTL in monocyte and IBD GWAS summary statistics (Methods). Po-
tential causal variants (95% credible set) for respective data sets (IBD GWAS: 11, eQTL: 2, H3K27ac:
5, and H3K4me1: 3) are highlighted by yellow. Among the QTL fine-mapping, eQTL provides smallest
credible set consisting only two variants; one SNP (rs1375493) and one INDEL (rs35723031) falling in
the second intron of the gene. c, Genomic plot of the ITGA4 region where H3K27ac, H3K4me1, and
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Figure 5: (continued..) C/EBPβ (derived from55) peaks are depicted along with the genomic po-
sitions of all the variants in 95% credible set derived from different data sets. Most of the QTL
variants fall where most chromatin activities were observed. Interestingly, one of the two eQTL vari-
ants (rs1375493) that also achieved highest posterior probability (PPfm) in all QTL data was observed
to be residing within the C/EBPβ peak, which provides more confidence that this variant might play
a role in the gene regulation through promoter interaction, however this requires further experimental
validation. On the other hand IBD GWAS lead variant (rs6740847; PPfm = 0.21) falls 13kb upstream
of the gene and the region does not show any chromatin activities. d, Posterior probability heatmap
of all the 11 variants derived from IBD GWAS and QTL data sets. In addition to IBD GWAS data,
we used two additional IBD meta analysis data (Liu et al.28 and De Lange et al.29). All the likely
causal variants in QTL credible set were subset of IBD GWAS credible set. Both eQTL fine-mapped
variants were in absolute LD (r2 = 1) and therefore achieved exactly the same posterior probability
(PPfm = 0.49), which was higher than any other variant in the region. Minor allele frequency and
pairwise LD values (with QTL lead: rs1375493) for each of the 11 variants are mentioned. Note that
the IBD meta-analysis datasets do not contain INDELs (rs35723031 and rs10562650). e, Z-scores
derived from eQTL and IBD GWAS for the locus are plotted against each other with LD information.
This plot confirms the colocalisation was meaningful, indicating both are the same signal and the
variants effects are in the same direction.

acerbated by the splice QTL due to an increased contribution of non-coding isoforms (Figure 4d).

Another example was rs1893592, located three bases downstream from the tenth exon of UBASH3A,

and associated with RA, CEL, and PSC27,38,56. UBASH3A encodes a protein belonging to the T-cell

ubiquitin ligand family that negatively regulates T-cell signalling. The A risk allele was associated

with decreased gene expression and increased percent-splice-in (PSI) in our study, supporting previous

evidence57,58. The locus could be fine-mapped to a single variant credible set (rs1893592, PPfm = 1)

using either eQTL or psiQTL, while IMD fine-mapping for RA38 yielded a credible set of 26 variants,

where PPfm for rs1893592 = 0.37 (Table 1; Supplementary Fig. 12).

There were several other examples where our QTL fine-mapping showed greater resolution to

identify potential causal variants than IMD summary statistics (Table 1). The ITGA4 locus en-

codes Integrin Subunit Alpha 4, and was recently associated with IBD29. The monoclonal antibody

Vedolizumab specifically binds the α4β7 integrin dimer formed by ITGA4 and ITGB7, reducing gas-

trointestinal inflammation in IBD59,60. Fine-mapping of IBD associations at this locus using IBD

GWAS summary statistics (Methods) yielded 11 variants, of which rs6740847 had the highest PPfm

(0.21). Fine-mapping of the same locus using monocyte QTLs yielded smaller credible sets for ex-

pression (n=2 variants), H3K4me1 (n=3) and H3K27ac (n=5) QTLs, all nested within the disease

credible set (Figure 5). The 95% eQTL credible set consisted of one SNP and one INDEL variants

in complete LD and with identical PPfm (rs1375493 G/A and rs35723031 G/GT, PP=0.49; r2=1;

Figure 5a-b; Supplementary Fig. 13). However, the INDEL (rs35723031) was not included in

any published IBD meta-analysis data28,29 (Supplementary Fig. 13c). Analysis of transcription

factor binding data showed that in monocytes the rs1375493 variant maps directly to a binding peak

of the haematopoietic master regulator C/EBPβ (Figure 5c). Analysis of regulatory scores using

