Abstract
Background The correct identification of differentially abundant microbial taxa between experimental conditions is a methodological and computational challenge. Recent work has produced methods to deal with the high sparsity and compositionality characteristic of microbiome data, but independent benchmarks comparing these to alternatives developed for RNA-seq data analysis are lacking.
Results Here, we compare methods developed for single cell, bulk RNA-seq, and microbiome data, in terms of suitability of distributional assumptions, ability to control false discoveries, concordance, and power. We benchmark these methods using 100 manually curated datasets from 16S and whole metagenome shotgun sequencing.
Conclusions The multivariate and compositional methods developed specifically for microbiome analysis did not outperform univariate methods developed for differential expression analysis of RNA-seq data. We recommend a careful exploratory data analysis prior to application of any inferential model and we present a framework to help scientists make an informed choice of analysis methods in a dataset-specific manner.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
- An enrichment analysis was performed to assess the correctness of the discoveries. - Corncob, songbird and mixMC were added to the methods' list. - The emphasis on parametric simulations was lowered and details were moved to Additional file 2.