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Abstract1

Earth’s temperature is increasing due to anthropogenic CO2 emissions; and organ-2

isms need either to adapt to higher temperatures, migrate into colder areas, or face3

extinction. Temperature affects nearly all aspects of an organism’s physiology via its4

influence on metabolic rate and protein structure, therefore genetic adaptation to in-5

creased temperature may be much harder to achieve compared to other abiotic stresses.6

There is still much to be learned about the evolutionary potential for adaptation to7

higher temperatures, therefore we studied the quantitative genetics of growth rates in8

different temperatures that make up the thermal performance curve of the fungal model9

system Neurospora crassa. We studied the amount of genetic variation for thermal10

performance curves and examined possible genetic constraints by estimating the G-11

matrix. We observed a substantial amount of genetic variation for growth in different12

temperatures, and most genetic variation was for performance curve elevation. Con-13

trary to common theoretical assumptions, we did not find strong evidence for genetic14

trade-offs for growth between hotter and colder temperatures. We also simulated short15

term evolution of thermal performance curves of N. crassa, and suggest that they can16

have versatile responses to selection.17
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Introduction18

Earth’s temperature is rising due to anthropogenic activities (IPCC, 2013). The challenge most19

organisms will face in a warming world is that they have to either adapt to warmer conditions or20

migrate into colder areas to avoid extinction (Deutsch et al., 2008; Dillon et al., 2010; Araújo et al.,21

2013; Merilä and Hendry, 2014). Temperature is a unique abiotic stress, because the kinetics of22

all biochemical reactions and protein stability are affected by temperature. As such, temperature23

influences nearly all aspects of an ectothermic organism’s physiology (Schulte, 2015; Arcus et al.,24

2016). Therefore, adapting to a higher temperature may be much more difficult than adapting to25

a more specific environmental stress. For some anthropogenic stresses, such as antibiotics or her-26

bicides, decades of research have revealed strong evolutionary adaptation to these stresses (Davies27

and Davies, 2010; Powles and Yu, 2010). However, genetic basis of adaptation to temperature is28

likely to be much more complex (Hochachka and Somero, 2002).29

According to quantitative genetic theory, evolution is possible if variation in a trait is heritable30

and selection acts on this variation. However, the evolution of multivariate traits can be complicated31

by genetic correlations, allowing evolution to proceed only in few directions or possibly preventing32

it altogether (Walsh and Blows, 2009). The more integrated traits are with each other, the more33

difficult the evolution of the underlying genetic network and the phenotype can be.34

The ability of an organism to tolerate different temperatures is often described by a thermal35

performance curve (Huey and Kingsolver, 1989, 1993), which describes the fitness or performance36

of an organism as a function of temperature (Figure 1A). These curves have been used to predict37

how organisms potentially respond to increased temperatures (Deutsch et al., 2008; Araújo et al.,38

2013; Sinclair et al., 2016). In general, thermal performance curves or reaction norms have been39

thought to evolve by either changes in elevation (Figure 1B), left or right shifts in the curve that40

lead to changes in optimum temperature or temperature limits (Figure 1C), or changes in curve41

shape (Figure 1D).42

Certain biochemical constraints may explain the characteristic shape changes of performance43

curves (Angilletta et al., 2003). For example, high enzyme stability could allow tolerating high tem-44
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Figure 1: A) An illustration of a hypothetical temperature performance curve. Temperature is on
the horizontal axis and growth rate is on the vertical axis. Topt shows the optimal temperature,
where growth rate has its maximum value, µmax. Temperature where growth rate reaches zero
as temperature increases is denoted as CTmax. B) Change in reaction norm elevation shifts the
reaction norm on the vertical axis. C) A horizontal shift. D) Change in reaction norm shape.
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peratures with the expense of reduction of performance in cold temperatures resulting in a hot-cold45

trade-off. Two enzymes with different optima could allow broader thermal tolerance but with an46

energetic expense of expressing two proteins, leading to reduction of performance at intermediate47

temperatures and producing a specialist-generalist tradeoff. Furthermore, the biochemial activa-48

tion energy provided by higher temperatures can lead to thermodynamic effects: genotypes with49

higher optimal temperatures also have higher performance (Hochachka and Somero, 2002). Ther-50

modynamic effect is also called the “hotter is better” hypothesis. If thermal performance curves51

are determined by such underlying patterns, measurements need to be done in multiple temper-52

atures and results analyzed by multivariate methods in order to determine the ability of thermal53

performance to evolve.54

While several studies have tested how different species or populations differ in their thermal55

performance curves, or if evolution has been able to shape them (e.g. Krenek et al., 2011; Klepsa-56

tel et al., 2013; Ketola and Saarinen, 2015; Ashrafi et al., 2018; Maclean et al., 2019), only a few57

studies have determined the evolutionary potential of thermal performance curves. In these studies,58

the genetic variance-covariance matrix (G-matrix) for thermal performance across several temper-59

atures has been estimated, and how genetic variation is aligned with characteristic directions of60

reaction norm evolution has been determined (e.g. Izem and Kingsolver, 2005; Stinchcombe et al.,61

2010; Latimer et al., 2015; Logan et al., 2020). This is essential in order to explore how freely62

thermal performance can evolve in different environments, and to quantify if thermal performance63

evolution is bound to follow a certain evolutionary path or performance curve shape. Constraints64

on performance curve evolution will affect the ability of populations to respond to increasing tem-65

peratures, which is crucial, as studies suggest that plastic responses alone may not be enough for66

most species for dealing with coming temperature increases (Gunderson and Stillman, 2015).67

However, in the midst of multivariate genetics and the emphasis on finding genetic constraints, it68

should be remembered that evolutionary change follows from selection. From quantitative genetic69

parameters one can only deduce which traits have the highest amount of variation, and what is70

the alignment of the G-matrix with respect to characteristic thermal performance curve shapes.71
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However, unless genetic correlations are exactly −1 or 1, or if selection occurs exactly to the72

direction of zero genetic variation, evolutionary change to a particular direction is not prohibited,73

only slowed down.74

To explore constraints of thermal performance curve evolution, we are using the filamentous75

fungus Neurospora crassa as a model system to study the quantitative genetics of thermal perfor-76

mance curves. N. crassa is a genetic model system that has been used extensively in different as-77

pects of genetic research (Roche et al., 2014). However, only recently some studies have started to78

explore quantitative variation in N. crassa (Ellison et al., 2011; Palma-Guerrero et al., 2013). This79

is despite N. crassa having excellent properties for the study of quantitative genetics: N. crassa80