DeepSEA50 showed that the QTL lead SNP rs1375493 achieved highest functional significant score

among all 11 variants at this locus, and interestingly the chromatin feature effect was most significant

for H3K27ac in untreated monocytes (E − value = 1.82 × 10−4; Supplementary Fig. 14). As
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Locus
IMD GWAS locus Fine-mapping based on IMD summary statistics Fine-mapping based on regulatory QTL summary statistics

Reported Gene Disease Reported 
variant

Pubmed 
ID

Credible 
set size

Top three variant with highest FM 
posterior probability Cell type QTL type, feature Credible 

set size
Top three variant with highest FM 

posterior probability

LOC_98 RGS1
CEL rs1359062 22057235 10 rs1359062 (0.27), rs1323292 (0.17), 

rs2816316 (0.11) Monocyte eQTL, RGS1 7 rs2984920 (0.42), rs1323292 (0.42)

MS rs1323292 31604244 25 rs1323292 (0.056), rs2760522 (0.052), 
rs3011685 (0.051) Neutrophil eQTL, RGS1 2 rs2984920 (0.50), rs1323292 (0.50)

LOC_243 ITGA4

CD rs6740847 28067908 8 rs6740847 (0.51), rs4667282 (0.12), 
rs6731125 (0.08)

Monocyte

eQTL, ITGA4 2 rs1375493 (0.49), rs35723031 (0.49)

IBD rs6740847 28067908 6
rs6740847 (0.47), rs6731125 (0.21), 

rs4667282 (0.11)
hQTL(H3K27ac) 5 rs1375493 (0.27), rs35723031 (0.27), 

rs1449263 (0.20)

hQTL(H3K4me1) 3 rs1375493 (0.45), rs35723031 (0.45), 
rs2124440 (0.09)

LOC_554 ANKRD55
MS* rs7731626 31604244 757 rs7731626 (0.56), rs10213692 (0.09), 

rs71624119 (0.09)
T-cell

eQTL, IL6ST 1 rs7731626 (1.00)

RA rs7731626 24390342 1 rs7731626 (1.00) eQTL, ANKRD55 1 rs7731626 (1.00)

LOC_692 BACH2

MS rs72928038 31604244 40 rs72928038 (0.30), rs6908626 (0.06), 
rs6925032 (0.05)

T-cell

eQTL, BACH2 1 rs72928038 (0.98)

T1D rs72928038 25751624 2 rs72928038 (0.73), rs10944479 (0.24)
hQTL(H3K27ac) 3 rs72928038 (0.60), rs6908626 (0.33), 

rs10944479 (0.04)

mQTL 2 rs72928038 (0.80), rs6908626 (0.19)

LOC_1149 LOC105369440 - 
LOC105369441 MS* rs4409785 21833088 1 rs4409785 (0.95) T-cell

eQTL, SENS3 2 rs4409785 (0.91), rs11021232 (0.06)

hQTL(H3K27ac) 1 rs4409785 (0.99)

hQTL(H3K4me1) 2 rs11021232 (0.54), rs4409785 (0.43)

LOC_1676 UBASH3A
CEL rs1893592 22057235 1 rs1893592 (1.00)

T-cell
eQTL, UBASH3A 1 rs1893592 (1.00)

RA rs1893592 24390342 26 rs1893592 (0.37), rs225433 (0.20), 
rs11203203 (0.08) psiQTL, UBASH3A 1 rs1893592 (1.00)

LOC_1584 TNFSF14 MS

rs1077667 21833088 1 rs1077667 (1.00)

Monocyte
eQTL, TNFSF14 1 rs1077667 (0.97)

rs1077667 24076602 1 rs1077667 (1.00)

rs1077667 31604244 3 rs1077667 (0.49), rs2291668 (0.27), 
rs12461821 (0.24) mQTL 3 rs1077667 (0.75), rs2291668 (0.12), 

rs12461821 (0.12)

LOC_1186 TNFRSF1A

AS rs1860545 23749187 6 rs1860545 (0.43), rs1800693 (0.17), 
rs34822098 (0.15)

