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Abstract  

 

Real-life events unfold continuously over multiple minutes. In this study, in order to examine 

how the brain continuously integrates information while segregating the accumulated 

information from irrelevant inputs, a professional writer actively designed a narrative. Two 

unrelated storylines were interleaved across 30 one-minute segments (ABAB) and merged in a 

last (C) part, where narrative motifs unique to the A or B storylines recurred to induce  

reinstatement. Our fMRI results showed neural reinstatement of storylines and motifs in regions 

with long processing timescale, including the default mode network, suggesting that past 

information can be segregated from irrelevant inputs in an inactive state for minutes. The 

reactivated storyline representation was updated by integrating new segments, as reflected by the 

increasing neural differentiation between storylines. Furthermore, we found a positive correlation 

between neural reinstatement of motifs and behavioral performance in relating separated events 

connected by motifs, again demonstrating information integration during continuous processing.  
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Introduction 

Real-life events unfold over multiple timescales. A word achieves its full meaning in the 

context of a sentence, a sentence in the context of a paragraph, and a paragraph in the context of 

the story as a whole. Recently, using real-life stimuli such as stories and movies we have 

revealed a cortical hierarchy of timescales that accumulates information over increasing temporal 

receptive windows (TRWs) 1–5. Namely, early sensory areas accumulate information over short 

timescales of tens of milliseconds, coinciding with the duration of phonemes and words. 

Adjacent areas along the superior temporal cortex accumulate information over hundreds of 

milliseconds, coinciding with the duration of single sentences, while high order areas, which 

overlap with the default mode network (DMN) 6,7, accumulate information across paragraphs as 

the narrative unfolds over many minutes.  

Unlike classical theories of working memory8,9, which distinguish between areas that 

process the incoming information and areas that accumulate and protect information in working 

memory buffers, the processing timescales hierarchy suggests that memory is an integral 

component of each processing unit (which we refer to as a process-memory unit) 10. In our 

model, each cortical area accumulates and sustains past information at its preferred timescale, 

while it dynamically processes and integrates new incoming information. This process-memory 

hierarchy framework illustrates a simple recurrent mechanism for accumulating and synthesizing 

ongoing continuous information as a story unfolds over time.  

In this work, we asked how the process-memory hierarchy manages to segregate and 

protect incoming information from being combined with irrelevant recently accumulated 

information, while at the same time integrating relevant events over time. To probe this question, 

we collaborated with a professional writer to craft an original fictional story with a purposefully 

designed narrative structure. The first part of the narrative consisted of two seemingly unrelated 

storylines, A, which takes place in Los Angeles, employing a distinct set of characters, and B, 

which takes place in New York and involves another set of characters (Fig. 1a). The two 

storylines were presented in an interleaved fashion over 30 segments, 15 segments for each 

storyline (A1B1A2B2…A15B15). The purpose of interleaving two unrelated storylines was to assess 

how areas with long-timescale integrate information across minute-long segments (e.g., across 

story A segments or story B segments) while at the same time protecting each storyline from 

being integrated with (and confused with) the unrelated parallel narrative. In the last 15 segments 

(Part C), the two storylines merged into a unified narrative and the connections between the 

characters from New York and Los Angeles were revealed. One of the main techniques for 

bridging part C with A and B was to embed specific images/situations/phrases, i.e., narrative 

motifs, within either the A or B storylines. The recurrences of these motifs in part C were 

designed to reinstate specific moments from storylines A and B, in an attempt to integrate the 

two plot lines into one coherent narrative.  

This design provides some control over the story structure and enables us to generate the 

following predictions. First, we predicted that cortical areas with long processing timescales 

would slowly build a unique activation pattern for each of the two storylines (A and B) as they 

unfold over time. More specifically, we predicted that as the story unfolds, an incoming segment 

from storyline A would reinstate and update the neural representation of storyline A, while the 

neural activity pattern associated with storyline B would subside, and vice versa. A previous 

study using a movie stimulus with two interleaved storylines reported higher pattern similarity 
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between segments from the same storylines in the hippocampus and a few other regions 13; 

however, the interleaving of storylines in that study occurred at irregular intervals dictated by the 

movie (some very short, some much longer), making it difficult to study the temporal dynamics 

of how storyline representations are constructed and reinstated. The more regular nature of the 

interleaving in our custom-designed narrative allows us to build on the prior study, while also 

providing a clearer view of how story representations are constructed and reactivated in the face 

of substantial (minute-long) interruptions.  

Second, we predicted that during part C, the presentation of narrative motifs from the 

A/B segments should trigger reinstatement of past neural patterns from segments A and B 

associated with these motifs, which should promote the merging of the two storylines. Previous 

studies have shown that verbal recall of an event in a movie or a short video clip reinstated the 

brain activation pattern that was present during its encoding 11,12,14,15. In this study, by carefully 

placing the narrative motifs throughout the story, we could construct a priori predictions about 

the reinstatement of past events during continuous processing of an unfolding narrative. For 

example, in segment A1, the main character, Clara, makes homemade chili for her husband in 

LA. In part C, Clara eats and comments on a different character’s (Steven’s) homemade chili 

recipe; we predicted that this will  reactivate the memory of segment A1, making the listeners 

realize that she has known Steven before moving to LA, and augmenting their understanding of a 

prior relationship between them, thus integrating storylines A and B during part C.  

