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ABSTRACT 20 

1. Preventing diseases from becoming a problem where they are not is a common 21 

ground for disease ecology. The expectation for vector-borne diseases, 22 

especially those transmitted by mosquitos, is that warm and wet conditions 23 
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 2 

favor vector traits increasing transmission potential. The advent of urbanization 24 

altering inner climate conditions hazards to increase mosquito’s transmission 25 

potential on “disease-free” cooler areas as a consequence of a warming urban 26 

heat island (UHI) effect.  27 

2. We assessed the realism of the anticipated dengue transmission potential into 28 

the southern United States in a causal pathway with the ongoing UHI effect, 29 

vectors' spatial distribution patterns, and exogenous environment; We also 30 

measured the climatic niche similarity between both dengue vectors species. 31 

3. Our path model revealed that the UHI effect presents negative or no relation 32 

with dengue transmission potential. Instead, the surrounding non-urban 33 

temperature was rather suitable for the expected mosquitos’ transmission 34 

potential.  35 

4. Both dengue vectors' occurrence revealed to be more aggregated then expected 36 

by chance. These mosquitos’ density patterns were responsive to the warming 37 

effect of UHI- especially Aedes Aegypti- but not a reliable predictor for the 38 

anticipated dengue transmission potential pattern. The climatic niches of both 39 

vectors are not equivalent. Although currently highly overlapped, there is a wide 40 

space of their climatic niche still to be filled. 41 

5. Policy implications. We highlight that the warming UHI effect on urban sites is 42 

not congruent with the expected suitability for dengue transmission. Instead, 43 

non-urban areas would be a better focus for dengue hazards into the southern 44 

United States. Our study also highlights the need for including low scale 45 

temperature on further mosquito-borne disease transmission models and track 46 

vectors niche filling under anthropogenic changes. 47 
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1. INTRODUCTION  51 

Vector-borne pathogens are characterized by their dependence on vectors, in 52 

general arthropods (e.g., mosquitoes), that feed on blood to proceed the infection cycle 53 

(Gubler, 2002). Their resulting diseases represent one of the greatest challenges faced 54 

by public health worldwide (World Health Organization, 2014). Some critical vector-55 

borne diseases, such as; dengue, chikungunya, and Zika, which were formerly restricted 56 

to tropical and subtropical regions, have begun to spread into new parts of the world as 57 

a consequence of accidental introductions of vectors and pathogens along with changes 58 

in climate and habitat distributions (Gubler, 2001; Murray et al., 2015).  59 

Despite the complex nature of vector-borne diseases transmission, 60 

understanding main drivers of its geographic spread is crucial for monitoring potential 61 

impacts on public health (World Health Organization, 2014). Vector transmission is 62 

linked with traits such as the biting rate, life span, and inner incubation period albeit 63 

also the abundance of vector species (Watts et al., 2018). Recently, studies have 64 

considered the temperature role on vector traits to assess the environmental suitability 65 

range for transmission capacity (e.g., Brady et al., 2014; Ryan et al., 2019). This 66 

geographical perspective highlights the potential of macroecological analyses on disease 67 

ecology and public health strategies against the burden of disease transmission 68 

(Stephens et al., 2016). In this sense, the usage of transmission potential spatial patterns 69 

on causal structures with acknowledged exogenous drivers (e.g., urban features), rise as 70 
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a promising research area to infer causal pathways on disease ecology, ultimately 71 

orienting effective strategies on public health surveillance (Kraemer et al., 2019, 72 

Mordecai et al., 2019).  73 

Some of the most consequential vectors species, including Aedes aegypti and 74 

Aedes albopictus, have lifestyles adapted to the ecology of urban settings and inner 75 

climatic conditions have the potential to favor their vector traits (Arnfield, 2003; Gloria-76 

Soria et al., 2018). Urban sites might exhibit higher temperatures than surrounding, a 77 

phenomenon called ‘Urban Heat Island’ (UHI), and changes in the global climate and 78 

human population growth are expected to intensify the UHI conditions (Zhao et al., 79 

2014; Manoli et al., 2019). As ectotherms, mosquito behavior, abundance, fitness and 80 

distribution patterns can be strongly affected by small changes in temperature 81 