can reproduce either asexually or sexually, so analysis of clones is possible for quantitative genetic81

experiments and controlled crosses can be made. Comparatively little is known about the ecology82

of N. crassa; it is a saprotrophic organism that decomposes dead plant matter, and it is particularly83

found on burned vegetation. Its geographic distribution is concentrated in mainly tropical and sub-84

tropical regions (Turner et al., 2001). Most strains have been collected from the Caribbean basin,85

southeastern United States, west Africa, and India (Turner et al., 2001), but the species also occurs86

in southern Europe (Jacobson et al., 2006).87

Specifically, we asked the following questions: 1) Is there genetic variation in thermal perfor-88

mance curves in N. crassa? 2) Is variation in performance curves mainly for elevation, location, or89

shape? 3) Do constrains exist for performance curve evolution in the short term and what are these90

constraints?91

To address how much there is genetic variation in temperature performance curves, we used92

a panel of strains of N. crassa that had earlier been sampled from natural populations. We also93

crossed certain strains together to generate additional families. We measured the growth rates of94

these strains in different temperatures and combine these measurements into a thermal performance95

curve, and used a multivariate model to estimate the G-matrix of performance at different temper-96

atures. We then used the empirical estimates of genetic variation in a quantitative genetic model to97

describe the short term evolutionary potential of temperature performance curves of N. crassa.98
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Materials and methods99

Neurospora crassa strains100

We used a panel of strains originally obtained from the Fungal Genetics Stock Center (McCluskey101

et al., 2010). Our sample included natural strains collected from Louisiana (USA), Caribbean, and102

Central America (Ellison et al., 2011; Palma-Guerrero et al., 2013), 113 natural strains in total. In103

addition we made crosses between some of the strains to obtain additional families and increase104

the amount of genetic variation segregating among our lines. We crossed strains 10948 × 10886105

to obtain family A (n = 94), 10932 × 1165 to obtain family B, (n = 50), 4498 × 8816 to obtain106

family C (n = 50), 3223 × 8845 to obtain family D, (n = 52), and 10904 × 851 to obtain family107

G (n = 69). Parents were chosen to have crosses within the Louisiana strains and between the108

Louisiana and Caribbean strains. In total, the panel contained 428 strains and based on genotypic109

data (Ellison et al., 2011; Palma-Guerrero et al., 2013) all strains represent unique genotypes. Table110

S1 contains a list and information about the used strains. Strain numbering in family G runs up to111

72, because strains G2, G9, and G51 grew very poorly and were excluded from the experiment.112

Phenotyping113

Standard laboratory methods were used to maintain Neurospora cultures (Davis and de Serres,114

1970). We measured growth rates using a tube method described in Kronholm et al. (2016) but115

instead of parafilm we used silicone plugs to cap the tubes. We measured the linear growth rate116

of each genotype in six different temperatures: 20, 25, 30, 35, 37.5, and 40 °C. Temperatures117

were chosen based on known reaction norm for strain 2489 (Kronholm et al., 2016). Three clonal118

replicates were measured for each genotype at each temperature. This gave a total of 7704 growth119

assays. In some assays the inoculation failed and the strain did not grow, or water droplets moved120

the inoculum along the pipette and linear growth rate could no longer be measured. There were 19121

such assays and these were recorded as missing data, thus the number of growth assays in the final122

dataset was 7685. Strains were grown in two growth chambers (MTM-313 Plant Growth Chamber,123
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HiPoint Corp., Taiwan) that contained three compartments, each with adjustable temperature. We124

rotated the temperatures among the different compartments between replicates, so that replicates of125

the same temperature were measured in different compartments, and monitored the temperature in126

the compartments with data loggers.127

Statistical analysis128

All statistical analyses were performed with R 3.6.0 (R Core Team, 2019). Bayesian models were129

implemented using the Stan language (Carpenter et al., 2017) which uses Hamiltonian Monte Carlo130

sampling. Hamiltonian Monte Carlo is much more efficient than traditional MCMC algorithms,131

such as Gibbs sampling, and can potentially accommodate very large number of parameters. An132

accessible introduction can be found in McElreath (2015). Stan was interfaced using the ’brms’133

2.9.0 R package (Bürkner, 2018). MCMC convergence was monitored by trace plots and R̂ val-134

ues. We considered parameter values to be different if their 95% highest posterior density (HPD)135

intervals did not overlap.136

Thermodynamics of thermal performance curves137

Theory predicts that if differences between hot and cold adapted genotypes are determined solely138

by an effect of temperature on metabolic rate, named the thermodynamic effect or “hotter is better”139

hypothesis, there should be a negative relationship between the logarithm of maximal growth rate,140

µmax, and 1/(kTopt), where k is the Boltzmann’s constant, and Topt is the temperature (in K)141

at which maximal growth rate occurs (Savage et al., 2004). We examined whether differences142

between N. crassa genotypes could be solely explained by a thermodynamic effect. When ln(µmax)143

is plotted against 1/(kTopt) the slope of a regression line is equal to negative activation energy,144

−E. The thermodynamic expectation for the slope is−0.6 because 0.6 eV is the average activation145

energy for biochemical reactions in the cell. This pattern generally holds across taxa adapted146

to different temperatures (Savage et al., 2004; Sørensen et al., 2018). Slopes greater than −0.6147

have been interpreted as an indication of other physiological or biochemical reasons rather than a148

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.01.16.909093doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909093
http://creativecommons.org/licenses/by-nc/4.0/


thermodynamic effect (Sørensen et al., 2018).149

To calculate the optimum temperature for each genotype without using a specific model that150

may fit for some genotypes better than others, we fitted natural splines for each genotype. We151

extracted the maximum growth rate (µmax) and optimum temperature (Topt) from the spline fit. We152

then fit a model153

ln(yi) ∼ N(µi, σ) (1)

µi = α + β × Topt,i

α, β ∼ N(0, 10)

σ ∼ hC(0, 2)

where yi is the ith maximum growth rate, α is the intercept, β is the slope, and Topt,i is the ith154

optimum temperature. We used weakly regularizing priors: a normal distribution for α and β, and155

a half-cauchy distribution for σ with location 0 and scale 2. MCMC estimation was done using two156

chains, with a warmup of 1000 iterations, followed by 4000 iterations of sampling. For this analysis157

we removed genotypes from the data that had very low maximal growth rates ln(µmax) < 1, which158

is µmax < 2.72 mm/h, as they did not have the typical tolerance curve shape and were outliers.159