Finally, if past information can be reactivated after a minute-long suspension, this raises 

the question of how the latent memory is preserved without interfering with ongoing processing 

of another storyline.. In a previous study, we found that stimulus-driven interactions between 

hippocampus and long-timescale cortical regions were associated with increased alignment 

between neural patterns in people who viewed a story split into two segments, one-day apart3, 

and who viewed the story continuously. This finding suggests that hippocampus-mediated 

episodic memory might help to store and reinstate relevant remote past events. Therefore, we 

also related participants’ hippocampal-cortical connectivity to the activation of storyline-specific 

and motif-specific patterns to see whether hippocampus contributed to participants’ ability to 

reactivate past relevant contexts. 

In sum, the intentionally interleaved storylines and the intermittently positioned narrative 

motifs created connections between separate and specific parts of the story. This unique design 

allowed us to examine how related events can be accumulated and integrated in the presence of 

minute-long intervening breaks, while at the same time being isolated and protected from 

irrelevant inputs. 
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Figure 1. Stimulus and design. (a) The stimulus is a spoken narrative composed of 45 segments 

with two storylines, A and B. A and B interleave in the first thirty segments and converge in the 

last fifteen segments (C part). (b) Predicted similarity matrix between brain responses to the 45 

segments.  
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Results  

fMRI data were collected from 25 subjects while they listened to a structured narrative 

that lasted for approximately 1 hour. The narrative has two interleaved, seemingly unrelated 

storylines, A & B, that converge in the later C part. In the first set of analyses, we tested how 

ongoing information from each of the two unrelated storylines was accumulated across minute-

long segments while being segregated from the parallel unrelated interleaved storyline. In the 

second set of analyses, we tested how information in part A & B was reactivated in part C, so as 

to create a unified narrative. The two storylines are connected to part C using 28 specifically 

designed, recurrent narrative motifs. These motifs are planted at specific, strategic moments of 

the narrative by the author (58 occurrences in parts A & B, and 36 occurrences in part C). The 

participants’ overall comprehension and their understanding of the relations created by these 

motifs were assessed based on post-scan questionnaires. Using representational similarity 

analysis (RSA) 16,17 on brain activation patterns within ROIs independently defined by a whole-

brain parcellation of resting-state fMRI18, we tested whether the structure of the story induced 

the reinstatement of storylines and narrative motifs, as it was designed to do.  

Overall comprehension of the story 

The comprehension scores were evaluated based on 28 multiple choice questions in a 

post-scan questionnaire. The group overall comprehension score was 91% (with a range of 64%-

100% across listeners), indicating that most subjects were engaged with the story and were able 

to follow the plot well.  

Relation score of narrative motifs 

Most subjects could explicitly report the relation created by the motifs between part C 

and parts A/B. 15 open questions were included in the post-scan questionnaire to evaluate the 

relation score. The participants’ answers were rated by the author (Lazaridi) using a 0-2 scale (2= 

correct relation between C and A/B; 1 = either only C or A/B event was mentioned; 0 = wrong 

relation or do not remember any related events). Below is a sample question and real answers 

from participants with different rated scores (see Fig. 1a for the related events in the story and 

Supplementary Table 1 for all the answers and scores):  

 

The following prompts are words, sentences, or phrases that recurred in the story. Please 

explain their significance to the story:  

Q. Home made chili=?  

Ans. (score 2): Steven's tradition that Clara adopts. 

Ans. (score 1): Steven makes it. 

Ans. (score 0): Clara eats Gary's homemade chili.  

 

18 out of the 25 subjects scored above 1 on average across all motifs. The group mean 

relation score was 1.1 (range 0.33-1.67 across subjects).  

Neural reinstatement of storyline 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.908731doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.908731


7 
 

Figure 2. storyline effect. (a) Regions showing larger pattern similarities between segments of 

the same vs. different storylines (N=25, p < .05, FWE). (b) Correlation between temporal 

receptive window index and storyline effect across regions. (c) Pattern similarity between typical 
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A or B storyline patterns and -40~40 TRs surrounding the boundary between B and A segments 

in right PCC. Shaded areas indicate 95% confidence interval (CI) across subjects. The vertical 

gray-shaded area shows the silent pause at boundary.  

 

We first examined whether, and if so, where in the brain the two seemingly unrelated 

storylines (A&B) had distinc cortical representations.  Using RSA we compared the neural 

patterns within each storyline (AA & BB) to the neural patterns between the two storylines (AB). 

Within each ROI, we averaged over time within each segment (lasting approximately one 

minute) to extract a spatial pattern of activity for that segment . We then compared pattern 

similarity between segments from the same storyline to pattern similarity between segments from 

different storylines (Fig. 2a). Note that all of these comparisons were done between participants 

(see methods).  

Higher within-storyline pattern similarity was revealed in a large set of regions, including 

language areas (superior/middle temporal gyrus, inferior frontal gyrus, and supplementary motor 

cortex), areas in the default mode network (including PCC, precuneus, mPFC, SFG, posterior 

parietal cortex, angular gyrus, posterior hippocampus, and parahippocampal cortex), areas in the 

executive network, (including anterior insula, MFG, MCC, and supramarginal gyrus), high order 

visual areas (including cuneus and fusiform gyrus), and subcortical areas (including putamen, 

thalamus, and caudate)(please see Supplementary Table 3 for all the brain area abbreviations we 

used). We also observed the separation between storylines in anatomically defined hippocampus 

ROIs (Supplementary Fig. 5)13. The largest separation across the two storylines was found in 

areas within the PCC/precuneus. 

Neural reinstatement of storyline is stronger in areas with long processing timescales 

To define areas with short, medium and long processing timescale, we used an 

independent dataset 1 to generate a temporal receptive window (TRW) index for each ROI, i.e. 

the difference in inter-subject correlation between an intact story and its scrambled version. 

