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Abstract (~150 words; now: 184) 34 

Humans’ propensity to acquire literacy relates to several factors, among which, the 35 

ability to understand speech in noise (SiN). Still, the nature of the relation between reading and 36 

SiN perception abilities remains poorly understood. Here, we dissect the interplay between (i) 37 

reading abilities, (ii) classical behavioral predictors of reading (phonological awareness, 38 

phonological memory and lexical access), and (iii) electrophysiological markers of SiN 39 

perception in 99 elementary school children (26 with dyslexia). We demonstrate that cortical 40 

representation of phrasal content of SiN relates to the development of the lexical (but not 41 

sublexical) reading strategy. In contrast, classical behavioral predictors of reading abilities and 42 

the ability to benefit from visual speech to represent the syllabic content of SiN account for 43 

global reading performance (i.e., speed and accuracy of lexical and sublexical reading). Finally, 44 

we found that individuals with dyslexia properly integrate visual speech information to 45 

optimize processing of syntactic information, but not to sustain acoustic/phonemic processing. 46 

These results clarify the nature of the relation between SiN perception and reading abilities in 47 

typical and dyslexic child readers, and identified novel electrophysiological markers of 48 

emergent literacy. 49 

 50 

Keywords: Cortical tracking of speech, MEG, Reading abilities, Dyslexia, Speech in noise 51 
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Introduction 54 

Acquiring literacy is tremendously important in our societies. Central for reading 55 

acquisition are adequate phonological awareness,1–3 phonological memory,4,5 and lexical 56 

access.6–8 The adequacy of the learning environment also plays a major role.9,10 In particular, 57 

the presence of recurrent noise in the learning environment can substantially hinder reading 58 

acquisition.11,12 Therefore, the ability to understand speech in noise (SiN)—which is known to 59 

differ between individuals 13,14—should modulate the negative impact of environmental noise 60 

on reading acquisition. And indeed, the quality of brainstem responses to syllables in noise 61 

predicts reading abilities and its precursors.15 Moreover, individuals with dyslexia often exhibit 62 

a SiN perception deficit,16,17 that is particularly apparent when the background noise is 63 

composed of speech.18 This deficit has been hypothesized to root in a deficit in phonological 64 

awareness,19,20 but contradictory reports do exist.21 The question of whether SiN processing 65 

abilities relate to reading due to a common dependence on classical behavioral predictors (i.e., 66 

phonological awareness, phonological memory and lexical access), or due to other cognitive 67 

or neurophysiological processes specific to SiN processing, is thus open. Furthermore, it is also 68 

unexplored which aspects of reading and SiN processing abilities are related. Understanding 69 

these relations is especially important given that acoustic noise is ubiquitous, and given how 70 

adverse dyslexia can be for the cognitive and social development of children. 71 

Reading is a multifaceted process. Hence, it is reasonable to think that SiN processing 72 

might relate to a restricted set of aspects of reading. Following the Dual Route Cascaded (DRC) 73 

model, reading is supported by two different routes: the sublexical and the lexical routes.22,23 74 

The sublexical route implements the grapheme to phoneme conversion. It is used when reading 75 

unfamiliar words or pseudowords, but it is not suitable to correctly read irregular words (i.e., 76 

yacht) and to acquire fluent reading. Skilled reading relies on the lexical route that supports 77 

fast recognition of the orthographic word form of familiar words. The lexical route is 78 
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indispensable to read irregular words, benefits reading of regular words, and does not 79 

contribute to reading pseudowords. Remarkably, the brain would implement these two reading 80 

strategies in two distinct neural pathways.24–27 81 

There are also several distinct aspects of SiN processing that could relate to reading, 82 

and these can be derived from electrophysiological recordings of brain activity during 83 

connected speech listening. When listening to connected speech, human auditory cortical 84 

activity tracks the fluctuations of speech temporal envelope at frequencies matching the speech 85 

hierarchical linguistic structures, i.e., phrases/sentences (0.2–1.5 Hz) and words/syllables (2–8 86 

Hz).28–38 Such cortical tracking of speech (CTS) is thought to be essential for speech 87 

comprehension.31,33,35,37,39–41 Corresponding brain oscillations would subserve the 88 

segmentation or parsing of incoming connected speech to promote speech 89 

recognition.31,32,37,39,42 In SiN conditions, children and adults’ brain preferentially tracks the 90 

attended speech rather than the global auditory scene, though with reduced fidelity when the 91 

noise hinders comprehension.28,29,38,43–53 Assessing CTS in noise can therefore provide 92 

objective measures of the impact of noise on the cortical representation of the different 93 

hierarchical linguistic structures of speech. Also relevant is how SiN perception is impacted by 94 

noise properties. In essence, the relevant parameters for an acoustic noise in SiN conditions are 95 

the degree of energetic and informational masking.54 The noise is energetic when its spectrum 96 

is similar to that of speech, and non-energetic otherwise. The noise is informational when it is 97 

made up of other speech signals, and non-informational otherwise. An energetic noise 98 

introduces physical interferences and an informational noise introduces perceptual 99 

interferences. Finally, to enhance SiN processing, humans also benefit from visual information 100 

of the speaker’s articulatory mouth movements.55,56 All these aspects of SiN perception can be 101 

captured by measures of CTS. 102 
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In this study, we investigated the relations between reading abilities, neural 103 

representations of SiN quantified with CTS, and classical behavioral predictors of reading in 104 

elementary school children. To fully characterize cortical SiN processing, we measured CTS 105 

in several types of background noises introducing different levels of energetic and 106 

informational masking and in conditions where the face of the speaker was visible (lips) or not 107 

(pics) while talking. This study was designed to answer three major questions: (i) What aspects 108 

of cortical SiN processing and reading abilities are related in typically-developing elementary 109 

school children (ii) To what extent are these relations mediated by classical behavioral 110 

predictors of reading? (iii) Do these relations translate to alterations in dyslexic children in 111 

comparison with typical readers matched for age or reading-level? As preliminary steps to 112 

tackle these questions, we identify relevant features of CTS in noise, and assessed in a global 113 

analysis the nature of the information about reading brought by all the identified features of 114 

CTS in noise and classical behavioral predictors of reading abilities. 115 

 116 

Results 117 

We first report on 73 children with typical reading abilities. Then, we report on 26 118 

children with dyslexia matched with a sub-sample of the 73 typical readers for age (n = 26) or 119 

reading level (n = 26). Both control groups were included to tell whether development or 120 

reading experience can explain potentially uncovered SiN deficits.57 Reading performance and 121 

its classical behavioral predictors were characterized in a comprehensive cognitive evaluation 122 

(Table 1). Children’ brain activity was recorded with magnetoencephalography (MEG) while 123 

they were attending to 4 videos of ~6 min each (Figure 1). Each video featured 9 conditions: 1 124 

noiseless and 8 SiN resulting from the combination of energetic or non-energetic and 125 

informational or non-informational noise with lips and pics visual inputs. For each condition, 126 

we regressed the temporal envelope of the attended speech on MEG signals with several time 127 
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lags using ridge regression and cross-validation (see methods section for details).58 The ensuing 128 

regression model was used to reconstruct speech temporal envelope from the recorded MEG 129 

signal. CTS was computed as the correlation between the genuine and reconstructed speech 130 

temporal envelopes. We did this for MEG and speech envelope signals filtered at 0.2–1.5 Hz 131 

(phrasal rate)28,59 and 2–8 Hz (syllabic rate),47,51,60,61 and for MEG sensor signals in the left and 132 

right hemispheres separately. 133 

Table 2 presents the percentage of the 73 typical readers showing statistically 134 

significant phrasal and syllabic CTS, for both hemispheres, and each condition. All typical 135 

readers showed significant phrasal CTS in noiseless and non-informational (non-speech 136 

hereafter) noise conditions, and still most of them in informational (babble hereafter) noise 137 

conditions (mean ± SD across conditions, 98.3 ± 2.1 %). Most of the typical readers showed 138 

significant syllabic CTS in noiseless and non-speech noise conditions (93.8 ± 3.2 %), and 139 

slightly less of them in babble noise conditions (80.1 ± 4.3 %). This result clearly indicates that 140 

CTS can be robustly assessed at the subject level. 141 

 142 

Figure 1. Illustration of the experimental material used in the neuroimaging assessment. 143 

Subjects viewed 4 videos of ~6 min duration. Each video was divided into 10 blocks to which 144 

experimental conditions were assigned. There were 2 blocks of the noiseless condition, and 8 145 

blocks of speech-in-noise (SiN) conditions: 1 block for each possible combination of the 4 146 

types of noise and two types of visual display. The interference introduced by the noise was 147 

either energetic or not and informational or not. The visual display provided visual speech 148 

information (lips) or not (pics). 149 
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Table 1. Mean and standard deviation of behavioral scores in each reading group of 26 children 150 

and comparisons (t-tests) between groups. The number of degrees of freedom (df) was 50 for 151 

all comparisons except those involving auditory attention (TAP) scores (dyslexic readers vs. 152 

controls in age, df = 49; dyslexic readers vs. controls in reading level, df = 38) and socio-153 

economic status (dyslexic readers vs. controls in age, df = 49; dyslexic readers vs. controls in 154 

reading level, df = 47). IQ, intelligence quotient; RAN, rapid automatized naming; SD, standard 155 

deviation. 156 

  
Dyslexic readers Age-matched control  Reading level control  Dyslexic readers compared with controls 