These genotypes typically grew very slowly and reaction norms were much flatter than typical160

ones, which leads to larger uncertainty in estimating the optimal temperature from the spline fits161

(Figure S1A). 14 genotypes were removed, this left 414 genotypes for the analysis. However, since162

removing outlier observations can be considered subjective, we also applied robust regression with163

bisquare weights to the full data. Robust regression is a method that gives less weight to individual164

data points than ordinary regression and is less affected by outlier observations (Venables and165

Ripley, 2002).166
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Estimation of genetic variance and covariance components167

We were interested in estimating the genetic variance and covariance components for growth rates168

at different temperatures that together describe different aspects of temperature performance curves.169

Because Neurospora can be propagated clonally, we can estimate genetic variance components170

using clonal analysis. Among genotype variance is an estimate of the genetic variance and within171

genotype variance is an estimate of the environmental variance (Lynch and Walsh, 1998). We used172

a multivariate model to estimate genetic variance components at each temperature and the genetic173

correlations of all possible temperature pairs. The advantage of this approach is that we do not have174

to assume any particular shape for the temperature reaction norm. The multivariate model was175

yi ∼ MVN(µi,E) (2)

µi = α + αg[i]

αg[i] ∼ MVN(0,G)

G = SGRGSG

E = SERESE

where α is a vector of intercepts, αg[i] is a vector of genotypic effects, SG and SE are 6×6 diagonal176

matrices with genetic or environmental standard deviations on the diagonal, and RG and RE are177

matrices for genetic and environmental correlations respectively. We used weakly informative178

priors by using the half location-scale version of the student’s t distribution with three degrees179
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of freedom and 10 as the scale parameter. Thus, the prior for intercept effects was180

α ∼



hT(3, 2, 10)

hT(3, 3, 10)

hT(3, 4, 10)

hT(3, 4, 10)

hT(3, 4, 10)

hT(3, 3, 10)


(3)181

for growth rates from 20 to 40 °C. The prior for each standard deviation in the model was182

σ ∼ hT(3, 0, 10), and we used an lkj prior for the correlation matrices: RE,RG ∼ LKJ(1).183

For MCMC estimation two chains were run with a warmup period of 1000 iterations, followed by184

5000 iterations of sampling, with thinning set to 2. By inspecting MCMC traceplots (Figure S2)185

and the diagnostic summary statistic R̂, which was 1 for all parameters, we found no evidence of186

convergence problems.187

Genetic correlations and temperature differences188

We were also interested in how the genetic correlation of growth rates changes as temperatures189

are further apart. In order to examine how correlations change in a statistically rigorous manner,190

we calculated pairwise temperature differences for each estimated genetic correlation (n = 15),191

and fitted a Bayesian linear model with genetic correlation as the response, taking into account the192

uncertainty in the estimated genetic correlations. This is a linear model with measurement error193

where uncertainty in the estimated genetic correlations is propagated to the intercept and slope194

estimates of the linear model, see McElreath (2015) for details. We compared models with or195

without slope effects for temperature and whether genetic correlations involving growth rate at 40196

°C had a different intercept or slope (Table 2). We used leave-one-out cross-validation method for197

model comparisons, implemented in the ’loo’ R package (Vehtari et al., 2017). The models were198

compared using the leave-one-out information criterion; smaller values indicate greater support for199
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a model. The final model was200

xest,i ∼ N(µi, σ) (4)

µi = α + α40 × ci + β × di

xobs,i ∼ N(xest,i, xsd,i)

α, α40, β ∼ N(0, 10)

σ ∼ hC(0, 2)

where xobs,i is the median of ith observed genetic correlation, xsd,i is the observed standard devi-201

ation of ith genetic correlation, xest,i is the estimated genetic correlation for ith observation, α is202

the intercept, α40 is the intercept effect when one of the temperatures is 40 °C, ci is an indicator203

variable whether one of the temperatures is 40 °C, β is the slope effect, and di is the temperature204

difference for the ith observation. MCMC estimation was done using two chains, with a warmup205

of 1000 iterations, followed by 4000 iterations of sampling.206

Quantitative genetics207

We estimated heritability, the proportion of genetic variance of the total variance, for each temper-208

ature as209

H2 =
σ2
G

σ2
G + σ2

E

(5)210

where σ2
G is the genetic variance component and σ2

E the environmental variance component. Be-211

cause Neurospora is haploid, the dominance variance component is not defined. Genetic variance212

in haploids is composed of213

σ2
G = σ2

A + σ2
AA + σ2

AAA + . . . , (6)214

where σ2
A is the additive variance and σ2

AA is the additive × additive epistatic variance, σ2
AAA is the215

additive× additive× additive variance, and so on (Lynch and Walsh, 1998). With our experimental216

design we cannot estimate the epistatic variance terms, as is the case with many other common217
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quantitative genetic designs, and going further we assumed that epistatic variances were small and218

were ignored. This seems like a strong assumption, but there is some justification for doing so:219

even if there is plenty of epistasis at the level of gene action, this is not necessarily translated into220

epistatic variance (Hill et al., 2008; Mäki-Tanila and Hill, 2014). Empirical data also suggest that221

most genetic variation is additive (Hill et al., 2008). The genetic covariance of traits 1 and 2 is222

covG1,2 = σG1σG2rG1,2 , where rG1,2 is the correlation of the standard deviations or the genetic223

correlation. Thus, genetic correlation for traits 1 and 2 can be defined as224

rG1,2 =
covG1,2

σG1σG2

. (7)225

In addition to heritabilities, we used coefficients of variation to compare genetic and environ-226

mental variances. Heritability can be influenced by changes in either genetic or environmental227

variance, and genetic variance by itself is not a unitless variable (Houle, 1992). The genetic coeffi-228

cient of variation was:229

CVG = 100× σG
z̄

(8)230

where z̄ is the mean phenotype. Accordingly, the environmental coefficient of variation wasCVE =231

100σE/z̄.232

We obtained the G-matrix to describe how the growth rates at different temperatures were cor-233

related and to be able to calculate multivariate response to selection for thermal performance curves.234

This matrix contains genetic variance components on the diagonal and covariance components on235

off-diagonals, so for n traits G is an n× n matrix:236

G =



σ2
G1

σG1σG2rG1,2 · · · σG1σGnrG1,n

σG1σG2rG1,2 σ2
G2

· · · σG2σGnrG2,n

...
... . . . ...