(Amarasekare & Savage, 2011; Huey et al., 2012). In cooler regions, relative to mosquito 82 

species thermal optima, it is expected that species’ abundance might increase with UHI 83 

effect, particularly at range margins of mosquito species (Ladeau et al., 2015; Kraemer 84 

et al., 2019). In addition, even where mosquito species do not increase in abundance, 85 

their vectorial capacity might increase with the UHI effects (Araujo et al., 2015; Murdock 86 

et al., 2017). Conversely, UHI effects in areas already near the thermal maxima of a 87 

mosquito species may lead to decreases in their vectorial capacity (Mordecai et al., 88 

2019). For instance, known upper thermal bounds for dengue transmission is 34.0 Co for 89 

Ae. aegypti and 29.4 Co for Ae. albopictus (Ryan et al., 2019). However, even though UHI 90 

effects might increase the potential for a disease outbreaks at the range margins of 91 

vector mosquitoes, UHI effects have received little attention in the infectious disease 92 

ecology (Misslin et al., 2016).  93 
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Dengue is a neglected disease that has rapidly expanded geographically over the 94 

last decades (Gubler, 2002; Ramos-Castañeda et al., 2017), and although Ae. aegypti 95 

was historically considered the main responsible for dengue urban transmission, Ae. 96 

albopictus has starred in recent major outbreak events (Lambrechts et al., 2010). 97 

Despite of their differing invasion timing and native origins (Kaplan et al., 2010), both 98 

vector species are currently listed among worst invasive organisms (Global Invasive 99 

Species Database, IUCN). In a recent future, both species are expected to spread farther 100 

north and south into temperate regions along with climate changes (Kraemer et al., 101 

2019). Besides, the ongoing co-occurrence and continuing spread of both vectors in 102 

“dengue-free” areas, such as the southeastern North America, aggravates the 103 

temperature suitability predictions of dengue transmission into these areas under 104 

current and future climate conditions (Brady et al. 2014; Rosenberg et al., 2018; Messina 105 

et al., 2019), given the lack of heard immunization (Johnson et al., 2017). 106 

In the present work, we aim to evaluate the realism of the geographical pattern 107 

on dengue transmission potential in the face of the urban heat island effect (UHI) and 108 

existing vectors distribution in the southeastern United States. To achieve our goal, we 109 

take two steps. Foremost, we build a correlative path structure (Fig. 1) to comprise the 110 

weight of UHI effect and other urban features on observed dengue potential pattern; 111 

and, as burden of dengue transmission largely reflects the distribution and density of 112 

the mosquito vectors, we also consider both the effect of urban features in increasing 113 

Ae. aegypti and Ae. albopictus clustering and the dengue transmission risk resulting from 114 

their distribution pattern. Second, as the niche similarity between these important 115 

mosquito vectors is unclear, we additionally use a niche overlap approach to compare 116 

the climatic niches of both species assuming that, in spite of sharing similar geographical 117 
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spaces, they do not have equivalent niches, which would result in low overlap between 118 

vectors niche and in current avoidance of dengue outbreak on the region. 119 

2. MATERIALS AND METHODS 120 

(a) Data 121 

(i) Vector species occurrence 122 

 The Ae. aegypti (Stegomyia aegypti) and Ae. albopictus (Stegomyia albopicta) 123 

occurrence was obtained from Kraemer et al. (2015) available at 124 

http://datadryad.org/resource/doi:10.5061/dryad.47v3c and improved with last 125 

published records (Johnson et al., 2017). This comprehensive dataset is a compilation of 126 

occurrence point records over the last 57 years (1960 – 2017) documented in previous 127 

studies– Kraemer et al., 2015; Hahn et al. 2016; 2017. To latter evaluate each specie 128 

density in southeastern United States we selected the occurrence points located into 129 

the region, ultimately comprising 1227 and 217 records of Ae. albopictus and Ae. 130 

aegypti, respectively.  131 

(ii) Dengue transmission suitability 132 

 To assess the geographic range of dengue transmission potential we used 133 

Brady’s et al. (2014) global consensus map of vector transmission suitability based on 134 

temperature, from which we extracted the information within the southeastern United 135 