Mean SD Mean SD Mean SD 
in age in reading level 

p t(df) p t(df) 
Chronological age 9.81 1.26 9.52 0.96 7.21 0.53 0.38 0.89 <0.0001 10.31 
Non-verbal IQ 111 11 114 10 112 9  0.30 -1.04 0.784 -0.28 
Socio-economic status 6.12 2.44 6.96 1.45 6.96 2.47 0.14 -1.50 0.17 -1.40 
Alouette reading accuracy 89.0 5.7 96.2 2.1 89.0 6.46 <0.0001 -6.07 0.988 0.01 
Alouette reading speed 141 61 292 91 138 64 <0.0001 -7.04 0.867 0.17 
Irregular words reading [words/s] 0.54 0.33 1.16 0.44 0.40 0.35 <0.0001 -5.82 0.15 1.47 
Regular words reading [words/s] 0.73 0.41 1.35 0.41 0.61 0.35 <0.0001 -5.51 0.29 1.06 
Pseudo-words reading [words/s] 0.42 0.24 0.78 0.30 0.39 0.21 <0.0001 -4.88 0.61 0.50 
Visual attention 30.3 3.74 32.0 2.69 27.4 4.43 0.070 -0.95 0.014 2.53 
Phoneme suppression  7.92 2.15 9.04 1.75 8.42 1.27 0.046 -2.05 0.313 -1.02 
Phoneme fusion 7.73 1.59 9.31 0.97 8.92 1.16  <0.0001 -4.32 0.003 -3.09 
Forward digit span 5.08 0.84 5.8 0.69 5.15 0.78 0.001 -3.41 0.735 -0.34 
Backward digit span 3.69 0.79 4.5 1.33 3.38 0.75 0.011 -2.66 0.156 1.44 
RAN time [s] 24.4 7.84 20.1 3.02 30.6 7.51 0.013 2.59 0.005 -2.91 
TAP mean response time [ms] 627 99.0 613 75.4 667 93.4 0.59 0.53 0.07 -1.86 
TAP SD response time [ms] 140 45.0 129 30.3 171 46.7 0.33 0.98 0.02 -2.36 
TAP correct responses 15.6 0.58 15.7 0.68 15.3 1.07 0.42 -0.81 0.11 1.65 
TAP false responses 2.15 2.26 0.84 1.28 1.21 0.97 0.014 2.54 0.89 0.13 

 157 

Table 2. Percentage of the 73 typical readers showing significant cortical tracking of speech 158 

(CTS) at phrasal and syllabic rates in the 9 different conditions, in the left hemisphere (LH), in 159 

the right hemisphere (RH), or in at least one hemisphere. The two values provided for the 160 

noiseless condition correspond to two arbitrary subdivisions of the noiseless data to match the 161 

amount of data for the eight noise conditions. 162 

  

Phrasal CTS 

Noiseless 
Non-Informational Noise Informational Noise 

Non-energetic Energetic Non-energetic Energetic 

Pics Pics Lips Pics Lips Pics Lips Pics Lips 
Left hemisphere 100 100 100 100 100 100 91.8 97.3 90.4 97.3 

Right hemisphere 100 100 100 100 100 100 94.5 98.6 90.4 95.9 
At least one hemisphere 100 100 100 100 100 100 97.3 100 95.9 100 

  Syllabic CTS 
Left hemisphere 89 84.9 82.2 83.6 82.2 86.3 53.4 65.7 49.3 61.6 

Right hemisphere 91.8 89 89 91.8 86.3 91.8 69.9 76.7 67.1 76.7 
At least one hemisphere 97.3 94.5 94.5 94.5 87.7 94.5 78.1 86.3 76.7 79.4 

 163 
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What aspects of SiN processing modulate the measures of CTS in noise? 164 

First, we identify the main factors modulating CTS in SiN conditions. To that aim, we 165 

evaluated with linear mixed-effects modeling how the normalized CTS (nCTS) in SiN 166 

conditions depends on hemisphere, noise properties, and visibility of the talker’s lips. The 167 

nCTS is a contrast between CTS in SiN and noiseless conditions (see Methods) that takes 168 

values between –1 and 1, with negative values indicating that the noise reduces CTS. Such 169 

contrast presents the advantage of being specific to SiN processing abilities by factoring out 170 

the global level of CTS in the noiseless condition. In that analysis, nCTS values were corrected 171 

for age, time spent at school and IQ. 172 

Table 3 presents the final linear mixed-effects model of phrasal and syllabic nCTS, and 173 

Figure 2 illustrates underlying values. 174 

The pattern of how nCTS changed with different types of noises was overall similar for 175 

phrasal and syllabic nCTS. Non-speech noise did not substantially change CTS (nCTS was 176 

close to 0). However, babble noise resulted in a substantial reduction of CTS compared to the 177 

noiseless condition for both hemispheres and irrespective of the availability of visual speech 178 

information. That is, nCTS in babble noise conditions was roughly between –0.1 and –0.3, 179 

indicating that CTS in babble noise was 20–50% (values obtained by inverting the formula of 180 

nCTS) lower than CTS in noiseless conditions.  181 

Availability of visual speech information (lips conditions) increased the level of nCTS 182 

only in babble noise conditions for phrasal nCTS, and in all noise conditions for syllabic nCTS. 183 

And finally, the noise impacted differently nCTS in the left and right hemispheres. The 184 

phrasal nCTS was higher in the left than right hemisphere in babble noise conditions. It was 185 

the other way round for syllabic nCTS in all noise conditions. 186 

 In summary, the CTS is mostly impacted by informational noises, and is also modulated 187 

by the availability of visual speech and the hemisphere (only in informational noise conditions 188 
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for phrasal CTS, and in all noise conditions for syllabic CTS). These observations guided the 189 

elaboration of 8 relevant features (contrasts) of nCTS in SiN conditions (see Supplementary 190 

Methods): the global level of nCTS and its informational, visual and hemispheric modulations, 191 

all for phrasal and syllabic nCTS. In the next sections we unravel the associations between 192 

these features, reading abilities, and classical behavioral predictors of reading. 193 

 194 

Table 3. Factors included in the final linear mixed-effects model fit to the normalized cortical 195 

tracking of speech (nCTS) at phrasal and syllabic rates. Factors are listed in their order of 196 

inclusion. 197 
 𝒳2 p 

 df value  
phrasal nCTS    

noise 3 597.50 < 0.0001 
visual 1 127.28 < 0.0001 

hemisphere 1 17.27 < 0.0001 
noise × visual 3 67.70 < 0.0001 

noise × hemisphere 3 10.98 0.012 

syllabic nCTS    
noise 3 340.61 < 0.0001 

visual 1 21.42 < 0.0001 
hemisphere 1 10.38 0.0013 

 198 

 199 

 200 

 201 
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 202 

Figure 2. Impact of the main fixed-effects on the normalized cortical tracking of speech 203 

(nCTS) at phrasal (A) and syllabic rates (B). Mean and SEM values are displayed as a function 204 

of noise properties. The four traces correspond to visual conditions with the speaker’s talking 205 

face visible (lips; black traces) and with static pictures illustrating the story (pics; gray traces), 206 

within the left (lh; connected traces) and right (rh; dashed traces) hemispheres. nCTS values 207 

are bounded between –1 and 1, with values below 0 indicating lower CTS in speech-in-noise 208 

conditions than in noiseless conditions. 209 

 210 

What is the nature of the information about reading abilities brought by measures of SiN 211 

processing and classical behavioral predictors of reading? 212 

Having identified relevant features of cortical SiN processing, we first evaluated to 213 

which extent these features and classical behavioral predictors of reading bring information 214 

about reading abilities. More precisely, we used partial information decomposition (PID) to 215 

dissect the information about reading abilities (target) brought by behavioral scores (first set of 216 

explanatory variables) and features of the nCTS in noise (second set of explanatory 217 

variables).62–64 Generally speaking, PID can reveal to which extent two sets of explanatory 218 

variables bring unique information about a target (information present in one set but not in the 219 

other), redundant information (information common to the two sets), and synergistic 220 

information (information emerging from the interaction of the two sets). Here, the target 221 

consisted of 5 reading scores: (i) an accuracy and (ii) a speed score for the reading of a 222 
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connected meaningless text (Alouette test), and scores (number of correctly read words per unit 223 

of time) for the reading of a list of (iii) irregular words, (iv) regular words and (v) pseudowords. 224 