Monocyte psiQTL, TNFRSF1A 1 rs1800693 (0.99)
PBC rs1800693 26394269 2 rs1800693 (0.95), rs1860545 (0.03)

MS rs1800693 31604244 1 rs1800693 (0.97) Neutrophil psiQTL, TNFRSF1A 2 rs1800693 (0.64), rs1860545 (0.35)

LOC_821 TNPO3, IRF5 UC rs4728142 28067908 5 rs4728142 (0.71), rs113478424 (0.09), 
rs3757387 (0.09) Neutrophil eQTL, IRF5 3 rs4728142 (0.35), rs3757387 (0.33), 

rs142738614 (0.27)

LOC_1017 NA CEL rs2387397 22057235 7 rs2387397 (0.37), rs744254 (0.24), 
rs744253 (0.17) Monocyte

hQTL(H3K27ac) 1 rs2387397 (1.00)

mQTL 3 rs2387397 (0.42), rs947470 (0.28), 
rs947471 (0.28)

LOC_1449 PRKCB IBD* rs7404095 28067908 36
rs7190426 (0.12), rs11645239 (0.12), 

rs2106375 (0.07) Monocyte

eQTL, PRKCB

4

rs9806836 (0.25), rs7404095 (0.25), 
rs7404003 (0.25), rs7193632 (0.25)

hQTL(H3K27ac) rs7404003 (0.25), rs7404095 (0.25), 
rs7193632 (0.25), rs9806836 (0.25)

hQTL(H3K4me1) rs9806836 (0.25), rs7193632 (0.25), 
rs7404095 (0.25), rs7404003 (0.25)

LOC_1452 IL27/CLN3 T1D rs151234 25751624 2 rs151234 (0.65), rs151233 (0.33) T-cell
eQTL, APOBR 2 rs151234 (0.50), rs151233 (0.50)

mQTL 9 rs151233 (0.45), rs151234 (0.45), 
rs7499878 (0.01)

LOC_1647 LINC01271 - 
LOC105372657 IBD* rs913678 28067908 4 rs6063502 (0.46),20:48956954 (0.42), 

rs913678 (0.05) T-cell hQTL(H3K27ac) 2 rs913678 (0.91), rs6063502 (0.05)

Table 1: Examples of high confidence fine-mapping of IMD loci. Listed IMD loci were fine-mapped
by disease summary data and confirmed by QTLs with high confidence. In most cases, IMD and QTL
fine-mapping results point to the same causal variants. However, the likely causal variants yielded
higher posterior probabilities (PPfm ≥ 0.25) in QTL fine-mapping compared to IMD fine-mapping.
Top three variants with their respective posterior probabilities (in the parenthesis) are mentioned for
each locus. * denotes the locus had moderate p-value (P ≤ 1× 10−5 ) but did not reach genome-wide
significance p-value threshold (P ≤ 5× 10−8) in respective IMD summary statistics.

the colocalisation evidence of ITGA4 locus with stimulated monocytes was reported previously29, we

analysed this locus in stimulated monocytes from two different studies61,62. Both studies showed that

the lead SNP rs1375493 had stronger association in all stimulated conditions when compared to the

IBD lead variant rs6740847 (INDEL: rs35723031 was not tested in both studies61,62; Supplementary

Fig. 15). These and other examples (TNFSF14 and SESN3 loci for MS, RGS1 for MS and CEL,

TNFRSF1A for MS, PBC and AS, and APOBR for T1D; Supplementary Fig. 16-20) demon-

strate the power of regulatory QTLs for identifying causal variants, and informs downstream disease

mechanism studies. We also reported loci where IMD and QTL (mainly eQTL) fine-mapping indicate
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same causal variants (Table 1). Remarkably, as in the ITGA4 case above, INDELs accounted for

over 12% of QTL-specific credible variants, for instance and were contained in the high-probability

(PPfm ≥ 0.25) credible sets at 22 other loci (e.g., IRF5 for UC, PARK7 for IBD and SH2B3 for AS;

Supplementary Table 9). This illustrates the value of using INDEL imputation reference panel or

genome-wide sequencing data to achieve a more comprehensive evaluation of potential causal genetic

variants in fine-mapping studies.