Higher TRW indices were found in prior studies to be associated with increased capacity to 

accumulate information over long-timescale 1,5. If the storyline effect only reflected a difference 

in low-level properties such as wording or acoustic features (note that the same narrator read all 

segments), regions with low TRW, i.e. regions insensitive to word scrambling, should also show 

a storyline effect as strong as in high TRW regions. On the contrary, we found a significant 

positive correlation between TRW index and storyline effect (Fig. 2b). In other words, areas that 

are capable of accumulating information over long-timescale had a larger difference between 

storylines.  

We selected a long TRW ROI, i.e. PCC, to demonstrate the time course of storyline 

effect at the segment boundary. We computed the pattern similarity between each of the -40~40 

TRs around segment boundaries and the typical A or B storyline patterns. As shown in Fig. 2c, at 

the boundary between B and A segments, the similarity to typical B pattern rapidly dropped, 

while the similarity to typical A pattern increased. The two waveforms crossed around the 

boundary. Similar results were obtained for the complementary transition from A to B segments 

(Supplementary Fig. 4).  

Early vs. late storyline effect 
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Figure 3. Storyline x Time effect within regions showing significant storyline effect. (a) 

Regions showing larger storyline effect in the late than early half of the AB part (N=25, p < .05, 

FWE). The blue outline marks regions showing a significant storyline effect. (b) Correlation 
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between TRW index and storyline x time effect across regions. (c) Averaged pattern similarity 

between segments of the same and different storylines in the early and late halves of the AB part 

within regions of three TRW bins. Error bars indicate 95% CI across subjects. 

 

We predicted that the segregation of the two storylines (A & B) should increase as the 

story unfolds and subjects accumulate further information about the unique context of each 

storyline. To test this hypothesis, we examined whether the storyline effect increased over time 

by dividing the AB part into the early and later halves (Fig. 3a). Within areas showing the 

separation between storylines, an increase in the separation of patterns at the later phase (leading 

to a significant interaction between time and storyline) was found in PCC/precuneus, left 

AG/IPL, left SFG, right IFG, right MTG/MOG, and right SPL.  

The separation of response patterns across the two unrelated storylines increased over 

time mainly in areas with long processing timescales. As shown in Fig. 3b, we found a 

significant positive correlation between TRW index and the storyline x time effect. Furthermore, 

by dividing all the ROIs into three TRW bins (short, medium, and long), Fig. 3c shows that the 

two storylines became more distinctive in the late AB part and that such effect was larger in 

regions with longer TRW. A 3-way repeated measure ANOVA revealed an interaction between 

TRW, time (early/late), and storyline (same/different) (F(2, 48) = 16.70, p < .001). Post-hoc 

paired t-tests showed significant storyline effect in all TRW bins, either in early (short TRW: 

t(1,24) = 12.70, p < .001 , Cohen’s d = 2.54, CI =  0.05~0.07; medium: t(1,24) = 9.27, p <.001 , 

Cohen’s d = 0.66, CI =  0.04~0.06; long: t(1,24) = 10.46, p <.001 , Cohen’s d = 2.09, CI =  

0.05~0.08) or late AB part (short TRW: t(1,24) = 9.55, p <.001 , Cohen’s d = 1.91, CI =  

0.03~0.05; medium: t(1,24) = 9.91, p = <.001, Cohen’s d = 1.98, CI =  0.05~0.07; long: t(1,24) = 

9.14, p = <.001, Cohen’s d = 1.83, CI =  0.06~0.10).  

It is worth noticing that the anti-correlations in Fig. 3c do not mean that the two 

storylines had opposing activation patterns. The two patterns are forced to average to 

approximately zero by the need to subtract the global mean response before computing the 

correlation across segments 19,20. Therefore, the correlation values only reflect the relative, but 

not the absolute, difference between conditions.  

Neural reinstatement of narrative motifs 
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Figure 4. Predicted motif effect. (a) Fragments of the convergence part (C part) were bridged to 

specific fragments in the AB part by motifs, e.g. chili.  (b) predictions about pattern similarity 

based on motifs.  
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In contrast to the first thirty segments of the story, where the subjects need to segregate 

information across the two unrelated storylines, in the last C part of the story, subjects are 

required to integrate information across all segments into a single unified storyline. To test how 

related but separated events are integrated in areas with long processing timescale, we examined 

how past information from part AB was reinstated during part C upon the recurrence of the 

narrative motifs. For each occurrence of motifs in the story, we averaged the 5 TRs after its 

onset. Then, we correlated each reoccurrence of a narrative motif in part C with all its 

occurrences in part A or B (Fig. 4). The correlation between matching motifs was compared to 

the correlation between non-matching motifs from the same storyline (shared storyline) and to 

the correlation between non-matching motifs from the competing storyline (unrelated segments).  

The reappearance of the narrative motifs in part C reinstated specific neural patterns seen 

when the motifs were encountered during the A/B segments in areas with long integration 

timescales (p < .05, FWE)(Fig. 5, middle). Furthermore, by applying the above analysis TR by 

TR around the onsets of narrative motifs in part C, we found that the correlation rapidly 

increased after motif onset and lasted for 5-7 TRs, approximately for 3-6 sentences (Fig. 5, upper 

and lower panels). The reinstatement effect was specific to matching motifs and was not seen 

between non-matching motifs, either within or across storylines. Furthermore, this result was 

mainly found within areas with long processing timescale but not in areas with short processing 

timescale (see Heschl’s gyrus in Fig. 5). 
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Figure 5. Motif effect. Middle: Regions showing a significant motif effect (p < .05, FWE). 