The first set of explanatory variables consisted of a total of 5 measures indexing phonological 225 

awareness (scores on phoneme suppression and fusion tasks), phonological memory (scores on 226 

forward and backward digit repetition), and lexical access (rapid automatized naming (RAN) 227 

score). The second set of explanatory variables was the 8 features of nCTS in SiN conditions 228 

identified in the previous subsection. Again, in that analysis, all measures were corrected for 229 

age, time spent at school and IQ. 230 

As a result, features of nCTS in noise brought significant unique information about 231 

reading abilities (unique information = 0.61; p = 0.016), while classical behavioral predictors 232 

did not (unique information = 0.31; p = 0.10). Both sets of explanatory variables brought 233 

significant redundant but not synergistic information about reading (redundant information = 234 

0.16; p = 0.0020; synergistic information = 0.12; p = 0.26). 235 

These results indicate that the way the CTS is impacted by ambient noise relates to 236 

reading abilities in a way that is not fully explained by classical behavioral predictors of 237 

reading. Further analyses will therefore strive to identify which aspects of SiN processing and 238 

reading are related, and which of these relations are mediated by classical behavioral predictors 239 

of reading. 240 

 241 

Which features of SiN processing relate to reading abilities in a way that is not mediated 242 

by classical behavioral predictors of reading? 243 

We next identified with linear mixed-effects modeling (i) the set of classical behavioral 244 

predictors of reading that best explains reading abilities, and (ii) the set of features of nCTS in 245 

noise that brings additional information about reading abilities. Importantly, all measures were 246 

corrected for age, time spent at school, and IQ, and further standardized. In that analysis, the 247 
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type of reading score used to assess reading abilities was taken as a factor. Classical behavioral 248 

predictors of reading (5 measures) were first entered as regressors, before considering the 249 

features of nCTS in noise (8 measures) as additional regressors. 250 

Table 4 presents the final linear mixed-effects model fit to reading scores. It shows that 251 

lexical access (indexed by RAN score) and phonological memory (indexed by the forward digit 252 

span) relate to global reading abilities. It also shows that two aspects of SiN processing, the 253 

visual and informational modulations in phrasal nCTS, explain a different part of the variance 254 

in reading abilities. Importantly, these two indices relate to reading in a way that depend on the 255 

type of reading score. These effects are illustrated with simple Pearson correlations in Table 5. 256 

The time necessary to fulfil the RAN task was significantly negatively correlated with all 257 

reading scores. The forward digit span was significantly positively correlated with all reading 258 

scores. The visual modulation in phrasal nCTS was overall positively correlated with scores 259 

involving reading speed (Alouette speed score and regular-, irregular- and pseudoword reading 260 

scores; significantly so for pseudoword reading only) but not with the Alouette accuracy score. 261 

The informational modulation in phrasal nCTS was characterized by a significant positive 262 

correlation with the score on irregular word reading only. Interestingly, the correlation was not 263 

significant—and even negative—with the score on pseudoword reading. 264 

We will now attempt to better understand the meaning of this last association (between 265 

the informational modulation in phrasal nCTS and irregular- but not pseudoword reading). 266 

Given that different routes support reading of irregular words (lexical route) and pseudowords 267 

(sublexical route), the contrast between corresponding standardized scores (irregular 268 

– pseudowords) indicates reading strategy. We henceforth refer to this index as the reading 269 

strategy index. Further strengthening the correlation pattern highlighted above for the 270 

informational modulation in phrasal nCTS, this latter index correlated even more strongly with 271 

the reading strategy index (r = 0.44, p < 0.0001; See Fig. 3, left) than with the score on irregular 272 
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word reading. This suggests that irregular and pseudoword reading scores bring synergistic 273 

information about the informational modulation in phrasal nCTS. To confirm this, we used 274 

partial information decomposition (PID) to dissect the information about the informational 275 

modulation in phrasal nCTS (target) brought by irregular reading scores (first explanatory 276 

variable) and pseudoword reading scores (second explanatory variable). This analysis revealed 277 

that the score on irregular word reading carried significant unique information about the 278 

informational modulation in phrasal nCTS (unique information = 0.044, p = 0.015), while the 279 

score on pseudowords did not (unique information = 0.0001, p = 0.62), and most interestingly, 280 

that these two reading scores carried significant synergistic but not redundant information 281 

about the informational modulation in phrasal nCTS (redundant information = 0.0019, p = 0.44; 282 

synergistic information = 0.146, p < 0.0001). 283 

Figure 3 (right panel) further illustrates that the reading strategy index was correlated 284 

with phrasal nCTS only in the informational noise conditions. 285 

In summary, classical behavioral predictors of reading were informative about global 286 

reading abilities (similar correlation with all 5 measures of reading), while two aspects of the 287 

CTS in noise (informational and visual modulations in phrasal nCTS) related to specific aspects 288 

of reading (correlation with some but not all 5 measures of reading). The extent to which visual 289 

speech boosts phrasal CTS in noise was related to reading speed but not accuracy, and the 290 

ability to maintain adequate phrasal CTS in babble noise related to reading strategy (dominant 291 

reliance on the lexical rather than sublexical route). 292 

 293 

 294 

 295 

 296 

 297 

 298 
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Table 4. Regressors included in the final linear mixed-effects model fit to the 5 reading scores 299 

taken as factors. Regressors are listed in their order of inclusion. 300 
 𝒳2 p 

 df value  
RAN 1 15.79 < 0.0001 

forward digit span 1 11.10 0.0009 
visual modulation in phrasal nCTS 1 4.85 0.028 

informational modulation in phrasal nCTS 
dependant on reading score 

5 15.63 0.0080 

visual modulation in phrasal nCTS dependant on 
reading score 

4 11.09 0.026 

 301 

 302 

Table 5. Pearson correlation between measures of reading abilities and relevant brain and 303 

behavioral measures. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.1. nCTS, normalized 304 

cortical tracking of speech. 305 
 RAN forward digit 

span 
Visual 

modulation in 
phrasal nCTS 

Informational 
modulation in 
phrasal nCTS 

Visual 
modulation in 
syllabic nCTS 

Phoneme 
suppression  

Phoneme 
fusion  

Alouette accuracy –0.37 ** 0.33 ** 0.00 –0.35 0.29 * 0.11 0.25 * 
Alouette speed –0.41*** 0.38 *** 0.21 # 0.08 0.30 ** 0.31 ** 0.30 ** 
Irregular words –0.35 ** 0.42 *** 0.18 0.26 * 0.37 ** 0.21 # 0.17 

Regular words –0.42 *** 0.35 ** 0.18 0.12 0.31** 0.25 * 0.19 
Pseudowords –0.34 ** 0.30 * 0.31 ** –0.07 0.23 * 0.21 # 0.11 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

 313 
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 314 

Figure 3. Relation between the reading strategy index and the normalized cortical tracking of 315 

speech (nCTS) at phrasal rate. Left — The informational modulation in phrasal nCTS as 316 

function of the reading strategy index. Gray circles depict participants’ values and a black trace 317 

is the regression line, with correlation and significance values indicated in the bottom right 318 

corner. Right — The mean nCTS across visual conditions and both hemispheres for the 4 types 319 

of noise: energetic (E) or not (nE) and informational (I) or not (nI), with nE-nI in blue, E-nI in 320 

turquoise, nE-I in red and E-I in pink. Circles (nE noise conditions) and crosses (E) depict 321 

participants’ values, and full traces are the regression lines. Correlation and significance level 322 

for all noise conditions are indicated on the right of each plot. 323 

 324 

Do other features of SiN processing or classical behavioral predictors of reading relate to 325 

reading abilities? 326 

Above, we have identified a set of brain and behavioral measures related to reading. 327 

Importantly, each measure was included because it explained a new part of the variance in 328 

reading abilities. But the first PID analysis revealed that brain and behavioral measures do carry 329 

significant redundant information. This means that some measures might have been left aside 330 

if they explained some variance that was already explained (i.e., if they provided mainly 331 

redundant information). Accordingly, we also ran the linear mixed-effects analysis with nCTS 332 

and behavioral regressors that were not included. This analysis identified an overall positive 333 

correlation between reading abilities and (i) the visual modulation in syllabic nCTS (𝒳2(1) = 334 

9.74, p = 0.0018), (ii) phoneme suppression (𝒳2(1) = 4.94, p = 0.026) and (iii) phoneme fusion 335 
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(𝒳2(1) = 4.00, p = 0.038). Corresponding Pearson correlation coefficients are presented in 336 