There were also examples of variants regulating multiple genes. The intronic variant rs7731626

mapping to ANKRD55 was previously reported as risk alleles for RA38 and MS44. The protective allele

rs7731626 (A) is associated with decreased expression of ANKRD55, and with decreased expression

of IL6ST in CD4+ T-cells. The IL6ST gene encodes Interleukin 6 Signal Transducer, a protein that

allows signal transduction of the IL6 pathway63. Previously, Chun et al64 reported an association

between rs71624119 and ANKRD55 expression but not with IL6ST in CD4+ T-cells. The rs71624119

variant is in moderate LD (r2 = 0.53) with the RA and MS risk allele rs7731626, and has weaker

support in our analysis (IL6ST eQTL: rs71624119 P = 3.5 × 10−10, rs7731626 P = 2.3 × 10−13 in

T-cells). The IL6ST eQTL is further supported by PCHi-C data that shows an interaction between

the variant and the promoter of IL6ST specifically in naive CD4+ T-cells. Overall, these findings

support the IL6 signaling pathway as a druggable target for autoimmune diseases (Supplementary

Fig. 21).

Discussion

The main aim of this study was to assess the utility and resolution of fine-mapping methods applied

to molecular QTL datasets, when compared to the current gold standard based on disease GWAS

meta-analyses. Fine-mapping is most robust in settings where statistical power is high, where the

catalog of genetic variants is complete, where all the genetic variants are perfectly genotyped, and

where LD can be directly estimated from the study sample6,12,65. Efforts to build such datasets by

sequencing the genomes of hundreds of thousands of cases and controls are ongoing. However, for

the majority of human diseases we are still a long way away from being able to generate genome

sequencing datasets of sizes comparable to current imputation-based GWAS studies, which remain

the most viable approach for fine-mapping in most diseases and traits.

We fine-mapped 340 IMD association loci across 12 diseases by using five different regulatory

QTL datasets profiled in three primary cell types and nearly 200 individuals. Our analysis showed

that fine-mapping based on regulatory QTLs in less than 200 people yields smaller average credible

sets compared to identical approaches based on disease summary statistics of hundreds of thousands

of cases and controls. A main advantage of regulatory QTLs is that, owing to their average large

effect sizes, they require order-of-magnitude fewer individuals to detect associations compared to

disease endpoints. This makes it cost-effective to use WGS to derive a near-complete representation of

genetic variants. Conversely, common imputation reference panels are by definition sparser than WGS

datasets. Further, despite attempts to standardise preprocessing and overall quality metrics in meta-

analyses, heterogeneity may arise from subtle differences in imputation strategy or post-GWAS filtering

approaches, which may for instance lead to systematic under-representation of particular classes of

variants (e.g., INDELs) in different studies6. As shown in this study, incomplete representation of
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genetic variants in disease summary statistics leads to the systematic exclusion of high-probability

causal variants. For instance, nearly 25% of the high-confidence credible set variants (PPfm ≥ 0.25)

identified in the regulatory QTL data were not represented in the IMD GWAS datasets, including

importantly 8% of INDELs. These results highlight the importance of developing highly-complete

genome sequencing datasets for the purpose of fine-mapping. The increasing size of whole-exome and

whole-genome sequencing datasets for disease discovery will ultimately ameliorate this concern. In the

meanwhile, regulatory QTLs provide a cost-effective alternative to this approach, reducing by orders

of magnitude the number of individuals required for fine-mapping.

A second main advantage of regulatory QTLs is that they provide a more direct interpretation

of biological mechanisms underlying disease variants, accelerating downstream functional validation

efforts. Further, the parallel profiling of multiple levels of regulatory annotations in multiple cell

types enhances the biological and contextual interpretation of causal effects, including inference on

the identity of putative causal cell types or the likely location of regulatory elements. A main caveat

of this approach is that colocalisation does not allow us to discriminate cases where there is a causal

relationship between the QTL and IMD variants, from those where variants may have shared but

independent (‘pleiotropic’) effects on both sets of traits48. Furthermore, causal effects may be driven

by other unmeasured cell populations, and thus colocalisation approaches alone are insufficient to

conclusively pinpoint the precise cellular context(s) in which many disease-associated variants may

exert their causal effect. This may not be a concern when QTLs display the same patterns of as-

sociation between cells and tissues, as in the ITGA4 example where the patterns of association in

resting monocytes were replicated in monocytes exposed to a variety of different stimuli. Ultimately,

however, the creation of cell- and context-resolved QTLs for a large number of biological domains (e.g.,

cellular, developmental, stimulus-dependent), coupled with deep experimental validation, will provide

the necessary frameworks to correctly interpret the effect of each disease-associated variant. Finally,

many IMDs affect ethnicities differentially1. At the moment, QTL datasets target predominantly