Upper & Lower: Pattern similarities between motifs in the AB part and TRs around motif onsets 

in the C part. Shaded areas indicate 95% CI across participants. 

 

 Narrative motifs vs. high-frequency word effects 

To make sure that the reinstatement of patterns after motif onsets reflects retrieval of 

narrative information (as opposed to simple reactivation of word representations shared between 

the A/B and C segments, e.g., the representation of the word “chili”), we performed the same 

analysis on a set of high-frequency words that occurred in the C part and in either the A or B 

storyline (e.g., “watch”). We analyzed 28 high-frequency words to match the number of 

narrative motifs. If the neural reinstatement effect that we observed for motifs simply reflected 

the reactivation of word representations, the same effect should be observed when we look at the 

repetition of high-frequency words like “watch” that have no particular narrative significance. In 

all ROIs with long processing timescale, beside the dorsal PCC, the correlation between 

matching items was significantly higher for the narrative motifs compared to the high-frequency 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.908731doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.908731


14 
 

words, which hovers around zero (p < .05, FWE corrected, Fig. 6). This indicates that word 

repetition alone was not sufficient to drive neural reinstatement in long-timescale regions; rather, 

the words had to refer to significant narrative events (as is true for “chili” but not for “watch”).  

 

Figure 6. Motif vs. high-frequency word effect. Among regions showing a significant motif 

effect (marked by the blue outline), the effect of storyline-specific high-frequency words was 

computed using the same RSA method. The two effects were compared using one-tailed one-

sample test (N=25; p < .05, FWE). Shaded areas show the distribution across subjects.  

 

Correlation between motif reinstatement and the behavioral relation score. 

We next asked whether the reinstatement of motif-specific activation patterns in segment 

C was necessary for the understanding of the story plotline as a whole. The neural reinstatement 

triggered by motifs in part C was correlated with the subjects’ ability to relate part C with 

storyline A and B, as revealed in the relation test (see behavioral results above). In short, each 

subject was asked to freely recall events related to a given motif from different parts of the story. 
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Within ROIs showing a significant motif effect, including the dPCC, left IPL, left supramarginal 

gyrus, left pMTG, dmPFC, right MFG, and left IFG/MFG (one-tailed, FDR corrected q < .05, 

Fig. 7), we observed a correlation between the neural reinstatement of motifs and the individual 

relation scores. In other words, participants who showed a stronger neural reinstatement of 

motifs were also better at explaining the narrative related connections among separate events 

sharing the same motifs. This result was strongest in areas with long processing timescale and 

was not seen in areas with short processing timescale (see Heschl’s gyrus in Fig. 7).  

Narrative motifs, emotional engagement, and memorability  

Figure 7. Correlation between the neural reinstatement of motifs and the individual 

relation scores. Only ROIs showing significant motif effect were tested (marked by the blue 

outline). Asterisks indicate significant correlation (N = 25, one-tailed FDR corrected q < .05).   

 

Lazaridi, the author of the story, embedded the motifs in highly emotional scenes and 

provided emotional weightings for the occurrences of motifs in the AB part by a 5 points scale, 

predicting that heightened emotional context would contribute to the memorability of a motif and 

the motif relation effect. We computed the Pearson correlation between those emotional 
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weightings provided by the author and the behavioral relation scores of the fifteen narrative 

motifs, which have corresponding questions in the behavioral questionnaire. A non-significant 

tendency toward a positive correlation was found (R = .42, p = .06) (Supplementary Fig. 7). 

Hippocampal-cortical ISFC and cortical reinstatement of storyline and motif 

To examine whether storyline reinstatement is dependent on connectivity with the hippocampus, 

we examined the correlation between storyline effect and hippocampal-cortical inter-subject 

functional correlation (ISFC)21 in ROIs showing a significant storyline effect. For each A/B 

segment (except for the first segment of each storyline), we correlated the storyline effect with 

3hippocampal-cortical ISFC during that segment and ran the correlation across segments (within 

participants) and across participants (within segments). Because we did not have strong 

predictions about the relevant time windows for computing the storyline effect and ISFC, we ran 

an exploratory grid search across a range of analysis parameters. The ISFC between 

hippocampus and mPFC showed a strong correlation with the storyline effect (FDR corrected q 

< .05 across ROIs) for multiple settings of analysis parameters (Supplementary Fig. 6), although 

the result did not survive multiple-comparisons correction when factoring in the full set of 

analysis parameters, so it should be interpreted with caution.  We also examined the correlation 

between hippocampal ISFC and motif reinstatement in ROIs showing a significant motif effect 

but did not find a significant correlation.  

 

 

Discussion 

For this study, we actively designed a structured narrative in collaboration with a 

professional author to test how related events are dynamically and flexibly integrated by the 

brain while being protected and segregated from intervening irrelevant events. Our results 

indicate that the memory traces of recent events can be reactivated as a function of current input 

in areas with long processing timescales within the DMN. This is seen in Fig. 2c, where the 

neural patterns associated with the current storyline were reactivated at segment boundaries, 

while the activation patterns of the irrelevant storylines subsided. The reinstatement of relevant 

past events was also tested in Section C (where the two separate A & B storylines converged into 

one coherent storyline) by using motifs to reactivate and update particular moments from both 

storylines (Fig. 5). As predicted, the presentation of specific motifs in part C triggered 

reinstatement of associated neural patterns from part A and B. Taken together, these results 

revealed a dynamic shift between currently active context and latent inactive contexts, which 

helps to integrate information over minute-long interruptions while protecting the accumulated 

information from irrelevant input.  