States. This map is a result of a mechanistic model derived from experimental data that 136 

assess vector traits of dengue transmission (e.g., mosquito survival; extrinsic incubation 137 

period [EIP]) based on temperature effect, separately for Ae. aegypti and Ae. albopictus, 138 
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and spatialized using a global temperature dataset with 1km resolution (see Brady et al. 139 

(2014) for modeling approach details). Their output predicted areas where global 140 

temperature support year-round dengue transmission given the presence of an infected 141 

individual (i.e. the basic reproduction number, R0) ranging from 0 to 1, for each vector 142 

species, where within pixel values closest to 1 indicate a higher potential for the virus 143 

transmission. 144 

(iii) Meteorology and land use 145 

To test the effect of urban differential temperature on dengue transmission 146 

suitability we used the UHI dataset from ‘NASA Socioeconomic Data and Applications 147 

Center’ (SEDAC, 2016), available at http://sedac.ciesin.columbia.edu/data/set/sdei-148 

global-uhi-2013/data-download. The UHI data comprises the estimate of summer 149 

daytime maximum and nighttime minimum surface temperature within urban extent 150 

and surrounding non-urban areas (buffer of 10 km), and the difference between them, 151 

in Celsius degrees. Here we used both daytime and nighttime temperatures, once vector 152 

activity is referred to be even superior at nighttime than it is in daylight (Stoddard et al., 153 

2009). The global GeoTIFF is in the resolution of 30 arc-seconds (~1Km), on which we 154 

made a subset based on southeastern United States area. 155 

To account for the influence of other urban-modified features on vectors density 156 

and dengue transmission we obtained the data referent to precipitation and wind speed 157 

from NASA Langley Research Center (LaRC) POWER Project, available at 158 

https://power.larc.nasa.gov/data-access-viewer/ . Both variables represent the average 159 

annual information in a 0.5o global grid. The wind speed data is scaled on 2 meters 160 

elevation, accounting for the limited space of mosquito’s activity (Reisen et al., 2003; 161 
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Guerra et al., 2014). The land-cover features, known to increase mosquito vectors 162 

density due to anthropogenic changes favoring species associated with urban areas 163 

(Beaulieu et al., 2019), were obtained in 1-km resolution (Tuanmu & Jetz, 2014). The 164 

data account for 7 land-cover classes (i.e., Evergreen/Deciduous Needleleaf Trees, 165 

Deciduous Broadleaf Trees, Mixed/Other Trees, Herbaceous vegetation, Cultivated and 166 

Managed Vegetation, Regularly Flooded Vegetation and Urban/Built-up) chosen based 167 

on their matter on vector settlement and ultimate dengue transmission (Guerra et al., 168 

2014). 169 

Finally, to build and later compare both vector species niche we delimitated the 170 

niche boundaries using bioclimatic variables, which are widely accepted given its 171 

robustness to represent seasonal trends and physiological constrains of species (Lobo 172 

et al., 2010). In this sense, we used all 19 bioclimatic variables from WorldClim dataset 173 

on the resolution of 30 arc-seconds, available at http://www.worldclim.org/.  174 

(b) Analysis   175 

(i) Density estimation 176 

 For the estimation of vector density across southeastern U.S., we used the point 177 

pattern approach based on species occurrence data. Firstly, to account for bias in point 178 

density estimation, we applied the rarefaction curve, commonly used to quantify bias in 179 

presence counting measures (Gotelli & Colwell, 2001), with the R package iNEXT (Hsieh 180 

et al., 2019). Then, we used the R package spatstat (Baddeley et al., 2015), where we 181 

performed a near neighbor analyses (ANN) between vector occurrence records and 182 

compared with a commonly used null model based on the distribution of simulated ANN 183 

values given the Complete Spatial Random (CSR) point process (Wiegand & Moloney, 184 
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2004; Baddeley et al., 2014). To generate a vector density raster, we used the Kernel 185 

density estimation to interpolate around each point, for which we established the 186 

bandwidth value of 0.5 to give weight to distant points contribution on density 187 

estimation using the R package KernSmooth (Wand, 2015).  188 

(ii) Path model  189 

To recover the underlying direct and indirect causal mechanisms between UHI 190 

and other features on dengue transmission suitability on the southeastern United States 191 