European-ancestry populations. Extension of analyses of regulatory variation in more representative

sets of human populations will greatly enhance our efforts to interpret genetic associations in the

context of the full spectrum of human population variation.

Methods

BLUEPRINT phase 2 data

We created a new phase 2 variant call set from low-read depth BLUEPRINT WGS dataset20 as follows.

Variant quality score recalibration (VQSR). After calling all the raw variants of 200 samples

using samtools/bcftools (see Chen et al.20 for details), GATK (v3.4) VQSR was applied separately

to SNPs and INDELs on each chromosome to derive a variant quality score log odds (VQSLOD) for

each variant. We set the VQSLOD threshold -1.0707 for SNPs (99.6% truth sensitivity) and 2.1094

for INDELs (90% truth sensitivity; Supplementary Fig. 2). We filtered out all the variants that

did not pass the VQSLOD thresholds. Additionally, we removed the SNPs and INDELs that were

found within three and ten base pairs of an INDEL, respectively.
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Variant normalization. The VCF files were normalized using the vt (v0.5) software66, which

includes two steps: (i) parsimony, where all the variants are represented in as few nucleotides as

possible and (ii) left-alignment, where the start position of the variants are shifted towards the left to

align to the reference genome (GRCh37).

Genotype refinement and imputation of variant calls to WGS reference datasets. In or-

der to improve the accuracy of individual genotype calls, we applied a genotype refinement step on

each chromosome separately using BEAGLE 4.1 (21Jan17.6cc)24,67, setting the modelscale parameter

to 2.0 to increase the speed of the process without loss of accuracy. To infer unobserved genotypes

at non-genotyped common variants, we performed a genotype imputation process using the combined

UK10K and 1KGP3 WGS reference panel. This panel consists of a total 6,285 samples (3,781 UK10K

and 2,504 1KGP3) and 87,558,135 bi-allelic sites. Note we did not use the more recent, larger Hap-

lotype Reference Consortium (HRC) reference panel since (i) we only considered associations driven

by common variants (MAF ≥ 5%); and (ii) we chose to maximise inclusion of INDELs, by imput-

ing with sequence-based reference panel. Imputation and phasing were carried out by BEAGLE 4.1

(21Jan17.6cc) with default settings24,67. Finally, to increase the likelihood of sites being true, we

removed all the variants that were specific to our dataset, i.e., not present in the reference panel.

Additional variant filtering. To generate the final variant set, we retained only bi-allelic variants

with the following characteristics: (i) Allelic R-Squared (AR2) ≥ 0.8; (ii) Hardy-Weinberg equilibrium

(HWE) P ≥ 1 × 10−3, and (iii) allele count (AC) > 4. Our final variant call set contained a total

of 9,228,816 sites, including 8,320,384 SNPs and 908,432 INDELs (Supplementary Table 1). More

detailed statistics were generated using bcftools stats (Supplementary Fig. 1).

Quantitative trait locus (QTL) mapping. We followed an identical strategy to Chen et al.20

to test for associations of phase 2 variant calls with regulatory phenotypes. Briefly, we remapped

cis-acting QTLs for five different regulatory traits: (i) gene expression, (ii) percent spliced-in (PSI),

(iii) H3K27ac histone modifications, (iv) H3K4me1 histone modifications, and (v) methylation levels

in three different primary cell types: (i) monocyte, (ii) neutrophil, and (iii) T-cell. We considered all

the genetic variants mapping to within a 1 Mb region flanking either side of each tested feature (e.g.,

gene body). The cis-QTL mapping was carried out by applying linear mixed models using the Limix

software package25. Here we tested the association between genetic variants with aforementioned five

different regulatory traits. A random effect term was included for accounting polygenic signal and

sample relatedness. To control batch effects, we corrected 10 PEER factors (K = 10) and applied

quantile normalization across donors68. Summary tables were generated for each trait containing all

summary information for each association, including p-value and effect size (beta). All the effect sizes

were aligned with the alternative allele (GRCh37) of a variant.