σG1σGnrG1,n σG2σGnrG2,n · · · σ2
Gn


. (9)237

For environmental variance it is possible to construct an analogous E-matrix that is the environ-238
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mental variance-covariance matrix.239

We performed eigen decomposition of the G-matrix to gain insight into genetic constraints240

of reaction norm evolution. The eigenvector corresponding the leading eigenvalue, or the first241

principle component, gives the direction of multivariate evolution with the least genetic resistance242

(Schluter, 1996). We obtained these components by principle component analysis of the G-matrix.243

To assess uncertainty in the eigen decomposition we constructed a G-matrix for each posterior244

sample and performed decomposition for each G-matrix to obtain posterior distributions for how245

much variance the different components explained and for the component loadings. Obtaining246

interval estimates for the loadings this way is valid only if the order of eigenvectors stays consistent247

between the samples, and we could confirm this for the components one and two.248

To assess evolvability and constraint across the different growth rates we used the approach249

of Hansen and Houle (2008). Assuming there is a directional selection gradient β in multivariate250

space, they define evolvability as the length of the response to selection in the direction of β, this is251

the same as projection of response to selection on β (Hansen and Houle, 2008). Evolvability was252

calculated as253

e(β) =
β>Gβ

|β|2
. (10)254

Furthermore they define conditional evolvability as the response to selection in the direction of β,255

assuming that there is stabilizing selection around the direction of β and the population cannot256

deviate from this direction. For conditional evolvability we first calculated unit vector of β as257

β̂ =
β

|β|
258

and conditional evolvability is then259

c(β̂) = (β̂G−1β̂)−1. (11)260

To asses whether evolvability along a certain selection gradient is particularly high or low it is possi-261
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ble to calculate average evolvabilities over random selection gradients in phenotypic space. Hansen262

and Houle (2008) derived analytical and approximate solutions for average evolvability and average263

conditional evolvability and we calculated these following their approach. Evolvabilities for single264

traits are just the genetic variances of those traits. Conditional evolvability for a single trait can be265

measured with respect to other traits. Conditional evolvability for trait i is ci = 1/[G−1]ii, where266

[G]ii is the ith diagonal element of the G-matrix. Trait autonomy, the proportion of evolvability267

that remains after conditioning for the other traits, is calculated as ai = ([G−1]ii[G]ii)
−1 (Hansen268

and Houle, 2008). Since there are scale differences in the growth rates at different temperatures, we269

calculated conditional evolvabilities for both on the original scale and on mean standardized scale.270

The G-matrix can be mean standardized by dividing ijth element by the product of the means of271

traits i and j. Gµ = G � (z̄z̄>), where z̄ is a vector of trait means and � symbol for element-272

wise division. The mean standardized selection gradient was calculated as βµ = z̄ � β, where �273

is element-wise multiplication. Interval estimates for these statistics were obtained by calculating274

them for each posterior sample.275

Quantitative genetic model for the evolution of performance curves276

To examine how thermal performance curves of N. crassa can evolve, we used a quantitative genetic277

model with the empirically estimated G-matrix. Response to selection can be calculated using the278

multivariate breeder’s equation279

R = GP−1S (12)280

where S is a vector of selection differentials for each temperature, G and P are the genetic and281

phenotypic variance-covariance matrices respectively, and R is the response to selection. Response282

to selection can also be expressed in terms of the selection gradient, β, as283

R = Gβ (13)284
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where β = P−1S. The biological interpretation of selection differential and selection gradient are285

different, as selection differential of 0 for a given trait does not imply selective neutrality but rather286

stabilizing selection, whereas selection gradient of 0 for a trait implies that the trait is selectively287

neutral. See figure S3 for an illustration of the differences between these concepts. When we asked288

how would evolution proceed in a particular direction, we simulated response to selection using289

selection gradient (Equation 13). And when we asked whether selection could generate a particu-290

lar phenotype we simulated response to selection using selection differentials (Equation 12). Our291

goal is not to predict the evolution of tolerance curves in nature, as the real selection gradients are292

unknown and the assumption that G remains constant is likely violated in real populations. In-293

deed, there are considerable difficulties in predicting the response to selection in nature (Morrissey294

et al., 2010). Instead, our goal is to illustrate how thermal performance curves could evolve in a295

population with a similar G as estimated empirically here.296

The phenotypic matrix was calculated from P = G+E. The environmental variance-covariance297

matrix E, which uses environmental standard deviations and their correlations analogous to equa-298

tion 9, was obtained from the same model fit as G. Since there is uncertainty in our estimates299

of G and E we incorporated this uncertainty in the selection responses by sampling 1000 G and300

E matrices from the posterior distributions of genetic and environmental standard deviations and301

calculating a response to selection for each sample. We calculated responses to selection after302

1, 3, and 5 generations of selection, assuming that the selection differentials, G, and E ma-303

trices stay the same. We always normalized the sum of absolute values of selection differen-304

tials or gradients across all temperatures for different selection regimes. First we used selection305

gradients that corresponded to the first two eigenvectors of the G-matrix. The summed abso-306

lute values of selection gradients or selection differentials across all temperatures were normal-307

ized to be 0.6 mm/h. We estimated evolvability and conditional evolvability along these gra-308

dients as explained above. Then we used different selection regimes to examine how we could309

change the performance curve elevation, optimum, or shape (Figure 1). We used six different310

vectors of S: S1 = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1} and S2 = {−0.1,−0.1,−0.1,−0.1,−0.1,−0.1},311
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which correspond to selection on elevation change; S3 = {0, 0.1, 0.1,−0.2,−0.2, 0} and S4 =312

{0,−0.05,−0.05,−0.1, 0.2, 0.2}, which correspond to a shift in optimum temperature; S5 =313

{0.1, 0.2, 0, 0, 0.1, 0.2} and S6 = {0,−0.1,−0.25, 0.05,−0.1,−0.1}, which correspond to change314

in reaction norm shape. The selection differentials were chosen so that they would produce the315

desired phenotypic change, choice of numerical values was otherwise arbitrary. For evolvability316

calculations, we calculated realized selection gradients based on these selection differentials as317

β = P−1S.318

Results319

Growth of Neurospora at different temperatures320

Temperature had a large effect on growth, at 20 °C growth rate was between 2 and 2.5 mm/h321

(mean 2.17 and 95% HPD interval 2.15–2.20) for most strains, and as temperature increased up to322