(Fig. 1) we used the structural equation modeling (SEM) approach with the R package 192 

lavaan (Rosseel, 2012). Usually, the SEM model is applied to mediate causal 193 

assumptions, which assumes that the presumed explanatory variables can influence an 194 

outcome directly and indirectly through other variables (Fan et al., 2016). However, SEM 195 

does not account for spatial information and the autocorrelation that frequently arise 196 

when dealing with spatially explicit structures, which ultimately inflates the type I error 197 

given the lack of independence between observations across space (Legendre & 198 

Legendre, 1998).  199 

Aiming to consider the spatial autocorrelation and provide unbiased regression 200 

coefficients we used eigenvector-based spatial filters, which consist on extracting the 201 

eigenvectors of a distance matrix describing the spatial structure of the data and adding 202 

them as additional predictors into the SEM model (Griffith, 2003). First, we extracted 203 

the geographical coordinates along southeastern U.S. to build a distance matrix, which 204 

was truncated at the distance of 300 km based on a previous evaluation of the Moran’s 205 

I correlogram. Then, the truncated matrix was submitted to a principal coordinate 206 

analyses (PCO) and its resultant eigenvectors were selected as predictors based on 207 
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significance of each partial regression coefficients (following Borcard & Legendre, 2002). 208 

For the spatial filter approach, we used the R packages letsR (Vilela & Villalobos, 2015) 209 

and ecodist (Goslee et al., 2007).  210 

(iii) Niche overlap  211 

In order to estimate the overlap between dengue vectors niches and test the 212 

hypothesis of niche non-equivalence we used the framework proposed by Broennimann 213 

et al. (2012). The method assesses niche overlap by calibrating a principal component 214 

analysis on the environmental space (PCA-env) and use kernel density smoothing to 215 

correct potential sampling bias (Broennimann et al., 2012). We used the R package 216 

ecospat (Di Cola et al., 2017) to pull the bioclimatic information, according to the species 217 

occurrence, and create a background environmental space to perform the PCA. Thus, 218 

the 1st and 2nd output axes were used to create a 100 x 100 occurrence density grid 219 

representing each specie niche. The estimated niches was overlapped and the degree 220 

of intersection was assessed using Schoener’s D metric (following Warren et al. 2008)– 221 

which ranges between 1 (i.e., complete overlap) and 0 (i.e., no overlap) –and compared 222 

with 100 random simulated overlap index distribution to test for niche equivalence and 223 

niche similarity.  224 

3. RESULTS 225 

(a) Density estimation 226 

 The test for vector occurrence point pattern clustering/dispersion on the 227 

southeastern region of United States showed that, when compared with a null 228 

distribution of average distance among geographic points, the distance between 229 

occurrence points density, for both Ae. albopictus and Ae. aegypti, are greater than 230 
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expected. Even though, Ae. aegypti density pattern revealed higher concentration into 231 

Florida and Louisiana, while Ae. albopictus showed a more diffused occurrence density, 232 

with higher weight into the northern portion of southeastern U.S. like Virginia (Fig. 4). 233 

(b) Path model 234 

The SEM revealed that the combined influence of diurnal and nocturnal UHI, 235 

wind speed, precipitation and land-use- including spatial filters - explained respectively 236 

49% and 54% of the variance on Ae. aegypti and Ae. albopictus density (Fig. 2). In 237 

addition, the interaction between vectors occurrence density, UHI and further 238 

predictors explained 92% and 90% of variation on dengue transmission suitability 239 

respectively by Ae. aegypti and Ae. albopictus into the southeastern U.S. (Fig. 2). The 240 

addition of spatial filters on SEM structure to take in account the unknown endogenous 241 

and exogenous influence shaping dengue transmission suitability pattern, improved the 242 

model fit based on Akaike information criterion (AIC) and r square. The inclusion of 20 243 

spatial filters on Ae. aegypti path model adjusted the AIC from 15356.419 to 11631.864 244 

and the R2 from 0.5 to 0.9, and the 30 spatial filters included on Ae. albopictus model 245 

adjusted the AIC from 15655.011 to 11845.485 and the R2 from 0.34 to 0.9 (Table 1). 246 