Multiple testing corrections. Multiple hypothesis testing correction for cis-QTLs was carried out

using EigenMT69, which estimates the number of effective tests for a trait (e.g., gene expression)

by considering the LD relationships among the tested variants. This process is computationally

efficient, achieving accuracy comparable to permutation methods, whilst being not as conservative
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as a Bonferroni correction method. Statistical significance was calculated using the Q-value70, which

adjusts the obtained EigenMT p-values across the traits. We considered as significant all QTLs

surpassing a gFDR of 0.05. Total number of QTLs along with the proportion of SNPs and INDELs

for each regulatory phenotypes are mentioned in Supplementary Table 10.

Curation of IMD summary statistics

Compilation of publicly available IMD data. We retrieved a total 28 summary statistics

datasets covering 13 different IMDs from different sources (Supplementary Table 2). Of these

28 datasets, 15 were based on SNP genotypes imputed to different imputation panels (“GWAS”,

8 diseases). The remaining 13 were based on the Immunochip array (12 diseases). For seven dis-

eases, both GWAS and Immunochip data were available. For each disease, we had access to sum-

mary statistics generated from up to four independent studies. We created unified formats for

all summary data to account for differences in the information provided between summary statis-

tics and to ensure consistency. We also retrieved a list of genome-wide significant loci from ei-

ther Immunobase (https://www.immunobase.org/) or the GWAS catalog (v1.0.1-e89 r2017-06-19;

https://www.ebi.ac.uk/gwas/), supplemented by manual curation of published literature. Other than

for the exception described below, no individual-level genotype data was available for these studies.

We excluded declared IMD GWAS loci from our analyses that did not reach genome-wide signif-

icance (P ≤ 5 × 10−8) in the corresponding summary statistics available to us. In the majority of

cases, these loci reached genome-wide significance in a multi-stage discovery + replication cohort, but

where we had access to summary statistics only for the discovery-phase data, the variants were not

genome-wide significant.

Association testing and variant filtering for IBD data (IBD GWAS). We obtained individual-

level genotype data for 18,344 study participants with for CD, IBD, and UC, and matched controls.

Briefly, genotypes were derived using the Illumina HumanCoreExome v12 array, where cases were

genotyped on version 12.1 and controls were genotyped on version 12.0. Genotypes were then im-

puted using an IBD-enhanced reference panel consisting of WGS data from the UK10K and 1KGP3

projects, and other sequenced IBD samples. The final dataset consisted of 4,264 CD, 8,860 IBD, and

4,072 UC cases, respectively, and 9,484 controls. We then applied filters to achieve the final set of

variants with (i) INFO ≥ 0.4 and (ii) MAF (case + control) ≥ 0.001. The final sets of data contain

almost 19 millions variants for each disease, including 3,257, 3,614, 2,150 genome-wide significant (P

≤ 5×10−8) variants in the non-MHC region for CD, IBD, and UC, respectively. We performed a case-

control GWAS similar to a previous study29 using SNPTEST v2.5.271, using an additive frequentist

test with score method.

Locus definition

We used a set of a total 1,703 independent LD intervals for European population derived from LDe-

tect72 (https://bitbucket.org/nygcresearch/ldetect-data). These unified loci are approximately in-

dependent LD blocks in the human genome72. We used these loci to compile a set of unique and

independent loci across all diseases.
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Conditional analysis

To investigate the presence of multiple independent causal variants in a locus, we performed a condi-

tional analysis on colocalised loci for QTL and IMD loci separately. We used GCTA-COJO: conditional

and joint analysis to perform the conditional analysis73,74. For each colocalised locus, we first per-

formed single-SNP association analysis conditioning on the lead (sentinel) variant of the locus. After

the first round of analysis, where at least one variant remained significant (conditional P ≤ 5× 10−8

for IMD and P ≤ 1× 10−5 for QTL), we repeated the process on the conditional summary statistics

and conditioning on a variant set, which consists of the new variant and the original lead variant. We

repeat the process until no genome-wide significant conditional p-value was observed. To estimate the

LD between variants, we used the UK10K + 1KGP3 dataset as a reference for IMD, as individual-level

data was unavailable. However, for QTL, where we had access to individual-level data, we used the

−−cojo-actual-geno option.