In support of the idea that the reactivated information is integrated with new input, we 

found that participants showing stronger neural motif reinstatement performed better in relating 

separate events sharing the same motif (Fig. 7); this idea is also supported by the finding of 

increased neural differentiation between storylines over time in regions with a long temporal 

receptive window (Fig. 3).  Using a similar design, in which subjects watched a movie with two 

interleaved storylines in two parallel worlds (the movie Sliding Doors), a recent study observed a 

similar increase in neural differentiation between storyline representations within the 

hippocampus13. Our study replicated the neural differentiation between storylines in the 
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hippocampus (Supplementary Fig. 5) and extended it by revealing similar  patterns of results in 

the default mode network regions. The regular structure of interleaving storylines in our study 

also allowed us to show the time course of swapping storyline representations in cortex at 

segment boundaries (Fig. 2c) and explore how hippocampal connectivity related to this storyline 

effect in the cortex (see below).  

After demonstrating the reinstatement of relevant past information, we next addressed 

how the remote memory was reinstated. Previous work by Chen et al. (2016) showed that 

hippocampal-cortical interaction helped participants to integrate information across movie 

segments separated by a 1-day break. In our exploratory analyses, we found that storyline 

reinstatement increased with functional connectivity to hippocampus in mPFC both across 

subjects and across segments (Supplementary Fig. 6) for several (but not all) settings of analysis 

parameters. This finding provides preliminary support for the idea that hippocampally-mediated 

episodic memory may help to store and reinstate storyline representations. Notably, the degree of 

inter-subject functional connectivity between hippocampus and cortex did not reliably predict 

neural reinstatement triggered by motifs in part C. One possible explanation is that the inter-

subject functional connectivity method involves averaging over multiple time points; this may 

make it less useful for detecting brief reinstatement events triggered by motifs. 

In addition to episodic memory, there are other mechanisms that might also contribute to 

reinstating storyline representations. In particular, recent studies of working memory have shown 

that past information could be held in the cortex during delay period without persistent activity 
24–26 and such inactive neural patterns can be reactivated on task demand 27, by probe stimuli 25, 

and even by transcranial magnetic stimulation 28; several computational models have been built 

to account for the latent memory 29 and short-term synaptic plasticity in cortex has been 

proposed to be the underlying mechanism30–32. More work is needed to delineate the roles of 

hippocampal episodic memory vs. short-term plasticity within cortex in supporting memory for 

currently-irrelevant storylines.  

Our design successfully induced reactivation of neural patterns associated with specific 

storylines and motifs, which, we believe, reflects the reinstatement of narrative information 

relating to past events rather than simple reactivation of word representations. First, we found a 

significant motif effect even when taking storyline-specific high-frequency words as the baseline 

(Fig. 6). Second, as noted above, we found a correlation between the behavioral relation scores 

and the neural motif effects (Fig. 7). In other words, the same set of narrative motifs yielded 

greater neural reinstatement in subjects who demonstrated a better understanding of the 

narrative. Third, the same motif was not always expressed in the same words ("throwing up” vs. 

“Clara feels sick, as the coffeecake rises to her throat”). As for the storyline effect, the strongest 

difference between storylines was found in regions with long TRW, i.e. regions where randomly 

ordered words failed to elicit reliable responses1 (Fig. 2b). In addition, 27% of the word tokens in 

the early AB part are storyline specific, while only 24% of the word tokens in the late AB part 

are storyline specific. Therefore, the difference in wording could hardly explain the stronger 

storyline effect in the later AB part (Fig. 3).  

In conclusion, real-life events require dynamic integration of past and present 

information. This study demonstrated that cross-disciplinary collaboration is a fruitful approach 

to a better understanding of the continuous processing of real-life stimuli. We showed how 

events that unfold over many minutes are integrated into a coherent plotline, while at the same 

time they are protected from being mixed with irrelevant inputs. Taken together, these results 
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suggest that process-memory may have two states, a state in which prior events are active and 

influence ongoing information processing, and an inactive state, in which the latent memory does 

not interfere with the ongoing neural dynamics 10,24. These findings not only illuminate the 

neural mechanisms underlying process-memory but also explain (in neuroscientific terms) why 

the practiced narrative design techniques applied by Lazaridi are so effective. The results of 

these kinds of collaborative works might also be applied to guide the future design of narratives, 

in order to induce specific reactions and event interpretations, affecting audience response. 
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Methods 

Participants 

Twenty-eight participants were recruited. They were all right-handed native English 

speakers. All participants provided written consent forms before the experiment. Twenty-five 

participants were included for further analyses (14 females, age 18-40). Three were excluded, 

one due to anatomical anomalies, one due to excessive motion artifacts in T1 image, and one 

slept during the story. The experimental protocol was approved by the Institutional Review 

Board of Princeton University.  

Stimulus 

The stimulus was created by Lazaridi (“The 21st Year” -- Excerpt, copyright 2019), who has 

been in collaboration with our lab for a number of years 33. She has years of experience in 

practicing and evolving the technique of organizing the audience’s understanding, memory and 

interpretation of a  narrative through screenplay writing and professional screenplay 

development around the world 34. Compared to other types of writing, the creation of a 

screenplay is highly audience-driven due to the large investment (in time, collaboration, and 

financing) inherent in film-making. Furthermore, watching a film is a more continuous 

experience than reading a book, requiring the screenwriter to guide and unite the audience’s 

understanding and overall response to the narrative without loss of focus or inner thought 

digressions. 