Table 5. A detailed PID analysis revealed that these “side” measures were redundant—and 337 

synergistic to some extent—with RAN and forward digit span but not with visual and 338 

informational modulations in phrasal nCTS (see Supplementary Results). 339 

In summary, scores indexing phonological awareness (score on phoneme suppression 340 

and phoneme fusion) and the extent to which visual speech boosts syllabic CTS in noise (visual 341 

modulation in  syllabic nCTS) relate to global reading abilities in a way that is mediated by the 342 

main classical behavioral predictors of reading we identified (RAN and forward digit span) but 343 

not with visual and informational modulations in phrasal nCTS 344 

 345 

Does phonological awareness mediate SiN perception capacities? 346 

Having identified three relations between various aspects of cortical SiN processing 347 

and reading, we now specifically test the hypothesis that each of these relations is mediated by 348 

phonological awareness. For that, we again relied on PID to decompose the information about 349 

reading abilities (target) brought by each identified feature of the CTS in noise (first 350 

explanatory variable) and the mean of the two scores indexing phonological awareness (second 351 

explanatory variable). Ensuing results are provided in Table S1. In summary, phonological 352 

awareness mediated one aspect of the relation between reading and cortical SiN processing 353 

(relation with the benefit of visual speech to boost syllabic CTS in noise), but not the two others 354 

(relations involving phrasal CTS in noise). 355 

 356 

Do relations between reading and features of nCTS translate to alterations in dyslexia? 357 

We next evaluated whether the relations between features of nCTS and reading abilities 358 

translate to alterations in dyslexia. That analysis was conducted on a group of 26 dyslexic 359 
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readers, 26 age-matched and 26 reading-level-matched typically developing children selected 360 

among the 73 children included in the first part of the study.  361 

Based on the result that reading abilities relate to phrasal nCTS in informational noise 362 

and to the boost in nCTS brought by visual speech, we focused the comparison on the phrasal 363 

nCTS in lips and pics averaged across hemispheres and babble noise conditions (see Fig. 4A). 364 

As a result, individuals with dyslexia had significantly lower phrasal nCTS than age-matched 365 

controls in pics (t(50) = 3.03, p = 0.0039) but not in lips (t(50) = 0.83, p = 0.41). This difference 366 

was not present in the comparison with reading-level-matched controls (pics, t(50) = 0.65, p = 367 

0.52; lips, t(50) = 0.54, p = 0.59). 368 

Based on the result that reading abilities relate to the visual modulation in syllabic 369 

nCTS, we focused the comparison on this index (see Fig. 4B left part). This revealed that 370 

individuals with dyslexia had significantly lower visual modulation in syllabic nCTS than age-371 

matched (t(50) = 2.62, p = 0.012) but not reading-level-matched controls (t(50) = 1.59, p = 372 

0.12). To better understand the nature of this difference, we further compared between groups 373 

the syllabic nCTS in lips and pics averaged across hemispheres and noise conditions (see Fig. 374 

4B right part). As a result, individuals with dyslexia had significantly lower syllabic nCTS than 375 

age-matched controls in lips (t(50) = 2.89, p = 0.0057) but not in pics (t(50) = 0.88, p = 0.38). 376 

This difference was not present in the comparison with reading-level-matched controls (lips, 377 

t(50) = 1.19, p = 0.24; pics, t(50) = 0.25, p = 0.81). 378 

In summary, one aspect of cortical SiN processing (reliance on visual speech to boost 379 

phrasal nCTS) was not altered in dyslexia while two other aspects (phrasal nCTS in babble 380 

noise, and reliance on visual speech to boost syllabic nCTS) were altered in dyslexia in 381 

comparison with typical readers matched for age but not reading level. This suggests that these 382 

two later aspects are altered as a consequence of reduced reading experience. 383 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.907667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.907667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

 384 

Figure 4. Comparison between children with dyslexia and controls in the measures of 385 

normalized cortical tracking of speech (nCTS) significantly related to reading abilities. A 386 

— Modulations involving phrasal nCTS. Displayed are the mean and SEM within groups 387 

(dyslexia, control in age, and control in reading level) of phrasal nCTS in the conditions with 388 

(lips) and without (pics) visual speech information. Values of nCTS were averaged across 389 

hemispheres and informational noise conditions for phrasal nCTS and across hemispheres and 390 

all noise conditions for syllabic nCTS. B — Modulations involving syllabic nCTS. On the left 391 

is the visual modulation in syllabic nCTS. The right part is as in A. 392 

 393 

Discussion 394 

The main objective of this study was to fully characterize the nature of the relation 395 

between objective cortical measures of SiN processing and reading abilities in elementary-396 

school children. Results demonstrate that some cortical measures of SiN processing relate to 397 

reading performance and reading strategy. First, phrasal nCTS in babble (i.e., informational) 398 

noise relates to the ability to read irregular but not pseudowords, which in the DRC model 399 

indicates maturation of the lexical route. Second, the ability to leverage visual speech to boost 400 

phrasal nCTS in babble noise relates to reading speed (but not accuracy). Third, the ability to 401 

leverage visual speech to boost syllabic nCTS in noise relates to global reading abilities. Fourth, 402 
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classical behavioral predictors of reading abilities (RAN, phonological memory and 403 

phonological awareness) relate to global reading performance, and not strategy. Importantly, 404 

behavioral scores and the two features of phrasal CTS in babble noise explained a different part 405 

of the variance in reading abilities. Finally, the first and third relations uncovered in typical 406 

readers translated to significant alteration in dyslexia in comparison with aged-matched but not 407 

reading-level-matched typically developing children. Two limitations are discussed in 408 

Supplementary Discussion. 409 

Significant associations were found between reading abilities and some features of 410 

phrasal and syllabic nCTS. There is evidence that CTS at phrasal rate (here taken as 0.2–1.5 411 

Hz) partly reflects parsing or chunking of words, phrases and sentences.65 Indeed, the brain 412 

tracks phrase and sentence boundaries even when speech is devoid of prosody but only if it is 413 

comprehensible;39 and the phase of below-4-Hz brain oscillations modulates perception of 414 

ambiguous sentences.37 CTS at phrasal/sentential rate would help align neural excitability with 415 

syntactic information to optimize language comprehension.36 In contrast, CTS at syllable rate 416 

(here taken as 2–8 Hz) would reflect low level auditory processing.65 In light of the above, our 417 

results highlight that associations between SiN perception and reading abilities build on their 418 

shared reliance on both language processing and low-level auditory processing. 419 

 420 

Robustness of cortical speech representation to babble noise indexes the development of 421 

the lexical route  422 

Our results indicate that an objective cortical measure of the ability to deal with babble 423 

noise relates to the maturation of the lexical route. Technically, the informational modulation 424 

in phrasal nCTS correlated significantly positively with the reading score on irregular but not 425 

pseudowords. Reading score on irregular words indeed provided unique information about the 426 

informational modulation in nCTS. Also, the two reading scores in synergy provided some 427 
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additional information about the informational modulation in nCTS. Furthermore, the result 428 

that the informational modulation in nCTS correlated more with the reading strategy index than 429 

the score on the irregular words suggests that the key elements at the basis of this relation are 430 

the processes needed to read irregular words that are not needed to read pseudo-words. Our 431 

results in dyslexia support this relation although they cannot rule out the possibility that it is 432 

due to variability in reading experience since phrasal nCTS in non-visual informational noise 433 

conditions was reduced in dyslexic readers compared with age-matched but not reading-level-434 

matched controls. 435 

The relation between the development of the lexical route and the level of phrasal nCTS 436 

in babble noise could be explained by a positive influence of good SiN abilities on reading 437 

acquisition. Let us take as an example the situation of being faced for the first time with a 438 

written word that is read by a teacher while some classmates are making noise. SiN abilities 439 

will naturally determine the odds of hearing that word properly and hence the odds of building 440 

up the orthographic lexicon. When reading again the word alone, only children with good SiN 441 

abilities will have the opportunity to train their lexical route for that specific word. Of course 442 

the same chain of action could be posited for the training of grapheme–phoneme 443 

correspondence. But there are many more words than phonemes and syllables, so that good 444 

SiN abilities might be more important to successfully learn the correspondence between 445 

irregular words’ orthographic and phonological representations. Indeed, grapheme–phoneme 446 

correspondence is intensively trained when learning to read. Children are repeatedly exposed 447 

to examples of successful grapheme–phoneme correspondence, some with noise, and some 448 

without noise. Accordingly, no matter what children’s SiN abilities are, they will learn the 449 

grapheme–phoneme correspondence and develop their sublexical route, provided that they 450 

have adequate phonological awareness. Supporting this, phonological awareness does not 451 

predict SiN abilities in typical readers.21 452 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.907667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.907667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

Alternatively, the relation between the ability to read irregular words (which tags the 453 

development of the lexical route) and nCTS in babble noise could be mediated by the degree 454 

of maturation of the mental lexicon.66,67 The mental lexicon integrates and binds the 455 

orthographic, semantic and phonological representations of words. Its proper development is 456 

important for reading acquisition. Indeed, reading acquisition entails creating a new 457 

orthographic lexicon and binding it to the preexisting semantic and phonological lexicons.68 458 