Overlapping and colocalisation of QTL and IMD loci

In our previous study, we observed a significant enrichment of immune related disease associated loci

(P ≤ 1 × 10−5) with all types of regulatory information20. We used colocalisation analysis to assess

whether IMD and QTL loci mapping to the same genomic interval had high probability of sharing the

same genetic signal. To reduce the number of pairwise comparisons tested, we first selected IMD-QTL

locus pairs where the sentinel IMD variant (from the GWAS catalog and/or Immunobase) was also

either the most associated QTL variant (gFDR ≤ 0.05), or a highly associated proxy variant (defined

by the values of the LD metric r2 ≥ 0.8). For this purpose, LD information was either calculated from

the BLUEPRINT WGS data using PLINK (v1.9)75, or retrieved from the UK10K + 1KGP3 data

when the variant was not present in the BLUEPRINT WGS panel.

We then applied gwas-pw48, which assigns loci to four possible models: models 1 and 2 provide

evidence of a single variant association in either of the two summary statistics applied (i.e., regulatory

QTL or IMD GWAS); model 3 supports the presence of a single genetic variant associated with

both the regulatory and IMD traits (“colocalisation”); and model 4 provides evidence of independent

effects between the IMD GWAS and regulatory QTL, indicative of two independent genetic associated

variants (“linkage”). Although there are several Bayesian colocalisation methods48,64,76 available, we

used gwas-pw because instead of user assigned prior, the method computes prior probabilities of each

of the four models from all the variants in the tested region by using the maximum log-likelihood

function. In our analysis, the prior model parameter were estimated per 1 Mb genomic interval to

avoid the risk of including multiple overlapping QTL testing regions. All the models provide posterior

probability for association against the null model (i.e., no association). Under each model, the method

calculates the posterior probability for all variants in a genomic window, where all the variants have

the equal prior probability to be causal. The final posterior probability of a given genetic locus is the

sum of the integral posterior probabilities of all the variants in the locus.

All four models were applied to each region. For colocalisation test, as we preselected regions

based on proxy overlapping (r2 ≥ 0.8), the higher posterior probabilities were seen for either model 3

(colocalisation) or model 4 (linkage). For declaring a region as a colocalised locus, we draw the

cut-off from posterior probability distribution and applied PPcoloc ≥ 0.98 as a cut-off for model 3
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(Supplementary Fig. 5a). The gwas-pw calculated different priors for colocalised and non-

colocalised loci (Supplementary Fig. 5b-d). We excluded the HLA (chr6 : 20, 000, 000−40, 000, 000)

due to the extremely complex LD structure. Overall, a total 11,458 IMD-QTL overlapping regions

were tested for colocalisation, including the reported IMD loci that did not reach genome-wide sig-

nificant threshold (Supplementary Table 4). We note here some of the caveats of colocalisation

methods: (i) they consider only one causal variant in the tested region or locus, (ii) they do not allow

inference of whether a “causal” or rather a “pleiotropic” relationship exists between two traits; and

(iii) they have limited power where two causal variants in high LD are independently associated with

each trait.

Overlapping with the GTEx Consortium dataset

To further investigate cell type specificity of the colocalised loci, we overlapped our eQTLs with the

47 multi-tissue eQTL data from GTEx consortium (v7)15. Since our eQTLs are from blood cells,

we removed “Whole Blood” from our analysis, which is expected to yield substantial overlap. We

systematically searched for rest of the GTEx eQTLs where the sentinel variant or a LD-proxy (r2 ≥ 0.8)

were most significant in the BLUEPRINT eQTL dataset at a gFDR level of 5% (Supplementary

Table 5).