The resulting SEM causal path indicated that daytime UHI (Fig. S1) is negatively 247 

correlated with dengue transmission suitability (b = -0.03; sites with a greater UHI effect 248 

are less suitable for transmission by vectors) but positive with the density of both 249 

vectors (b = 0.05; 0.02; sites with a greater UHI effect have more of both mosquito 250 

species), although the effect on the density pattern of Ae. albopictus is not significant. 251 

In contrast to the effect of daytime UHI, the UHI effect during nighttime (Fig. S1) was 252 

not significantly correlated with dengue transmission suitability in the southeastern U.S. 253 
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Interestingly, the density of both vector species was negatively correlated with 254 

nighttime UHI (b = -0.04) (Fig. 2; Table 1), such that the effect of daytime UHI and 255 

nighttime UHI were in the opposite directions for the mosquito species agglomeration 256 

pattern. Precipitation was strongly positively correlated with the density of both vectors 257 

(b = 0.31; 0.23), while its effect in dengue transmission suitability was not significant. 258 

The SEM path output also indicated that wind speed has a high negative effect on the 259 

density of both vector species (b = -0.19; -0.07), however it showed a positive 260 

association with dengue transmission suitability by Ae. aegypti (b = 0.07) and Ae. 261 

albopictus (b = 0.013). The effect of land-use over dengue predictors was indirect via its 262 

influence on UHI (b = 0.07; 0.05). Moreover, the occurrence density of the two vectors 263 

was not correlated with dengue transmission suitability in the southeastern U.S. (Fig. 2; 264 

Table 1). 265 

(c) Niche overlap 266 

 Schoener’s D niche overlap index revealed a high level of overlap between Ae. 267 

albopictus and Ae. aegypti niches (Fig. 3). The niche similarity test showed that niche 268 

overlap comparisons between one randomly distributed over the unchanged other (1 -269 

> 2) and vice versa (2 -> 1) had a Schoener’s D of 0.44, thus distant from a completely 270 

unrelated scenario (i.e., D = 0). The vector species niches are represented by the 1st axes 271 

of the PCA-env, that is associated with temperature-related bioclimatic variables, and 272 

by the 2nd axes, that is associated with precipitation-related variables. In spite of the 273 

high niche overlap and similarity of both vectors species, the result of the one-tailed 274 

niche equivalence test showed a significantly lower niche equivalence between both 275 

main dengue vectors (p-value = 0.001).  276 
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4. DISCUSSION  277 

Contrary to previous expectations that urban heat islands (UHI) effect might favor 278 

dengue transmission, our results suggest that areas under UHI stress have lower risk of 279 

the disease spread by its both main vectors. The threat of dengue transmission potential 280 

into the southeastern U.S. has been placed decades ago based on mosquito vectors 281 

invasion (Monath, 1994). The incorporation of temperature on disease transmission 282 

models later reinforced the predictions of Ae. aegypti and Ae. albopictus potential 283 

dengue transmission into the region under current and future global climate (Brady et 284 

al., 2014; Messina et al., 2019). However, here we show that the downscaled 285 

temperature difference between warmer urban and cooler sub-urban areas– the so 286 

called UHI –have a contrasting inverse relation with dengue transmission potential (Fig. 287 

2; Table 1). Contrary to the expectation that warmer conditions generally promote 288 

mosquito borne disease (Morin et al. 2015; Thomson et al. 2017). Still, UHI effect, wind 289 

speed, and precipitation all together were highly congruent with the expectation of 290 

dengue transmission suitability on the southeastern U.S., which aligns with the concern 291 

of urbanization style shaping the probability of mosquito-borne disease transmission 292 

(Gubler, 2011). 293 

The starting point for realized dengue transmission depends primarily on the 294 

presence of virus strains, susceptible host population and competent vectors (Gubler, 295 

2011). Year-round adequate temperature determining transmission competence of 296 

mosquito vectors (Ryan et al., 2019), in combination with precipitation, ultimately zenith 297 

seasonal dengue cycles into tropical endemic areas (Van Panhuis et al., 2015). In 298 

contrast, cooler subtropics are expected to avoid transmission following an unimodal 299 
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variation on vector-borne transmission that limits dengue around 18 Co (Ladeau, 2015; 300 