Lazaridi designed the narrative stimulus as a stand-alone fiction text that incorporated her 

experience-guided narrative techniques of traditional screenplay writing. The narrative consisted 

of 45 segments, and two seemingly unrelated storylines, A and B. A and B segments were 

presented in an interleaved manner for the first 30 segments. In the last 15 segments (Part C), the 

two storylines merged into a unified narrative. Each segment lasted for 41-57 TRs (mean: 46 

TRs = 70 sec). They were separated by silent pauses of 3-4 TRs. The narrative was recorded by a 

professional actress (June Stein), who is a native English speaker, and directed by Lazaridi to 

ensure that the actor’s interpretation matched the author’s intent. The recording is 56 minutes 

long.  

In the A and B segments, the author incorporated unique narrative motifs (Fig. 1 and Fig. 

4), i.e., specific images/situations/phrases, that recurred in part C. The recurrence of motifs in 

part C is designed to trigger the reinstatement of specific moments from part AB, in order to 

evolve their meanings and to integrate the two storylines. In total, there were 28 different 

narrative motifs, occurring 58 times in the AB part, and 36 times in part C. The same narrative 

motif was not always realized with the same words. The main technique Lazaridi used to make 

motifs memorable was to embed them in emotionally heightened narrative moments. For 

example, at the beginning of the narrative, (Part A) Clara serves chili during a party in LA and 

her interactions with the dish (serving, eating, throwing up after eating it) map a series of seminal 

emotional moments in her personal narrative.  

Procedure  

The recording of the narrative was presented using MATLAB (MathWorks) and 

Psychtoolbox 35 through MRI-compatible insert earphones (Sensimetrics, Model S14). MRI-safe 

passive noise-canceling headphones were placed over the earbuds for noise reduction and safety. 

To remove the initial signal drift and the common response to stimulus onset, the narrative was 
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preceded by a 14 TR long musical stimulus, which was unrelated to the narrative and excluded 

from fMRI analysis. Participants filled a questionnaire after the scanning, to evaluate their 

overall comprehension of the narrative and their ability to relate events in different parts of the 

story that shared the same motifs.   

MRI acquisition 

Subjects were scanned in a 3T full-body MRI scanner (Skyra, Siemens) with a 20-

channel head coil. For functional scans, images were acquired using a T2*-weighted echo planar 

imaging (EPI) pulse sequence (repetition time (TR), 1500 ms; echo time (TE), 28 ms; flip angle, 

64°), each volume comprising 27 slices of 4 mm thickness with 0 mm gap; slice acquisition 

order was interleaved. In-plane resolution was 3 × 3 mm2 (field of view (FOV), 192 × 192 mm2). 

Anatomical images were acquired using a T1-weighted magnetization-prepared rapid-acquisition 

gradient echo (MPRAGE) pulse sequence (TR, 2300 ms; TE, 3.08 ms; flip angle 9°; 0.86 x 0.86 

x 0.9 mm3 resolution; FOV, 220 x 220 mm2). To minimize head movement, subjects' heads were 

stabilized with foam padding.  

MRI analysis 

Preprocessing 

MRI data were preprocessed using FSL 5.0 (http://fsl.fmrib.ox.ac.uk/), including BET 

brain extraction, slice time correction, motion correction, high-pass filtering (140 s cutoff), and 

spatial smoothing (FWHM 6 mm). All data were aligned to standard 3 mm MNI space. Only 

voxels that were active in all subjects were included for further analysis. 

Following preprocessing, the first 19 TRs were cropped to remove the music preceding 

the narrative (14 TRs), the time gap between scanning and narrative onset (2 TRs), and to correct 

for the hemodynamic delay (3 TRs). To verify the temporal alignment between the fMRI data 

and the stimulus, we computed the temporal correlation between the audio envelop of the 

stimulus (volume) and the subjects’ mean brain activation in left Heschl’s gyrus following 

Honey et al. 36. The left Heschl’s gyrus mask was from Harvard-Oxford cortical structural 

probabilistic atlases (thresholded at 25%). The audio envelope was calculated using a Hilbert 

transform and down-sampled to the 1.5 s TR. The correlations were computed with -100-100 

TRs lag to find the time lag that showed the highest correlation. The averaged peak time was 

0.12 TR across subjects, indicating that the narrative and fMRI data were temporally well-

aligned. 

To account for the low-level properties of the stimulus, a multiple-regression model was 

built for each voxel. The regressors included an intercept, the audio envelope, and the boxcar 

function of the between-segment pauses, convolved by the canonical hemodynamic response 

function and its derivatives with respect to time and dispersion as given in SPM8 

(https://www.fil.ion.ucl.ac.uk/spm/). For the effect of audio amplitude and between-segment 

pause, please see Supplementary Fig. 1. The residuals of the regression model were used for the 

following analyses.  

ROI masks 

We used 238 functional regions of interest (ROIs) defined independently by Shen et al.18 

based on whole-brain parcellation of resting-state fMRI data. A control anatomical ROI was also 

included: left Heschl’s gyrus defined using the Harvard-Oxford cortical structural probabilistic 

atlas, thresholded at 25%. A bilateral anatomical hippocampal mask was obtained using the same 
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threshold. This mask was divided into anterior (MNI coordinate y>-19), middle (-30 < y < =-

19 ), and posterior parts (y <= -30) ROIs following Collin et al. (2015)37. All ROIs had more 

than 50 active voxels in our data. 