Fine-mapping of colocalised loci

To identify high confidence putative causal variants at each locus, we performed genetic fine-mapping

on QTL and IMD colocalised loci using two state-of-the-art methods: (i) FINEMAP51 and (ii)

CAVIARBF52. Both methods are based on a Bayesian framework, although different computational al-

gorithms are used in these two methods. The FINEMAP method uses Shotgun Stochastic Search (SSS)

algorithm and it is much faster than CAVIARBF method, which is based on an exhaustive search al-

gorithm. For each locus, the fine-mapping outcome contains the Bayes factor and posterior probability

of each variant being causal for the association. Fine-mapping methods model the LD structure and

the strength of the associations (Z-score) in a locus to identify likely causal variants. Since most

of the publicly available GWAS do not provide access to individual-level genotype data, typically

fine-mapping efforts rely on common haplotype reference panels for LD estimation. However, subtle

differences in LD structure between the test and reference population can lead to inaccurate and/or

suboptimal fine-mapping, particularly for loci with multiple independent association signals65. Here

we carried out genetic fine-mapping under the assumption of a single causal variant in each locus,

removing loci with evidence of multiple independent associations from the conditional analysis. Ad-

ditionally, we only considered variants (QTL and IMD) with MAF ≥ 5% for fine-mapping analysis.

All the fine-mapping results are reported in Supplementary Table 6.

Parameter optimization. FINEMAP and CAVIARBF use different default values for prior stan-

dard deviation of effect sizes (FINEMAP: 0.05; CAVIARBF: 0.1281429). We tuned different prior

values ∈ {0.05, 0.12, 0.2, 0.3, 0.4, 0.5, 1, calculated from the data itself}, and observed different val-

ues severely affect the fine-mapping results for QTLs, however, no significant difference was observed

for IMDs (Supplementary Fig. 8). Therefore, we set an acceptable prior for QTL to 0.3 and

maintained the CAVIARBF default value (0.1281429) for IMD.
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Definition of 95% credible set. To identify potential causal variants for each locus, we created

95% credible set for QTL and IMD separately, assuming a single causal variant per locus. We created

95% credible sets by ranking all variants in a locus based on the posterior probability, and including

variants until the sum of posterior probabilities was ≥ 0.95.

Comparable IMD-QTL dataset for fine-mapping. We observed that a subset of IMD datasets

had lower numbers of variants per genomic region compared to the BLUEPRINT data, especially in

the case of the focused Immunochip content. In order to control for these variant density differences

between IMD and QTL loci, and to ensure a fair comparison for fine-mapping, we considered only loci

where at least 80% reciprocal overlap between the variants contained in each genomic interval. Further,

given that fine-mapping methods are constrained by inherent power limitations of the data, in order

to robustly compare credible sets between QTL and IMD, we considered only disease loci reaching

genome-wide significant (P ≤ 5× 10−8) levels of association in the available summary statistics. We

further removed GPR35 locus that are associated with AS, IBD, and UC and colocalised with mQTL,

as it could not be fine-mapped using mQTL, although rs4676410 was the top variant in mQTL credible

set with highest PPfm (0.48).

Comparison with IBD fine-mapping based on individual-level data

In a recent study, Huang and colleagues attempted to fine-map 94 IBD loci using high-density genotype

data9. Of these, 68 loci were found to contain a single independent association, while others contained

multiple independent signals. We overlapped these loci with our QTL data and only considered

the loci that meet the following criteria: (i) the disease loci showed strong colocalisation evidence

(PPcoloc ≥ 0.98) with at least one of the QTLs in one cell type; (ii) selected QTL loci contained only

one independent causal variant with MAF ≥ 5%; and (iii) both QTL and IBD fine-mapping credible

set size ≤ 100 variants. Finally, we selected 32 loci full-filling above criteria. For each locus, we

compared the reported credible set and the minimal credible set out of all QTLs (Supplementary

Fig. 9 and Supplementary Table 7).

Data availability

The BLUEPRINT phase 2 Genotype data (VCFs) have been deposited in the European Genome-

phenome Archive (EGA) under accession EGAD00001005192. All the QTL summary statistics are

available under EGAD00001005199 and EGAD00001005200.
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