35 °C growth rates rose to between 3 and 5 mm/h (mean 4.15 and 95% HPD interval 4.08–4.22)323

for most strains (Figure 2A). This represents an increase of 91% in mean growth rate. For many324

strains growth rate peaked at 35 °C and then decreased as temperature was increased (Figure 2A),325

at 40 °C mean growth rate was 2.35 (2.29–2.41 95% HPDI) mm/h. The performance curves of N.326

crassa exhibited a typical performance curve form: with an optimum temperature and decrease in327

growth rate in other temperatures, and performance declined faster in temperatures warmer than the328

optimum (Sinclair et al., 2016). Few genotypes grew very slowly and had unusual tolerance curve329

shapes (Figure 2A), possibly reflecting that these genotypes were poorly suited to lab conditions,330

due to specific nutritional requirements for example.331

Thermodynamics of thermal performance curves332

We examined whether differences between genotypes could be explained by a thermodynamic333

effect, i. e. does the maximum growth rate increase with optimum temperature. We obtained µmax334

and Topt from the natural spline fits and plotted ln(µmax) against 1/(kTopt) (Figure 2B). For the335
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Figure 2: A) Phenotypic means for each genotype. B) Logarithm of maximum growth rate, µmax,
plotted against inverse of kTopt, where k is the Boltzmann’s constant and Topt the temperature where
maximal growth rate occurs. The slope gives an estimate of negative activation energy −E.
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bulk of the genotype data, the estimated slope was −0.16 (95% HPD from −0.22 to −0.10), which336

corresponds to activation energy of 0.16 eV. This was lower than the theoretical expectation of 0.6337

eV. Moreover, there was substantial amount of variation around the regression line (Figure 2B);338

optimum temperature explains only a small proportion of the observed variation. This indicates339

that while a small thermodynamic effect exists, most variation within N. crassa is due to other340

physiological and biochemical causes. As this result was obtained in an analysis where we removed341

genotypes which had atypical reaction norms (Figure S1A), we also fitted a robust regression to the342

full data (Figure S1B) and obtained a slope of−0.17 which is very close to our original estimate of343

−0.16. While fitting an ordinary regression to the full data gives a somewhat smaller slope (−0.34),344

the few atypical observations have high leverage in the model. Since results of robust regression345

and removing outliers agree, it seems that removing the outliers is quite reasonable in this case.346

Quantitative genetics347

In order to analyse the data without forcing the tolerance curves to fit any predetermined shape, or348

underlying latent structures as in Izem and Kingsolver (2005), we fit a multivariate model to the349

data where growth at each temperature was modelled as potentially correlated with growth at other350

temperatures. We obtained the G-matrix from the multivariate model fit (Equation 2). There was351

genetic variation for growth in all temperatures and all genetic covariances and correlations were352

positive (Table 1).353

By plotting the model means and genetic correlations it appeared that genetic correlation be-354

tween adjacent temperatures was generally high, and decreased as temperatures were further apart355

and correlations involving 40 °C also seemed lower (Figure 3A). We tested this idea formally356

and fitted a model of genetic correlations and temperature differences. We compared the differ-357

ent models, and the best model had different intercepts for correlations involving 40 °C and for358

correlations not involving 40 °C, and identical slopes for these two groups (Table 2). A model359

with both different slopes and different intercepts had marginal weight in the model comparison360

but the β40 parameter had an estimate overlapping with zero, so this model gave the same results as361
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Figure 3: A) Model means and genetic correlations for each temperature. Arcs connect each pair
of temperatures and arc color corresponds to the strength of their genetic correlation. B) Genetic
correlations against temperature differences. Line is the mean slope of the model and envelope the
95% HPD interval for the slope. C) Heritabilities of growth rate at each temperature, means and
95% HPD intervals. D) Coefficients of genetic and environmental variation for each temperature,
means and 95% HPD intervals. Note that points obscure small error bars. E) Principle component
analysis of the G-matrix: proportions of variance explained by the different components. Error
bars are 95% HPD intervals. F) Loadings of components 1 and 2 for each temperature. Error bars
are 95% HPD intervals.

21

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.01.16.909093doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909093
http://creativecommons.org/licenses/by-nc/4.0/


the simpler model and thus we report results only from the different intercepts model. The model362

confirmed our observation that the genetic correlation between any two temperatures was indeed363

lower if one of those temperatures was 40 °C (Figure 3B), the intercept effect α40 had an estimate364

of −0.24 (with a 95% HPDI from −0.31 to −0.17 ). The genetic correlation of growth rates in two365

temperatures decreased by 0.02 (0.02–0.01 95% HPDI) units as temperature difference increased366

by 1 °C. This result suggested that variation in different genes contributes to genetic variation for367

growth at 40 °C than in lower temperatures.368

Most of the variation observed in growth rates was due to genetic variation present among the369

strains. Heritabilities for growth at different temperatures were high, around 0.89 for temperatures370

from 20 to 35 °C (Figure 3C). As temperature increased further heritability dropped to 0.63 at 40371

°C (Figure 3C). However, this lower heritability was not due to decreased genetic variation but372

increased environmental variance at 37.5 and 40 °C (Table 1). Therefore there was substantial373

genetic variation for growth rate at 40 °C but environmental variation increased as well; looking374

at heritability alone would have been misleading in this case. Furthermore, as trait means differ375

across the different temperatures looking at genetic variances alone would have suggested that 35376

°C has the most genetic variance (Table 1), but this would have been also misleading as coefficient377

of genetic variation reveals that growth at 40 °C has the most genetic variation followed by the other378

temperatures in decreasing order (Figure 3D). The same was true for coefficient of environmental379

variation (Figure 3D).380

Eigen decomposition of the G-matrix can reveal what are the main axes along which correlated381

traits most readily evolve. We used principle component analysis to decompose the G-matrix. The382

first two principle components explained most of the variance with the first component explaining383

79.5% (72.4%–86.0%) and the second component 19.3% (13.1%–26.6%) of the variance (Figure384

3E). The rest of the components explained the remaining 1.2% of the variance, but the sizes of385

their corresponding eigenvalues were so small that this 1.2% is unlikely to have any biological386

meaning. Moreover, the interval estimates for the loadings of components 1 and 2 were consistent387

with no sign changes (Figure 3F), but this was not the case for rest of the components, indicating388
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that loadings for the rest of the components are very uncertain. All the loadings of the first principle389

component were positive (Figure 3F), indicating that most variation in tolerance curves is mainly390

for elevation. The second component suggested that growth rate at 40 °C and to lesser extent at 37.5391

°C are more independent from rest of the temperatures, even though some variation is shared with392

40 °C and the rest of the temperatures, as genetic correlation with 40 °C and the other temperatures393

were positive (Table 1).394

When looking trait specific evolvabilities we also observed that growth rate at 40 °C had the395

highest conditional evolvability and the highest autonomy (Table 3). This indicates that out of all396

of the growth rates, growth rate at 40 °C can evolve by itself most easily. The rest of the traits had397

very low autonomies reflecting their high genetic correlations (Tables 1 and 3).398