Mordecai et al., 2019). Here we outline that on summer the combination of temperature 301 

with other environmental features is congruent with dengue transmission potential and 302 

vectors accumulation on the subtropical southeastern U.S. (Fig. 2; Table 1). However, 303 

contrary to the expected higher dengue probability in warmer urban temperature 304 

(Halstead, 2008), transmission potential showed conformity with the sub-urban lower 305 

temperature. In fact, previous works highlighted that mosquito transmission increased 306 

around lower temperature ranges (Carrington et al., 2013), advocating for a 307 

thermoregulation scape from urban to bordering greener sites where environment 308 

afford thermal respite (Huey, 2012; Misslin et al. 2016). Still, the dengue potential 309 

contrast we found between urban and surrounding areas might also reflect the scale 310 

considered to predict the temperature range of dengue transmission potential, which 311 

ignores low scale environment where transmission takes place. 312 

In cities where dengue transmission is a seasonal event, human population cluster 313 

share space with high density of mosquitoes, usually a strong predictor for arboviral 314 

transmission potential (Halstead, 2008; Ladeau et al., 2015). Our results otherwise 315 

showed that the density derived from occurrence data was not a good predictor of the 316 

dengue potential predicted by the temperature-based transmission model in the 317 

southeastern U.S. This result might either represent that the mosquito records within 318 

the studied area are not sufficient to predict the emergence of dengue, or that both 319 

species aggregation does not overlap the dengue transmission suitability areas. 320 

Although previous works have indicated a positive association between vector density 321 

and disease incidence (Walk et al., 2009), this association does not occur in all cases 322 

(Halstead, 2008). For instance, in Singapore the extreme reduction of Ae. aegypti density 323 
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did not avoid the continued dengue infection (Chan, 1985). Here we found that both 324 

mosquito species densities were more related with urban then suburban temperatures 325 

(Table S1), congruent with urban microclimates favoring vector population growth- 326 

while it has not reached thermal performance peak -(Huey et al., 2012; Mordecai et al., 327 

2019). Additionally, day and nighttime UHI range revealed fully relation with Ae. aegypti 328 

density (Figs. 2, S1), a primarily urban specie when compared with the Ae. albopictus, 329 

which dominates in suburban areas (Beaulieu et al., 2019). 330 

The southeastern U.S. have a particular precipitation regime with much higher 331 

humidity than other U.S. locations. Consequently, the UHI effect- which follows 332 

precipitation gradient (Manoli et al., 2019) -is increased in this region, where annual UHI 333 

effect is around 3.9 Co higher than dryer U.S. regions (Zhao et al., 2014). Besides the 334 

indirect effect on urban temperature higher precipitation is also expected to increase 335 

mosquito density by increasing breeding sites and oviposition (Halstead, 2008), and our 336 

results showed a positive association between precipitation and both species’ densities, 337 

supporting this prediction. However, precipitation was not a good support for the 338 

dengue suitability range expected by the global temperature model. In this sense, the 339 

background effect of higher precipitation on the southeastern U.S. UHI might indirectly 340 

impose thermal limitations to dengue transmission range, even where wind speed is 341 

expected to facilitate the transmission contact (Cummins et al., 2012). To fully 342 

comprehend this complex association between precipitation and UHI on dengue 343 

transmission, further works should include the urban differential climate into mosquito-344 

borne disease transmission models.  345 

The niche comparison revealed that, in spite of distinct invasion time by dengue 346 

vectors into the southeastern U.S.- where there is a niche conservatism evidence for 347 
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both species (Cunze et al., 2018) -their occupied climatic space markedly overlap (Fig. 348 

4). Accordingly, given the observed low prediction of dengue transmission suitability by 349 

vector density on the southeastern U.S., the ongoing climatic space occupied by both 350 

species may be the main factor avoiding a dengue outbreak into the region, when other 351 

important features are favorable (e.g., autochthonous virus, lack of heard immunity). 352 