Development of such binding (i) is indispensable to read irregular words,69 (ii) benefits reading 459 

of regular words, and (iii) does not contribute to reading pseudowords. The proper development 460 

of the mental lexicon is also important for SiN comprehension. Indeed, SiN comprehension 461 

strongly depends on vocabulary knowledge.21,70,71 And the level of CTS in noise relates to the 462 

listeners’ level of comprehension.35,40,41 This therefore suggests that the robustness of CTS to 463 

babble noise depends on the level of comprehension, which in turn depends on how developed 464 

is the mental lexicon. The development of the mental lexicon could therefore be the hidden 465 

factor mediating the relation between SiN and lexical reading ability. This is also perfectly in 466 

line with our result that altered phrasal nCTS in babble noise in dyslexia may result from 467 

reduced reading experience. In brief, reading difficulties in dyslexia would reduce their reading 468 

experience, which would impair building up the mental lexicon, and in turn impede SiN 469 

perception. Still, future studies on the association between SiN processing and reading should 470 

include measures of the development of the mental lexicon to carefully analyse the interrelation 471 

between SiN perception, reading abilities and the development of the mental lexicon. 472 

 473 

Audiovisual integration and reading abilities 474 

We found significant relations between reading abilities and the ability to leverage 475 

visual speech to maintain phrasal and syllabic CTS in noise. Visual speech cues (articulatory 476 

mouth and facial gestures) are well known to benefit SiN comprehension 55 and CTS in noise.72–477 
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76 Obviously, the auditory signal carries much more fine-grained information about the 478 

phonemic content of speech than the visual signal. But the effect of audiovisual speech 479 

integration is quite evident in SiN conditions, where it affords a substantial comprehension 480 

benefit.55,56,77,78 Mirroring this perceptual benefit, it is already well documented that phrasal 481 

and syllabic CTS in noise is boosted in adults when visual speech information is available.72–482 

76,79–82 483 

We found that the visual modulation in phrasal nCTS correlated globally positively 484 

with reading speed (significantly so for the pseudowords) but not accuracy. However, our 485 

dyslexic readers (compared with both control groups) did not have any alteration in their 486 

phrasal nCTS in babble noise when visual speech was provided. Instead, they successfully 487 

relied on visual speech information to restore their phrasal CTS in babble noise (which was 488 

altered without visual speech information). In other words, reliance on lip-reading to maintain 489 

appropriate phrasal CTS in babble noise appeared as a protection factor in our group of dyslexic 490 

readers.  491 

We also found that the visual modulation in syllabic nCTS correlated globally 492 

positively with reading abilities. More interestingly, our dyslexic readers (compared with both 493 

control groups) did not have any significant alteration in their syllabic nCTS in noise when 494 

visual speech was not provided. However, compared with age-matched typically developing 495 

children, they benefited significantly less from visual speech to boost syllabic CTS in noise. 496 

Instead, they behaved more like reading-level-matched typically developing children. 497 

Accordingly, our results cannot argue against the view that poor audiovisual integration in 498 

dyslexia is caused by reduced reading experience.57,83,84 Notwithstanding, the pattern of results 499 

(see Fig. 4B left) is even suggestive of an alteration in dyslexia in comparison with reading-500 

level-matched children. More statistical power would be needed to confirm/infirm the trend. 501 
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Our result that audiovisual integration abilities correlate with reading abilities is in line 502 

with existing literature. Indeed, individuals with dyslexia benefit less from visual cues to 503 

perceive SiN than typical readers85–89. Audiovisual integration and reading could be altered in 504 

dyslexia simply because both rely on similar mechanisms. Indeed, reading relies on the ability 505 

to bind visual (graphemic) and auditory (phonemic) speech representations.90,91 And according 506 

to some authors, suboptimal audiovisual integration mechanisms could reduce reading 507 

fluency.92 Importantly, the finding that individuals with dyslexia benefit normally from visual 508 

speech to boost phrasal but not syllabic CTS in noise brings important information about the 509 

nature of the audiovisual integration deficit in dyslexia. Following the functional roles 510 

attributed to CTS, individuals with dyslexia would properly integrate visual speech information 511 

to optimize processing of syntactic information,36 but not to support acoustic/phonemic 512 

processing.65 This could be explained by their preserved ability to extract and integrate the 513 

temporal dynamics of visual speech, but not the lip configuration,89 two aspects of audiovisual 514 

speech integration currently thought to be supported by distinct neuronal pathways.93 This 515 

inability to rely on lip configuration to improve auditory phonemic perception in SiN 516 

conditions may be caused by a supra-modal phonemic categorization deficit, as already 517 

proposed for children with specific language impairment.94 Finally, the fact that the visual 518 

modulation in syllabic nCTS brought a limited amount of unique information about reading 519 

with respect to classical behavioral predictors of reading, but that all of them brought more 520 

information in synergy, suggests that a broad set of low-level processing abilities contribute to 521 

determine reading abilities and alterations in dyslexia.95,96 522 

 523 

Classical behavioral predictors related to global reading abilities 524 

Our results confirm that classical behavioral predictors of reading (RAN, phonological 525 

memory, and metaphonological abilities) are directly related to the global reading level rather 526 
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than reading strategy. We draw this conclusion since the optimal model for reading score 527 

contained a common slope for all reading subtests. This means that the model was not 528 

significantly improved by optimizing the slope for each of the 5 reading subtests separately. 529 

Accordingly, univariate correlation coefficients presented in Table 5 were roughly similar 530 

across the 5 reading scores. 531 

Phonological memory (assessed with forward digit span) was significantly positively 532 

correlated with the global reading level. That phonological memory relates to global reading 533 

abilities rather than reading strategy is well documented.4 Poor readers, regardless of their 534 

reading profile, typically perform poorly on phonological memory tests involving digits, 535 

letters,97,98 or words.99 536 

Performance on the RAN task was also related to the global reading level, in line with 537 

existing literature.6–8,100–103 RAN performance has indeed a moderate-to-strong relationship 538 

with all classical reading measures alike, including word, non-word and text reading, as well 539 

as text comprehension.100 It is a consistent predictor of reading fluency in various alphabetic 540 

orthographies independently of their complexity.104 RAN performance even predicts reading 541 

performance at 2 years interval,105 similarly well for reading performance assessed with tasks 542 

tagging lexical and sublexical routes. It is thought that RAN and reading performances correlate 543 

because both involve serial processing and oral production,103 two processes that are common 544 

to both reading routes. 545 

Finally, phonological awareness assessed with phoneme suppression and fusion tasks 546 

was significantly related to reading abilities. However, the information it brought about reading 547 

was less, and essentially redundant with that brought by RAN and phonological memory. This 548 

is not surprising given that children tested in the present study had at least one year of reading 549 

experience. Phonological awareness indeed plays a key role in the early stages of reading 550 
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acquisition, i.e., when learning grapheme-to-phoneme conversion,106–108 and undergoes a 551 

substantial maturation during that period.109 552 

 553 

Phonological awareness 554 

Our results indicate that, in typical readers, phonological awareness mediates at best 555 

part of the relation between the cortical processing of SiN and reading abilities. Indeed, the 556 

information about reading brought by phonological awareness was redundant with that brought 557 

by the visual modulation in syllabic nCTS, but not with that brought by the informational and 558 

visual modulations in phrasal nCTS. This finding illustrates the importance of separating the 559 

different processes involved in SiN processing and reading to seek associations. It also provides 560 

a potential reason why contradictory reports exist on the topic.19–21 561 

 562 

Conclusion 563 

Overall, these results significantly further our understanding of the nature of the relation 564 

between SiN processing abilities and reading abilities. They demonstrate that cortical 565 

processing of SiN and reading abilities are related in several specific ways, and that some of 566 

these relations translate into alterations in dyslexia that are attributable to reading experience. 567 

They also demonstrate that classical behavioral predictors of reading (including phonological 568 

awareness) mediate relations involving the processing of acoustic/phonemic but not syntactic 569 

information in natural SiN conditions. This contrasts with the classically assumed mediating 570 

role of phonological awareness. Instead, the ability to process speech syntax in babble noise 571 

could directly modulate skilled reading acquisition. Finally, the information about reading 572 

abilities brought by cortical markers of syntactic processing of SiN was complementary to that 573 

provided by classical behavioral predictors of reading. This implies that such markers of SiN 574 

processing could serve as novel electrophysiological markers of reading abilities. 575 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.907667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.907667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 

Material and Methods 576 

Participants 577 

Seventy-three typical and 26 dyslexic readers enrolled in elementary-school took part 578 

in this experiment (see Table 1 for participants’ characteristics). All were native French 579 

speakers, reported being right-handed, had normal hearing according to pure tone audiometry 580 

(normal hearing thresholds between 0–25 dB HL for 250, 500, 1000, 2000, 4000 and 8000 Hz) 581 

and normal SiN perception as revealed by a SiN test (Lafon 30) from a French language central 582 

auditory battery.110 We used a French translation of the Family Affluence Scale 111 to evaluate 583 

participants’ socio-economic level. 584 

This study was approved by the Ethics Committee of the CUB Hôpital Erasme 585 

(Brussels, Belgium). Participants and their legal representatives signed a written informed 586 

consent before participation. Participants were compensated with a gift card worth 50 euros.  587 