Evolution of performance curves399

In order to examine how a performance curve of a population that has the same G-matrix as es-400

timated here could evolve, we performed simulations with a quantitative genetic model of perfor-401

mance curve evolution. First we asked how performance curves responded to selection if selection402

were to operate in the same direction as the two first observed loadings of the G-matrix eigen de-403

composition (Figure 3F). We normalized the summed absolute values of selection gradients across404

all temperatures to be 0.6 mm/h and their relative weights to be proportional to the loadings of405

each principle component. Theoretical prediction is that when β is in the same direction as the first406

component, evolvability should be the greatest (Schluter, 1996). Indeed, this is what we observed,407

as consequently response to selection was also greatest in this direction (Figure 4). Moreover,408

evolvability and conditional evolvability greatly surpassed the average evolvability across the en-409

tire phenotypic space (Figure 4D). When selection gradient pointed to the direction of the second410

component, unconditional evolvability was no longer larger than expected, while conditional evolv-411

ability still remained larger than average (Figure 4D).412

Next we examined responses to different selection differentials with the idea that we want to413

know whether particular phenotypic change in the performance curve was possible, whatever the414

23

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.01.16.909093doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909093
http://creativecommons.org/licenses/by-nc/4.0/


C
om

p. 1
C

om
p. 2

20 25 30 35 40

2.5

3.0

3.5

4.0

2.5

3.0

3.5

4.0

Temperature (°C)

G
ro

w
th

 r
at

e 
(m

m
/h

)

Selection gradientA

0.0

0.2

0.4

0.6

0.8

1.0

Comp. 1 Comp. 2
Selection gradient

S
um

m
ed

 r
es

po
ns

e 
to

 s
el

ec
tio

n

C

e

c
0.000

0.025

0.050

0.075

0.100

0.125

Comp. 1 Comp. 2
Selection gradient

E
vo

lv
ab

ili
ty

conditional
unconditional

D

Generation 1 Generation 3 Generation 5

C
om

p. 1
C

om
p. 2

20 25 30 35 40 20 25 30 35 40 20 25 30 35 40

2

3

4

5

2

3

4

5

Temperature (°C)

G
ro

w
th

 r
at

e 
(m

m
/h

)

Response to selectionB

Figure 4: Simulated responses to selection using selection gradient, β. A) Selection gradients cor-
respond to the loadings of the first two components of the G-matrix eigen decomposition. Black
line is the mean empirical performance curve and dots represent values of selection gradient for
each temperature. Blue dots represent selection for increased growth and red dots for decreased
growth. B) Simulated responses to selection, black line is the empirical mean and blue lines are
the simulated performance curves after selection. Shaded regions contain 95% of the simulations.
Note that variability due to uncertainty in the G-matrix is not visible for many of the simulations.
Columns show selection responses after 1, 3, or 5 generations of selection and rows show results for
different selection regimes. C) Summed absolute values for response to selection in a single gen-
eration for the two gradients. D) Medians and 95% intervals for mean standardized evolvabilities
for the two gradients, blue horizontal lines (ē) show the average unconditional evolvability across
random selection gradients and red horizontal lines (c̄) show the average conditional evolvability,
dotted lines show the 95% HPD interval.
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selection gradient implied by the selection differentials. For instance, when we simulated selection415

for increased growth at a single temperature this leads to positive correlated responses in other416

temperatures if the other traits are neutral, as in the case when selection gradient is zero for a417

given trait. However, when there was selection for increased growth at a single temperature and418

to maintain the original phenotype at the other temperatures there were also correlated responses419

but these were less uniform (Figure S3). Accordingly, selection at a single temperature often lead420

to correlated responses in nearby temperatures (Figure S4). Selection at multiple temperatures421

lead to stronger responses to selection and correlated responses (Figures S5 and S6). For instance,422

selection at 25 and 30 °C increased growth rate also at 20 °C (Figure S5). When selection happened423

at multiple temperatures, response could be bigger in certain temperature than if selection happened424

for that temperature alone. For example, if there was selection for higher growth at 20, 25, and 30425

°C, response to selection was greater than if there was selection for higher growth only at 20 °C426

(Figure S4 and S6). With selection differential of 0.2 only at 20 °C, response to selection after five427

generations was 2.80 (2.75–2.84, 95% HPD). Whereas if selection differential was 0.2 at 20, 25,428

and 30 °C, response to selection after 5 generations of selection was 3.01 (2.98–3.04, 95% HPD).429

Thus, it was not possible to change a certain temperature completely independently of the others,430

but often extreme temperatures could be changed without affecting the growth at the other extreme.431

We then asked is it possible to create similar evolutionary responses in performance curves as432

shown in Figure 1. We were able to find a set of selection differentials that were able to generate433

changes in elevation, horizontal shift, or shape (Figure 5). This shows that despite strong genetic434

correlations it is possible for the performance curves to evolve in almost any manner if selection435

favors such a performance curve. However, selection regimes involving horizontal shifts require436

selection for increased growth rate in some temperatures and decreased growth rate in others (Fig-437

ure 5). Evolvabilities and conditional evolvabilities were highest for elevation changes. For opti-438

mum shifts and shape changes conditional evolvabilites were lower than the average conditional439

evolvability over all phenotypic space (Figure 5C). This indicates that elevation changes are less440

constrained than changes in optimum temperature or performance curve shape.441
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Figure 5: Simulated responses to selection using selection differentials, S. A) Selection differ-
entials for each selection regime. Black line is the mean empirical performance curve and dots
represent values of selection differentials for each temperature. Blue dots represent selection for
increased growth, red for decreased growth and black dots indicate stabilizing selection at this tem-
perature. Selection regime 1 selects for increased elevation, regime 2 selects for decreased eleva-
tion, regime 3 selects for lower optimum temperature, regime 4 selects for higher optimum, regime
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by the selection differentials. Red horizontal lines show the average conditional evolvability (c̄)
across the entire phenotypic space. Average evolvability is higher than the y-axis scale and is not
shown.
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Discussion442

We have shown that there is substantial genetic variation in thermal performance curves of Neu-443

rospora crassa. Most of this variation is in performance curve elevation and there is very little444

evidence of strong trade-offs. Genetic variation in growth is strongly correlated among nearby445

temperatures but there is a threshold before or at 40 °C after which this correlation drops, indi-446

cating that physiological processes at 40 °C are different than those at lower temperatures. Such447

thresholds are common in many organisms, including Drosophila where different expression pro-448

files were observed in cold, moderate, and hot temperatures (Colinet et al., 2013).449