However, our results also highlight that the climatic niche space of both species are not 353 

completely fulfilled (solid line Fig. 3), which ultimately indicate future potential for 354 

dengue transmission due to range expansion. In fact, Kraemer et al. (2019) showed that 355 

there is strong evidence for future Ae. aegypti and Ae. albopictus range expansion 356 

poleward with anthropogenic pressure, ultimately fulfilling the remaining suitable 357 

climatic space and increasing the risk of dengue transmission into subtropical areas like 358 

the southeastern U.S.  359 

5. CONCLUSIONS  360 

Here we highlight that the southeastern U.S suburban areas show higher realism 361 

with expected dengue transmission thermal bounds. If the expected dengue potential 362 

range is accurate, suburban great transmission suitability ultimately represent higher 363 

risk of infectious contact between humans and competent vectors once this is a 364 

residential zone. However, vectors density pattern did not show correspondence with 365 

the suitability range based on global temperature, which might indicate an 366 

underestimation of dengue risk on warmer urban areas. In addition, the niche space 367 

currently occupied by both vectors are similar but not equivalent, and part of their 368 

climatic niche remain unfiled, representing an ahead risk of vectors population grow 369 

into areas of dengue transmission competence. In this sense, range expansion of both 370 
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species under anthropogenic and climatic changes claim that the combat of mosquitoes 371 

must be intersected in areas where the contact of hosts and competent vectors 372 

represents a risk. Accordingly, here we suggest that considering the UHI effect on further 373 

predictive dengue transmission models might be crucial to accurately identify areas of 374 

dengue transmission risk. Moreover, further research is still needed to address the heat 375 

suitability on mosquito’s traits to transmit other concerning viruses such as Zika and 376 

chikungunya (Carlson et al., 2018), in the light of virus and vector coevolution and 377 

evolutionary adaptation to new environments.   378 
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FIGURES AND TABLES 606 

607 

Figure 1 Conceptual Path model defining the expected relations between predictors and 608 

response.609 
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 610 

 611 

Figure 2 Structural equation model outcome for a) Ae. albopictus and b) Ae. aegypti. R2 is shown 612 

for de dependent variable. The values associated with arrows are standardized regression 613 

coefficients and dashed arrow indicate non-significance path coefficient (P > 0,05). 614 
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Table 1 Table showing the outcome correlation coefficients of each path resulting from SEM analyses and the respective adjust of each model given the 

consideration autocorrelation by spatial filters.  

            
  Vector: Ae. Aegypti   Vector: Ae. albopictus 
  Parameter estimate Standard Error   Parameter estimate Standard Error 
Dengue transmission suitability ~           
Mosquito Density -0.02* 0.01   -0.01 0.01 
UHI Daytime -0.03*** 0.02  -0.03*** 0.02 
UHI Nighttime 0.001 0.01   0.002 0.02 
Wind Speed 0.07*** 0.01  0.013*** 0.03 
Precipitation -0.03 0.04   -0.08 0.04 
Spatial Filters 0.04* 0.01  0.02*** 0.01 
            
Mosquito density ~      
UHI Daytime 0.05*** 0.03   0.02 0.02 
UHI Nighttime -0.04*** 0.02  -0.04* 0.01 
Wind Speed -0.19*** 0.03   -0.07*** 0.01 
Precipitation 0.31*** 0.06  0.23*** 0.06 
Spatial Filters 0.04 0.04   0.03* 0.02 
            
AIC 11631.864     11845.485   
AIC (nf) 15356.419     15655.011   
            
*p≤0.10.            
***p≤0.01.            
(nf) No spatial Filter.           

615 
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 616 
Figure 3 Niche overlap and niche equivalence result showing the occupied climatic niches of Aedes albopictus and Aedes aegypti (Top left) in the niche space 617 

available, and the amount of niche overlap between them (Top right). Both ways intersection (Bottom right) showed higher overlap degree than expected 618 

by the null model (i.e., Schoener’s D > 0.4). In spite of highly overlapped, their niche spaces are not equal (Bottom left). 619 
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 Figure 4 Aedes albopictus (a) and Aedes aegypti (b) spatial density estimation based on Kernel smooth approach of available occurrence records. 
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