 588 

Behavioral assessment 589 

Participants underwent a comprehensive behavioral assessment intended to appraise 590 

their reading abilities and some cognitive abilities related to reading or speech perception.  591 

 592 

Reading abilities 593 

Children completed the word reading (regular, irregular and pseudowords) tasks of a 594 

dyslexia detection tool (ODEDYS-2; 112 and the Alouette-R reading task 113). 595 

For each of the word reading tasks (regular, irregular or pseudowords), participants had 596 

to read as rapidly and accurately as possible a list of 20 words. Each task provided a reading 597 

score computed as the number of words correctly read divided by the reading time (in seconds). 598 

In the Alouette-R task,113 children had 3 minutes to read as rapidly and accurately as 599 

possible a text of 256 words. This text is composed by a succession of words which do not tell 600 
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a meaningful story. This peculiarity forces children to solely rely on their reading skills and 601 

prevents children from using anticipation or inference strategies that could boost the reading 602 

scores. An accuracy score was computed as the number of words correctly read divided by the 603 

total number of words read, and a speed score as the number of words correctly read multiplied 604 

by the ratio of 180 s (maximal reading time) to the effective reading time. 605 

 606 

Phonological processing 607 

The initial phoneme suppression and initial phonemes fusion tasks of the ODEDYS-2 608 

112 was used to assess phonological processing. 609 

In the initial phoneme suppression task, children had to repeat orally presented words 610 

while intentionally suppressing the initial phoneme of the word (i.e. dog -> og). In total, 10 611 

words were presented, and performance was quantified as percentage correct. 612 

In the initial phoneme fusion task, children had to combine the initial phoneme of two 613 

orally presented words to create a new (non-)word (i.e., Big & Owen -> /bo/). In total, 10 pairs 614 

of words were presented, and performance was quantified as percentage correct. 615 

 616 

Rapid Automatized Naming 617 

We used the RAN task of the ODEDYS-2.112 Children had to name as rapidly and 618 

accurately as possible 25 pictures (5 different pictures randomly repeated 5 times). 619 

Performance was quantified as the total time to complete the task, meaning that the lower the 620 

score, the better the performance. 621 

 622 

Phonological memory 623 

 The forward and backward digit repetition task from the ODEDYS-2 112 was used to 624 

assess phonological memory. 625 
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 In the forward digit repetition task, children were asked to repeat orally presented 626 

numbers series in the same order as presented. The series are different at every trial. The first 627 

series contains 3 digits, and the size of the series is incremented by one every second trial. The 628 

task ends after a failure to repeat the 2 series of a given size. Forward digit span score was 629 

taken as the number of digits in the last correctly repeated series. 630 

 The backward digit repetition task is akin to the forward one. The only difference is 631 

that digit series have to be repeated in the exact reverse order (e.g., children presented 1 2 3 4 632 

have to repeat 4 3 2 1). 633 

 634 

Attention abilities 635 

The Bells test 114 was used to assess visual attention and the TAP auditory attention 636 

subtest 115 to assess the auditory attentional level. 637 

In the Bells test, children had 2 minutes to find as many bells as possible on a sheet 638 

comprising 35 bells scattered among 280 visual distractors. Performance was quantified as the 639 

number of bells found divided by the time needed. 640 

In the TAP auditory attention subtest, a, children had to focus their attention during 3 641 

min 20 s on an auditory stream. Children were hearing a train of 200 pure tone stimuli lasting 642 

500 ms with a 1000-ms stimulus onset asynchrony. Tones alternated between high (1073 Hz) 643 

and low (450 Hz) pitch. There were 16 occurrences in which 2 high or low pitch tones were 644 

following one another. Only in this case, participants had to press a response button as fast as 645 

possible. A performance score was quantified as the number of correct responses, a speed score 646 

as the mean response time, and a failure score as the number of responses to tones differing in 647 

pitch with the preceding one. 648 

 649 
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Non-verbal intelligence 650 

The brief version of the Weschler Nonverbal (WNV) Scale of Ability 116 was used to 651 

assess non-verbal intelligence. 652 

This assessment consisted of matrices and recognition subtests for children younger 653 

than 8 years. Older children were assessed with matrices and spatial memory subtests. 654 

In matrices subtest, children were presented with incomplete visual matrices and had to 655 

select the good missing portion among 4 or 5 response options. The subtest ended when 4 656 

mistakes were made in the last 5 trials. A raw score was taken as the number of correctly 657 

completed matrices. This raw score was converted to a T score by comparison with values 658 

provided in a table of norms. 659 

In recognition subtest, children had to carefully look at visual geometric designs that 660 

were presented one by one for three seconds. After each presentation, they had to identify the 661 

previously seen design among four or five response options. The subtest ended when 4 mistakes 662 

were made in the last 5 recognition trials. A raw score was taken as the number of correctly 663 

recognized drawings. This raw score was converted to a T score by comparison with values 664 

provided in a table of norms. 665 

In spatial memory subtest, children were presented with a board with 10 cubes spread 666 

on it, and were asked to mimic the examiner’s tapping sequence. The sequences are different 667 

on every trial. The first sequence consists in tapping on 2 cubes, and the size of the sequences 668 

is incremented by one every second trial. The task ends after a failure to repeat 2 sequences of 669 

a given size. This task was performed twice, in the forward and backward directions. For each 670 

direction, a raw score was taken as the number of correctly repeated sequences. Raw scores 671 

were summed and converted to a T score by comparison with values provided in a table of 672 

norms. 673 
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Total non-verbal IQ was computed as the sum of both T scores, which compared to a 674 

table of norms provided a Total non-verbal IQ score. 675 

 676 

Neuroimaging assessment 677 

Stimuli 678 

The stimuli were derived from 12 audiovisual recordings of 4 native French-speaking 679 

actors (2 females, 3 recordings per actor) telling a story for ~6-min (mean ± SD, 6.0 ± 0.8 min) 680 

(see Supplementary Methods for details on recording of video stimuli). In each video, the first 681 

5 s were kept unaltered to enable children to unambiguously identify the actor’s voice and face 682 

they were requested to attend to. The remainder of the video was divided into 10 consecutive 683 

blocks of equal size that were assigned to 9 conditions. Two blocks were assigned to the 684 

noiseless condition in which the audio track was kept but the video was replaced by static 685 

pictures illustrating the story (mean ± SD picture presentation time across all videos, 27.7 ± 686 

10.8 s). The remaining 8 blocks were assigned to 8 conditions in which the original sound was 687 

mixed with a background noise at 3 dB signal-to-noise ratio (SNR). There were 4 different 688 

types of noise, and each type of noise was presented once with the original video, thereby 689 

giving access to lip-read information (lips visual conditions), and once with the static pictures 690 

illustrating the story (pics visual conditions). The different types of noise differed in the degree 691 

of energetic and informational interference they introduced.54 The non-energetic non-692 

informational noise was a white noise filtered through 100–10000-Hz. The (maximally-693 

)energetic non-informational noise had its spectral properties dynamically adapted to mirror 694 

those of the actor’s voice ~1 s around (see Supplementary Methods for the procedure used to 695 

build the energetic non-informational noise). The non-(or least-)energetic informational noise 696 

was a 5-talker cocktail party noise recorded by individuals of gender opposite to the actor’s 697 

(i.e., a 5-man for female actors). The (maximally-)energetic informational noise was a 5-talker 698 
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cocktail party noise recorded by individuals of gender identical to the actor’s. The assignment 699 

of conditions to blocks was random, with the constraint that each of the 5 first and last blocks 700 

contained exactly 1 noiseless audio, 2 lips videos, 2 energetic noises, and 2 informational 701 

noises. Smooth audio and video transitions between blocks was ensured with 2-s fade-in and 702 

fade-out. Ensuing videos were grouped in 3 disjoint sets featuring one video of each of the 703 

actors (total set duration: 23.0, 24.3, 24.65 min), and there were 4 versions of each set differing 704 

in condition random ordering. 705 

 706 

Experimental paradigm 707 

During the imaging session, participants were laying on a bed with their head inside the 708 

MEG helmet. Their brain activity was recorded while they were attending 4 videos (separate 709 

recording for each video) of a randomly selected set and ordering of the videos presented in a 710 

random order, and finally while they were at rest (eyes opened, fixation cross) for 5 min. They 711 

were instructed to watch the videos attentively, listen to the actors’ voice while ignoring the 712 

interfering noise, and remain as still as possible. After each video, they were asked 10 yes/no 713 

comprehension questions related to each of the 10 blocks/conditions (data not analyzed here). 714 

Videos were projected onto a back-projection screen placed vertically, ~120 cm away from the 715 

MEG helmet. The inner dimensions of the black frame were 35.2 cm (horizontal) and 28.8 cm 716 

(vertical), and actors face spanned ~15 cm (horizontal) and ~20 cm (vertical). Participants 717 

could see the screen through a mirror placed above their head. In total the optical path from the 718 

screen to participants’ eyes was of ~150 cm. Sounds were delivered at 60 dB (measured at ear-719 

level) through a MEG-compatible front-facing flat-panel loudspeaker (Panphonics Oy, Espoo, 720 