Shared response model 

When comparing activation patterns across subjects, the mismatch of functional 

topographies could decrease analysis sensitivity even after anatomical alignment 38,39.  Therefore, 

we functionally aligned data within each ROI across subjects using the shared response model 

(SRM) 40. SRM projects all subjects’ data into a common low-dimensional feature space by 

capturing the components of the response shared across subjects. The input to SRM was a TR x 

voxel x subject matrix, and the output was a TR x feature x subject matrix. We used fMRI data 

from the whole story (z-scored over time first) to estimate an SRM with 50 features. Note that no 

information about storyline or motif was submitted to SRM. Therefore, while this projection 

inflated the overall inter-subject pattern similarity, it could not artifactually give rise to the 

storyline or motif effect shown here. The output of SRM was z-scored over time. Unless 

otherwise stated, all the pattern analyses described below were run based on the resulting 50 

features.  

We also performed the same analyses without the application of SRM. Generally 

speaking, a subset of the areas that were significant in the analysis with SRM were also 

significant in the analysis without SRM. Please see Supplementary Fig. 2 for the results.  

RSA of storyline effect  

To examine the storyline effect, we performed representational similarity analysis (RSA) 
16,17 on brain activation patterns and tested whether the representational similarity between 

segments from the same storyline was higher than that of segments from different storylines. For 

each ROI, we first averaged activation patterns within each segment across TRs. The resulting 

data were z-scored over segments. Pairwise pattern similarities between the 45 activation maps 

were computed with the leave-one-subject-out method (Fig. 1). Namely, the averaged activation 

pattern was extracted for each segment. Then the Pearson correlation coefficients between one 

subject’s activation patterns and the averaged patterns of the remaining subjects were computed. 

The output correlation coefficients (45 x 45 segments) were normalized with Fisher’s z-

transformation. This procedure was repeated for each of the 25 subjects and each ROI.  

We then contrasted the averaged within- and between-storyline similarities in the AB 

part, excluding the within-segment similarities (the diagonal of the 45 x 45 similarity matrix), to 

obtain 25 contrast values (Fig. 2a) for each ROI. These contrast values were compared to zero by 

a one-tailed one-sample t-test and thresholded at p < .05 (FWE correction for multiple 

comparisons).  

To examine whether the storyline effect increased over time, for regions showing a 

significant storyline effect, we computed the storyline effect in the early (segment 1-14) and later 

(segment 15-30) halves of the AB part separately. 25 contrast values were generated by 

comparing the late and early storyline effects (late (same > different storyline) > early (same > 

different storyline)). These contrast values were again submitted to a one-tailed one-sample t-test 

(p < .05, FWE). The results were projected back onto the whole-brain surface and visualized 

using Freesurfer v6 (http://surfer.nmr.mgh.harvard.edu/). 

Temporal receptive window index 
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Following Yeshurun et al. 5, the TRW index was generated based on an independent 

dataset from Lerner et al. 1, which includes an intact story (“Pieman”, ~7 min long) and the same 

story with scrambled word order. Inter-subject correlation between averaged time series of each 

ROI was computed, using the leave-one-subject-out method, and normalized using Fisher’s z 

transformation. TRW index was then calculated by subtracting the ISC of the scrambled story 

from that of the intact story.  

We examined the correlation between TRW and storyline effect (Fig. 2b) across regions, 

as well as the correlation between TRW and storyline x time effect within regions showing 

significant storyline effect (Fig.3b).  

In addition, we also divided the TRW index into three bins (bin width: 0.126 r(z)) and 

grouped all the ROIs into the three bins (Supplementary Fig. 3). For regions with short, medium, 

and long TRW, averaged pattern similarities between segments of the same and different 

storylines in the early and late halves of the AB part were computed (Fig. 3c).  

Time course of the storyline effect at segment boundary 

To further illustrate the time course of the storyline effect, a long TRW ROI, i.e. posterior 

cingulate cortex, was selected. We computed the pattern similarities between each of the -40-40 

TRs around segment onsets and the typical A and B storyline patterns using a leave-one-subject-

out method. For example, for the boundary between segment 1 and segment 2, -40~40 TRs 

around the onset of segment 2 were extracted from one subject. The typical A storyline pattern 

was obtained by averaging all the A storyline TRs, except for the segments analyzed here, i.e. 

segment 1 and 2, from the rest of the subjects. The typical B storyline pattern was obtained in the 

same manner. Pearson correlation between the 81 TRs around segment 2 onset and the typical A 

and B patterns were calculated and normalized with Fisher’s z-transformation. The same 

procedure was repeated for each subject and each boundary. Fig. 2c shows the transition from B 

to A segments. Please see Supplementary Fig. 4 for the transition from A to B segments.  

RSA of narrative motif effect  

For each narrative motif occurrence, the corresponding activation pattern was obtained by 

averaging 5 TRs immediately after its onset. Pearson correlation coefficients between activation 

patterns of motifs in the AB part and motifs in the C part were computed with the leave-one-

subject-out method and normalized with Fisher’s z transformation. As shown in Fig. 4, pattern 

similarities between narrative motifs were grouped into three types: (1) same motif, (2) different 

motifs from the same storyline, and (3) different motifs from different storylines (unrelated). For 

example, pattern similarities between different occurrences of “chili” belong to (1). Similarities 

between “chili” and other A storyline motifs belong to (2). Similarities between chili and B 

storyline motifs belong to (3). Motif effect of each “chili” token in part C was defined as the 

averaged type (1) similarity minus the averaged type (2) similarity, in order to eliminate the 

confound of storyline effect.  