In many ways, variation in performance curves of N. crassa are quite typical for many ec-450

totherms that have been studied (Sinclair et al., 2016). Most genetic variation in N. crassa is vari-451

ation in performance curve elevation, which contrasts with previous studies in other species that452

have found most variation to be for reaction norm shapes (Izem and Kingsolver, 2005; Logan et al.,453

2020). Yet variation in performance curve elevation is commonly found, a review of thermal per-454

formance curves in insects found that elevation shifts were the most common type of change along455

environmental gradients (Tüzün and Stoks, 2018), see also Scheiner (1993). We also observed quite456

substantial genetic variation in thermal performance, and while comparisons between animals and457

fungi should be treated with caution, other studies have observed much lower heritabilities (e.g.458

Logan et al., 2018; Castañeda et al., 2019; Martins et al., 2019).459

Genetic variation in performance curve elevation could reflect differences in genetic condition460

of individuals, rather than temperature specific adaptation. This could be due to different strains461

harboring different amounts of deleterious mutations. However, this seems an unlikely explanation462

as N. crassa is haploid, so deleterious mutations are immediately exposed to selection and would be463

removed, as in nature there is plenty of sexual reproduction as indicated by rapid decay of linkage464

disequilibrium in the population genetic data (Ellison et al., 2011; Palma-Guerrero et al., 2013).465

Another possibility is that genetic differences between the strains in how well they are able to466

grow in lab conditions are thermodynamically amplified, as increasing temperature also increases467

metabolic rate (Schulte, 2015). However, our estimates of activation energy were much lower than468
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the thermodynamic expectation, and contrast with previous studies that have found much stronger469

relationship between growth rate and optimum temperatures (Savage et al., 2004; Knies et al.,470

2009; Sørensen et al., 2018). While we cannot exclude that some of the differences were due to471

the thermodynamic effect, this cannot be the whole explanation as there were clear genotype by472

environment interactions indicated by genetic correlations across environments that were less than473

one. There have to be alleles segregating in the population that have different effects in different474

temperatures. Particularly, genetic variation after the optimum of the thermal performance curve475

has been reached cannot be accounted by thermodynamic effects (Schulte, 2015).476

There was no indication of strong trade-offs between temperatures, and certainly not the kind477

of trade-offs that have been assumed in many models of tolerance curve or reaction norm evolution478

in general (Angilletta et al., 2003). The absence of any trade-offs suggests that theoretical models479

of reaction norm evolution that assume trade-offs should be treated with caution. It further poses480

a question: if growth rate is closely linked to fitness, and if there are no trade-offs, why there481

is genetic variation in growth? It seems reasonable that mycelial growth rate should be a fitness482

component in filamentous fungi. In a previous study no trade-off was detected between mycelial483

growth rate and spore production (Anderson et al., 2018). However, there is some evidence that484

strains that have higher growth rates have also higher competitive fitness (Kronholm et al., 2020).485

It may be that there is a trade-off between growth rate and some other trait which we have not486

measured, for example Ketola et al. (2013) found a trade-off between bacterial virulence and growth487

in high temperatures. Alternatively, the evolution of performance curves may be limited by the488

environments, and thus the selection pressures, the strains encounter rather than genetic trade-489

offs (Whitlock, 1996; Kassen, 2002). If there is no selection at a particular temperature, then490

variation at those temperatures may be neutral. The evidence for trade-offs and cost of plasticity for491

temperatures has been mixed; some studies have observed trade-offs (Knies et al., 2006; Romero-492

Olivares et al., 2015; Le Vinh Thuy et al., 2016), while others have observed that adapting to493

one temperature did not limit plasticity (Fragata et al., 2016; Manenti et al., 2015), most genetic494

variation has been observed for overall performance (Klepsatel et al., 2013; Latimer et al., 2015), or495
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that adaptation was largely temperature specific with no apparent trade-offs (Bennett et al., 1992).496

Genetic correlations between growth rates at nearby temperatures were strong, which is to be497

expected, as a difference of a few °C is likely to be a very similar physical environment for an498

organism. However, growth rate at 40 °C had a lower genetic correlation to growth rates at other499

temperatures. This suggests that at 40 °C there was some physiological process activated, which500

has genetic variation, but that was not active or was at much lower level of activity in lower tem-501

peratures. The most obvious candidate for such a process is the heat shock response (Piper, 1993;502

Feder and Hofmann, 1999; Sørensen et al., 2003). Previously the heat shock response of N. crassa503

has been studied at 42 °C or higher (Mohsenzadeh et al., 1998; Plesofsky-Vig and Brambl, 1985;504

Guy et al., 1986) but it probably occurs already at lower temperatures, as we observed significant505

slow down of growth at 40 °C. The canonical heat shock proteins are important for the physio-506

logical heat shock response, but there can be additional mechanisms involved: there is evidence507

that the sugar trehalose plays some role in N. crassa heat shock response (Bonini et al., 1995).508

Furthermore, changes in cell membrane composition are involved in temperature acclimation and509

the proportion of highly unsaturated fats increases in low temperatures (Martin et al., 1981). These510

responses have been observed in yeasts as well (Glatz et al., 2015). It is likely that there is ge-511

netic variation in the heat shock response induction threshold or in the magnitude of heat shock512

response, and this physiological variation can explain why genetic correlation across temperatures513

is lower when 40 °C is involved. Further investigation into variation of heat shock responses at the514

physiological level seems warranted.515

Conclusions516

At the species level, populations of N. crassa contain plenty of genetic variation for growth at dif-517

ferent temperatures, and may be able to respond to increasing temperatures and thermal fluctuations518

via genetic adaptation mainly by increasing overall performance. An experimental evolution study519

with a related species, N. discreta, also found adaptation to higher temperature (Romero-Olivares520

et al., 2015). Previous studies have suggested that warming may pose the greatest risk to tropical521
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animal species, as they live already close to their thermal maxima (Deutsch et al., 2008), but N.522

crassa is different in this respect. Whether this is true for all fungi or if N. crassa is a special case523

remains to be investigated.524

We did not observe any inherent genetic trade-off between hotter and colder temperatures,525

which is in contrast to common theoretical assumptions. Thermal performance curves of N. crassa526

can in theory evolve to have nearly any shape provided that appropriate selection gradient exists.527