Finland) placed ~1 m behind the screen. 721 

 722 
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Data acquisition 723 

During the experimental conditions, participants’ brain activity was recorded with MEG 724 

at the CUB Hôpital Erasme. Neuromagnetic signals were recorded with a whole-scalp-covering 725 

MEG system (Triux, Elekta) placed in a lightweight magnetically shielded room (Maxshield, 726 

Elekta), the characteristics of which being described elsewhere.117 The sensor array of the MEG 727 

system comprised 306 sensors arranged in 102 triplets of one magnetometer and two 728 

orthogonal planar gradiometers. Magnetometers measure the radial component of the magnetic 729 

field, while planar gradiometers measure its spatial derivative in the tangential directions. MEG 730 

signals were band-pass filtered at 0.1–330 Hz and sampled at 1000 Hz. 731 

We used 4 head-position indicator coils to monitor subjects’ head position during the 732 

experimentation. Before the MEG session, we digitized the location of these coils and at least 733 

300 head-surface points (on scalp, nose, and face) with respect to anatomical fiducials with an 734 

electromagnetic tracker (Fastrack, Polhemus). 735 

Finally, subjects’ high-resolution 3D-T1 cerebral images were acquired with a magnetic 736 

resonance imaging (MRI) scanner (MRI 1.5T, Intera, Philips) after the MEG session. 737 

 738 

Data pre-processing 739 

Continuous MEG data were first preprocessed off-line using the temporal signal space 740 

separation method implemented in MaxFilter software (MaxFilter, Neuromag, Elekta; 741 

correlation limit 0.9, segment length 20 s) to suppress external interferences and to correct for 742 

head movements.118,119 To further suppress physiological artifacts, 30 independent components 743 

were evaluated from the data band-pass filtered at 0.1–25 Hz and reduced to a rank of 30 with 744 

principal component analysis. Independent components corresponding to heartbeat, eye-blink, 745 

and eye-movement artifacts were identified, and corresponding MEG signals reconstructed by 746 

means of the mixing matrix were subtracted from the full-rank data. Across subjects and 747 
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conditions, the number of subtracted components was 3.45 ± 1.23 (mean ± SD across subjects 748 

and recordings). Finally, a window time of 1 s time points at timings 1 s around remaining 749 

artifacts were set to bad. Data were considered contaminated by artifacts when MEG amplitude 750 

exceeded 5 pT in at least one magnetometer or 1 pT/cm in at least one gradiometer. 751 

We extracted the temporal envelope of the attended speech (actors’ voice) using the 752 

optimal approach proposed by Biesmans et al.120. Briefly, audio signals were bandpass filtered 753 

using a gammatone filter bank (15 filters centered on logarithmically-spaced frequencies from 754 

150 Hz to 4000 Hz), and subband envelopes were computed using Hilbert transform, elevated 755 

to the power 0.6, and averaged across bands. 756 

 757 

Accuracy of speech envelope reconstruction and normalized CTS 758 

For each condition and participant, a global value of cortical tracking of the attended 759 

speech was evaluated for all left-hemisphere sensors at once, and for all right-hemisphere 760 

sensors at once. Using the mTRF toolbox,58 we trained a decoder on MEG data to reconstruct 761 

speech temporal envelope, and estimated its Pearson correlation with real speech temporal 762 

envelope. This correlation is often referred to as the reconstruction accuracy, and it provides a 763 

global measure of cortical tracking of speech. See Supplementary Methods for a full description 764 

of the procedure and statistical assessment. A similar approach has been used in previous 765 

studies on the cortical tracking of speech.47,51,60,61 766 

Based on CTS values in noiseless condition (CTSnoiseless) and in each SiN condition 767 

(CTSSiN), we estimated nCTS as follows: 768 

nCTS = (CTSSiN – CTSnoiseless)/(CTSSiN + CTSnoiseless). 769 

This index can however be misleading when derived from negative CTS values (which may 770 

happen since CTS is an unsquared correlation values). For this reason, and for the sake of nCTS 771 
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computation only, CTS values below a threshold of 10% of the mean CTS across all subjects, 772 

conditions and hemispheres were set to that threshold prior to nCTS computation. 773 

 774 

Linear mixed-effects modeling of nCTS and reading values 775 

All behavioral and nCTS measures were corrected for IQ, age, time spent at elementary 776 

school, and for outliers (see Supplementary Methods for details on this procedure). 777 

We performed linear mixed-effects analysis with R 121 and lme4 122 to identify how 778 

different fixed effects modulate nCTS. We started with a null model that included only a 779 

different random intercept for each subject. The model was iteratively compared to models 780 

incremented with simple fixed effects of hemisphere, noise (non-energetic non-informational, 781 

energetic non-informational, non-energetic informational, and energetic informational), and 782 

visual (lips vs. pics) added one by one. At every step, the most significant fixed effect was 783 

retained, until the addition of the remaining effects did not improve the model any further (p > 784 

0.05). The same procedure was then repeated to refine the ensuing model with the interactions 785 

of the simple fixed effects of order 2 (e.g., hemisphere × noise) and then 3 (hemisphere × noise 786 

× visual). 787 

We followed the same approach to identify how reading abilities (5 standardized 788 

scores) relate to classical behavioral predictors of reading and features of nCTS. In that 789 

analysis, we first considered a non-zero slope for the classical behavioral predictors identical 790 

for all reading scores, then a non-zero slope for the classical behavioral predictors different for 791 

all reading scores, then a non-zero slope for the features of nCTS identical for all reading 792 

scores, and finally a non-zero slope for the features of nCTS different for all reading scores. 793 

 794 
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Partial information decomposition 795 

We used PID to appraise without a priori the relation between reading abilities, cortical 796 

measures of SiN processing, and classical behavioral predictors of reading. In general, PID 797 

decomposes the mutual information (MI) quantifying the relationship between two explanatory 798 

variables (or sets of explanatory variables) and a single target, into four constituent terms: the 799 

unique information about the target which is available separately from each explanatory 800 

variable alone, the redundant or shared information which is common to the two explanatory 801 

variables, and synergistic information, which is information about the target that is available 802 

only when both explanatory variables are observed together (e.g. the relationship between their 803 

values is informative about the target).62–64 In our analysis, the 5 reading scores were used as 804 

the target, the features nCTS as the first set of explanatory variables, and behavioral scores as 805 

the second set of explanatory variables. PID was also used to better understand the nature of 806 

some other statistical associations we uncovered. See Supplementary Methods for further 807 

details on PID and its statistical assessment. 808 

Data availability 809 

The data and the code that support the findings of this study are available at “a link to 810 

a OSF repository will be provided upon positive review”.811 
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Supplementary Material 

Supplementary methods 

Recording of video stimuli 

The 12 video stimuli of actors telling a story were recorded with a digital camera (Sony 

handycam, HDR-CX115E). Audio signals were recorded with both the internal microphone of the 

camera, and an independent high quality microphone (Sony linear PCM recorder, PCM-D50). 

Audio tracks were synchronized, and only the high-quality audio was kept. Video recordings were 

framed as a head-shots, and recorded at 50 frames per second (videos were 1920 × 1080 pixels in 

size, 24 bits/pixel, with an auditory sampling rate of 44100 Hz). The camera was placed ~1 m away 

from the actors, and the face spanned about half of the vertical field of view. Final images were 

resized to a resolution of 1152 × 864 pixels. A black old-style-TV-monitor frame was then added 

to the image. 

 

Building the energetic non-informational noise 

The (maximally-)energetic non-informational noise was derived from the actual actors’ 

audio recording by i) Fourier transforming the sound in 2-s-long windows sliding by step of 0.5 s, 

ii) replacing the phase by random numbers, iii) inverse Fourier transforming the Fourier 

coefficients in each window, iv) multiplying these phase-shuffled sound segments by a sine 

window (i.e., half a sine cycle with 0 at edges, and 1 in the middle), and v) summing the 

contribution of each overlapping window. As a result, the spectral properties of this noise 

dynamically changed on a ~0.5-s time scale to mirror those of the actor’s voice ~1 s around. 

 

Accuracy of speech envelope reconstruction 

For each condition and participant, a global value of cortical tracking of the attended speech 

was evaluated for all left-hemisphere sensors at once, and for all right-hemisphere sensors at once. 
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The decoder tested on a given condition was built based on MEG data from all the other conditions. 