The group motif effect was thresholded with a permutation test. For each ROI, the above 

procedure was repeated after shuffling the labels of motifs within storylines for 10000 times, 

creating a null distribution. To correct for multiple comparisons across ROIs, the largest motif 

effect across ROIs in each of the 10000 iterations was extracted, resulting in a null distribution of 

the maximum motif effects. Only ROIs with a group motif effect exceeding 95% of the null 

distribution were considered significant (p < .05, FWE)(Fig. 5, middle).  
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Time course of the narrative motif effect 

To further illustrate the time course of the motif effect, for each motif in C, the Pearson 

correlation coefficients between activation patterns of -5~10 TRs around its onset and the 

activation patterns of motifs in the AB part were computed. Motifs with a -5~10 TRs time 

window that overlapped with the between-segment silent pauses were excluded from this 

analysis. The resulting coefficients were normalized with Fisher’s z-transformation and averaged 

by categories (same motif and same storyline, different motif but same storyline, and unrelated). 

Fig. 5 shows the resulting pattern similarity around narrative motif onset.  

Narrative motif vs. High-frequency word effect 

To verify that the motif effect did not result from repeated wordings or word-level 

semantics, we replaced the narrative motifs with storyline-specific high-frequency words and 

performed the same RSA. More specifically, among words that only occurred in A and C parts 

and words that occurred only in B and C parts, we chose the 28 words with the highest 

lemma/word stem frequencies (Supplementary Table 2). Two out of the twenty-eight narrative 

motifs were included in this list. Together, these words occurred 111 times in the AB part and 

110 times in the C part. Among regions showing a significant motif effect, we calculated the 

difference between the real motif effect and the effect elicited by high-frequency words for each 

subject. The 25 difference values were entered into a one-sample one-tailed t-test. The results 

were thresholded at p < .05 (FWE, Fig. 6). 

Correlation between hippocampal-cortical ISFC and cortical reinstatement of storyline and 

motif 

To examine whether the cortical reinstatement of storyline was dependent on 

connectivity with hippocampus, we examined the correlation between hippocampal-cortical 

inter-subject connectivity (ISFC)21 and the storyline effect across segments for each subject, 

within ROIs showing a significant storyline effect.  

The ISFC was computed within the 0-40 TR time window after the onset of each segment 

using the leave-one-subject-out method, i.e. the correlation between one subject’s hippocampal 

activity and the averaged cortical activity of the other subjects. We used the preprocessed data 

without regressing out the effects of between-segment pause and the audio envelope because it is 

possible that the activation pulse between segments (Supplementary Fig. 1) does not only reflect 

the silence but also memory encoding or retrieval41. SRM was not applied because topographical 

alignment is not a concern when comparing the averaged time series between ROIs. The 

hippocampus seed was defined using Harvard-Oxford cortical structural probabilistic atlas 

thresholded at 25%.  

The storyline effect for each segment was also computed using the leave-one-subject-out 

method. The typical activation patterns for A and B storylines were first estimated by averaging 

data from all but one subject, excluding the current segment. Pattern similarity between the 

resulting typical A & B patterns and the left-out subject’s activation pattern for the current 

segment was then computed. The storyline effect was defined as the difference between pattern 

similarity to the relevant storyline and the similarity to the irrelevant storyline, taking the 

previous segment as the baseline, for example, for a B segment: (current segment’s similarity to 

B - similarity to A) - (previous segment’s similarity to B - similarity to A).  
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The correlation between ISFC and the storyline effect across segments was computed for 

each subject, excluding the first segment of each storyline. The R-values were entered into a one-

tailed t-test after Fisher’s z-transformation. This initial analysis did not yield a significant result 

after correction for multiple ROIs (N = 25, p < .05, FDR correction). In exploratory follow-up 

analyses, we then systematically examined the influence of the time window of ISFC, the time 

window of the storyline effect, the hippocampus seed (whole vs. posterior: MNI y <= -30), and 

the baseline of the storyline effect. We also examined the correlation across subjects in each 

segment. For each combination of analysis parameters, we corrected for multiple-comparisons 

across ROIs using the FDR method. Please see Supplementary Fig. 6 for the results. No 

significant correlation was found after simultaneous FDR-correction for multiple-comparisons 

across ROIs and the twelve sets of analysis parameters. 

We examined the correlation between hippocampal ISFC and motif reinstatement in a 

similar manner. The motif effect was defined and computed using the RSA method described 

above (based on 5 TRs after motif onsets, using similarity between different motifs of the same 

storylines as baseline)(Fig. 4). Across motifs in the C part, correlation between the motif effect 

and ISFC after motif onset was then computed for each subject. We also examined the 

correlation across subjects for each motif and the influence of ISFC time windows and 

hippocampus seeds.  
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Data availability. The data used in this study have been publicly released as part of the 

"Narratives" collection. Raw MRI data are formatted according to the Brain Imaging Data 

Structure (BIDS) with exhaustive metadata and are publicly available on OpenNeuro: 

https://openneuro.org/datasets/ds002245. The data corresponding to this study are indicated 

using the "21styear" task label. These data can be cited using the following reference: 

Nastase, S. A., Liu, Y.-F., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian, N., Chen, J., 

Honey, C. J., Yeshurun, Y., Regev, M., Nguyen, M., Chang, C. H. C., Baldassano, C. B., 

Lositsky, O., Simony, E., Chow, M. A., Leong, Y. C., Brooks, P. P., Micciche, E., Choe, G., 

Goldstein, A., Halchenko, Y. O., Norman, K. A., & Hasson, U. Narratives: fMRI data for 

evaluating models of naturalistic language comprehension. 

https://doi.org/10.18112/openneuro.ds002245.v1.0.3 
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