This procedure was preferred over a more conventional cross-validation approach in which the 

decoder is trained and tested on separate chunks of data from the same condition because of the 

paucity of data (i.e., at most ~2.4 min of data per condition). It is based on the rationale that the 

different conditions do modulate response amplitude but not its topography and temporal 

dynamics. In practice, electrophysiological data were band-pass filtered at 0.2–1.5 Hz (phrasal rate) 

or 2–8 Hz (syllabic rate), resampled to 10 Hz (phrasal) or 40 Hz (syllabic) and standardized. The 

decoder was build based on MEG data from –500 ms to 1000 ms (phrasal) or from 0 ms to 250 ms 

(syllabic) with respect to speech temporal envelope. Filtering and delay ranges were as in previous 

studies for phrasal,28,59 and syllabic CTS.47,51,60,61 Regularization was applied to limit the norm of 

the derivative of the reconstructed speech temporal envelope,58 by estimating the decoder for a 

fixed set of ridge values (λ = 2-10, 2-8, 2-6, 2-4, 2-2, 20). The regularization parameter was determined 

with a classical 10-fold cross-validation approach: the data is split into 10 segments of equal length, 

the decoder is estimated for 9 segments and tested on the remaining segment, and this procedure is 

repeated 10 times until all segments have served as test segment. The ridge value yielding the 

maximum mean RA is then retained. The ensuing decoder was then used to reconstruct speech 

temporal envelope in the left-out condition. RA was then estimated in 10 disjoint consecutive 

segments. We then retained the mean of this RA, leaving us with one value for all combinations of 

subjects, conditions, hemispheres, and frequencies of interest. 

Significance of RA in each participant, condition, hemisphere and frequency range was 

assessed with a t-test on the RA values evaluated on 10 disjoint segments. 
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Preprocessing of brain and behavioral indices 

All behavioral and nCTS measures were corrected for IQ, age, and time spent at elementary 

school, and for outliers. For simplicity, we refer to the standardized IQ, age, and time spent at 

elementary school as the regressors.  

An iterative procedure was used to simultaneously control for regressors and deal with 

outliers. First regressors were regressed out of each measure with an amount of regularization equal 

to 0.1% the maximal eigenvalue of the regressors’ covariance matrix. Then measures deviating by 

more than 3 standard deviations from the mean were removed from the distribution. This procedure 

was repeated until there were no more outliers. Discarded data points were then set to the mean 

plus or minus 3 standard deviations. 

 

Extraction of the relevant features of nCTS 

In total, we derived 8 features of nCTS in SiN conditions based on the significant effects 

of hemisphere and conditions highlighted in Table 3 and Figure 2. There were 4 features for phrasal 

nCTS: (i) the mean nCTS (the mean standardized nCTS across conditions), (ii) the informational 

modulation in nCTS (the difference in standardized nCTS between informational and non-

informational noise conditions averaged across all other factors), (iii) the visual modulation in 

nCTS (the difference in standardized nCTS between lips and pics visual conditions averaged across 

all informational noise conditions), and (iv) the hemispheric difference in nCTS (the contrast in 

standardized nCTS between left and right hemispheres averaged across all informational noise 

conditions). The same 4 features were used for syllabic nCTS except that visual and hemispheric 

modulations were evaluated based on averages across all other factors (and not just across 

informational noise conditions since visual and hemispheric modulations were seen in all noise 

conditions for syllabic CTS). 
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Partial information decomposition 

PID was previously used to decompose the information brought by acoustic and visual 

speech signals about brain oscillatory activity,73 and to compare auditory encoding models of MEG 

during speech processing.62 As in these references, we measure redundancy with pointwise 

common change in surprisal for Gaussian variables.63 Continuous data values were first subject to 

a rank-normalisation (copula-normalised)64 before being treated as Gaussian variables. A crucial 

advantage of this redundancy measure as opposed to other PID implementations is that it measures 

the overlapping information content at the pointwise level and therefore can be interpreted as a 

within sample (here participant) measure of redundant prediction, directly linked to the coding 

interpretations of MI. An advantage of the PID over variance partitioning approaches is that unique 

variance explained might, like conditional mutual information, be confounded by synergistic 

effects,123 whereas PID with common change in surprisal gives the true unique contribution. While 

the PID has so far been applied within subject to trial data, information theoretic quantities can also 

be applied as a second level analysis, where each participant is a sample.124 

The statistical significance of the different information values was assessed with a 

nonparametric permutation test.125 A permutation distribution was computed for each information 

value by randomly shuffling (10,000 times) children’s target values, and a significance level was 

computed as the proportion values from the permutation distribution exceeding the observed value. 

 

 

Supplementary results 

Side measures are redundant with RAN and digit span but not with modulations in phrasal nCTS 

The information about reading brought by the 3 “side” measures (visual modulation in 

syllabic nCTS, phoneme suppression and phoneme fusion) was redundant with that brought by a 

subset (possibly all) of the 4 “main” measures (RAN, phonological memory, visual and 
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informational modulation in phrasal nCTS). To identify this subset, we relied on the PID 

framework. In this analysis, PID assessed the nature of the information about reading abilities 

(target) brought by the 3 side measures (first set of explanatory variables) and the 4 main measures 

(second set of explanatory variables). Specifically, we considered as second set of explanatory 

variables all possible combinations of the 4 main measures (with or without RAN, with or without 

forward digit span, with or without the informational modulation in phrasal nCTS, and with or 

without the visual modulation in phrasal nCTS). Also, the analysis was run separately for the 

modulation in syllabic nCTS, and for both measures of phonological awareness (phoneme 

suppression and phoneme fusion) at once. Overall, the results tended to show that the visual 

modulation in syllabic nCTS provided unique information about reading only with regard to the 

two phrasal nCTS modulations (see Fig. S1A), and synergic information mainly with the two 

classical behavioral predictors of reading (see Fig. S1B). Noticeably, the level of synergic 

information about reading brought by the visual modulation in syllabic nCTS and either or both 

classical behavioral predictors of reading was not influenced by the addition of either or both of 

the two phrasal nCTS modulations. Similar results were obtained for the two measures of 

phonological awareness (see Fig. S1C & D). 

 

Supplementary discussion 

Limitations 

We did not manipulate the SNR in SiN conditions in the present study. Instead, it was set 

to 3 dB so that the attended speech was always louder than the noise. Still, one could expect that 

large effect sizes would be uncovered in more challenging/discriminating listening conditions, as 

often encountered in classrooms.126 However, children’s SiN perception abilities are lower than 

adults’. Indeed, SiN perception abilities develop until late childhood (≥ 10 years) due to maturation 

of the auditory system and attentional abilities.127,128 Moreover, our data showed that fewer subjects 
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had significant CTS in informational than non-informational SiN conditions for phrasal CTS, and 

in all SiN conditions for syllabic CTS, with values in the most challenging SiN condition (energetic 

and informational noise) that were ~50% lower than those in the noiseless condition. Accordingly, 

setting speech SNR to 3 dB appeared to have made the task challenging enough for children, while 

ensuring that they could keep their attention focused throughout the experiment.  

The amount of data per condition was limited to 2.5 min. Although it may seem little, we 

evidenced in a previous study that on average, ~30 s of MEG suffice to uncover significant CTS.28 

Moreover, CTS was significant, when assessed non-parametrically within-participant, in most of 

our participants in the least challenging conditions (phrasal, 100 %; syllabic, 94%). Of note, more 

data was used to estimate the regression model mapping MEG data onto reconstructed speech 

temporal envelope. Indeed, the model used to estimate CTS in each condition was trained on the 

~20 min of data from all other conditions. This procedure substantially improved the estimation of 

CTS compared with a procedure wherein the model was trained and tested in a cross-validation 

scheme on the data from each condition separately (data not shown). Still, longer data acquisition 

could have produced more stable CTS estimates, and perhaps stronger associations with reading 

scores. 
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Supplementary tables and figures 

Table S1. Nature of the information about reading abilities brought by each of the 3 uncovered 

features of the cortical tracking of speech (CTS) in noise and phonological awareness (mean of the 

scores for phoneme fusion and suppression). Significant values (p < 0.05) are displayed in boldface 

and marginally significant values are displayed in boldface and italicized. 

 redundant unique for 
phonological 

awareness 

unique for the 
feature of CTS in 

noise 

synergic 

 info p info p info p info p 
informational modulation in phrasal nCTS 0.0011 0.57 0.148 0.013 0.160 0.006 0.0073 0.097 
visual modulation in phrasal nCTS 0.0066 0.30 0.109 0.057 0.155 0.011 0.0061 0.33 

visual modulation in syllabic nCTS 0.048 0.0006 0.085 0.16 0.116 0.036 0.032 0.001 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.907667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.907667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

54 

 

Figure S1. Nature of the information about reading brought by the visual modulation in normalized 

cortical tracking of speech (nCTS) at syllabic rate (A & B) and metaphonological abilities (C & 

D). A & C — Unique information with regard to each possible combination of the 4 regressors 

included in the final model of reading abilities (without RAN: columns 1 and 3; with RAN: 

columns 2 and 4; without forward digit span: columns 1 and 2; with forward digit span: columns 3 

and 4; without the informational modulation in phrasal nCTS: rows 1 and 3; …). B & D — Same 

as A for the synergistic information with each possible combination of the 4 regressors. ** p < 

0.01, * p < 0.05, # p < 0.1. 
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