Whether such selection gradients occur in nature is another matter. However, it seems more plau-528

sible that if there would be selection for increased growth at higher temperatures, evolutionary529

response will happen by either increasing the overall elevation of the performance curve, which530

was the line of least genetic resistance.531

Revealing the genetic basis of performance curve variation is a topic for future studies, and532

would allow investigating whether trade-offs exists at the level of specific alleles. We are pursuing533

this question in future work.534
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Table 1: Genetic variances, covariances, correlations, and environmental variances for growth rates in different temperatures estimated
from the multivariate model. The diagonal (in bold) contains genetic variances (σ2

G), upper triangle contains genetic covariances
(σGxσGyrGx,y ), and lower triangle contains genetic correlations (rGx,y ). The last column contains environmental variances (σ2

E). Es-
timates are posterior means with 95% HPD intervals shown in parenthesis.
(°C) 20 25 30 35 37.5 40 σ2

E

20 0.08 (0.07–0.09) 0.11 (0.1–0.13) 0.14 (0.12–0.16) 0.15 (0.13–0.18) 0.13 (0.11–0.15) 0.07 (0.05–0.09) 0.01 (0.01–0.01)
25 0.94 (0.93–0.96) 0.17 (0.15–0.19) 0.22 (0.19–0.25) 0.24 (0.21–0.28) 0.19 (0.16–0.22) 0.11 (0.09–0.14) 0.02 (0.02–0.02)
30 0.86 (0.83–0.89) 0.96 (0.94–0.97) 0.32 (0.28–0.36) 0.36 (0.31–0.41) 0.28 (0.23–0.32) 0.17 (0.13–0.21) 0.04 (0.03–0.04)
35 0.75 (0.7–0.79) 0.83 (0.79–0.86) 0.9 (0.88–0.92) 0.5 (0.43–0.57) 0.42 (0.36–0.48) 0.25 (0.2–0.3) 0.06 (0.05–0.07)
37.5 0.68 (0.62–0.73) 0.7 (0.65–0.75) 0.75 (0.7–0.8) 0.9 (0.88–0.92) 0.43 (0.37–0.49) 0.3 (0.25–0.35) 0.09 (0.08–0.1)
40 0.42 (0.33–0.51) 0.47 (0.39–0.56) 0.51 (0.43–0.59) 0.61 (0.54–0.68) 0.77 (0.72–0.82) 0.34 (0.29–0.4) 0.2 (0.18–0.22)
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Table 2: Comparison of different models for relationship between genetic correlations and temper-
ature differences. Model terms correspond to different deterministic parts of the model in equation
4, α40 is an intercept effect for correlations involving 40 °C and β40 is a slope effect for correlations
involving 40 °C. LOOIC = Leave-one-out information criterion. SE = standard error.

Model terms LOOIC diff (±SE) weight
α + α40 × ci + β × di -38.54 0 (0) 0.84
α + α40 × ci + β × di + β40 × di × ci -35.18 3.36 (1.24) 0.16
α + β × di + β40 × di × ci -26.07 12.47 (5.49) 0
α + β × di -14.12 24.42 (5.54) 0
α -7.61 30.93 (6.34) 0

Table 3: Conditional evolvabilities (ci) and autonomies (ai) for growth rates at different tempera-
tures, values are posterior medians and 95% HPD interval is shown in parenthesis. For conditional
evolvability values for both without standardization and with mean standardized G-matrices are
shown. Values for trait specific autonomy are the same with and without standardization.

No standardization Mean standardized
(°C) ci ci ai
20 0.006 (0.004–0.008) 0.0013 (0.0008–0.0018) 0.07 (0.05–0.10)
25 0.004 (0.003–0.006) 0.0005 (0.0003–0.0007) 0.03 (0.02–0.04)
30 0.012 (0.008–0.017) 0.0008 (0.0006–0.0011) 0.04 (0.03–0.05)
35 0.029 (0.021–0.038) 0.0017 (0.0012–0.0022) 0.06 (0.04–0.08)
37.5 0.033 (0.022–0.045) 0.0026 (0.0017–0.0035) 0.08 (0.05–0.11)
40 0.106 (0.075–0.139) 0.0190 (0.0134–0.0249) 0.31 (0.22–0.40)

43

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.01.16.909093doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909093
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Information773

Supplementary Figures774

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

20 25 30 35 40

Temperature (°C)

G
ro

w
th

 r
at

e 
(m

m
 / 

h)

A

−1

0

1

37.5 38.0 38.5 39.0

1/(kTopt) (eV−1)

ln
(µ

m
ax

)

B

Figure S1: A) Phenotypic means for each genotype, those genotypes that were removed from
the thermodynamic analysis as outliers are coloured red. B) Logarithm of maximum growth rate,
µmax, plotted against inverse of kTopt. Datapoints that were removed as outliers are coloured red.
Black regression line is ordinary regression fitted to the data without outliers (red points removed),
slope (±SE) is −0.16(±0.03). Red line is ordinary regression fitted to all of the data, slope is
−0.34(±0.06). Blue line is robust regression with bisquare weights fitted to all of the data, slope is
−0.17(±0.03).
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Figure S2: Example MCMC traceplots for genetic standard deviations of growth rates in different
temperatures in the multivariate model. The grey shaded area denotes the warmup iterations which
were discarded from the final parameter estimates. In this example four independent chains were
initialized at random values; the chains rapidly converge to the same distribution during warmup.
No divergent transitions were observed in this run.
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Figure S3: Illustration on how selection differential and selection gradient generate different re-
sponses to selection. Top row: selection based on selection differentials. A) There is selection for
increased growth at at 20 °C and to maintain the original phenotype for the other traits. Black line
is the empirical performance curve and blue dots represent selection differentials for each tempera-
ture, S = {0.2, 0, 0, 0, 0, 0}. B) The realized selection gradient (β = P−1S) implied by this selec-
tion differential. C) Blue line shows the mean phenotype after 5 generations of selection, shaded
area contains 95% of the simulations. Bottom row: selection based on selection gradient. D) There
is selection for increased growth at 20 °C as in A) but selection gradient is β = {0.2, 0, 0, 0, 0, 0}.
E) Now realized selection gradient is the same as in (D), there is selection for increased growth in
one temperature but phenotypes of other temperatures are selectively neutral. E) Response to se-
lection after 5 generations of selection as in (C) for this selection gradient. Selection using similar
selection differentials and selection gradient leads to different phenotypic responses.

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.01.16.909093doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909093
http://creativecommons.org/licenses/by-nc/4.0/


R
egim

e 1
R

egim
e 2

R
egim

e 3
R

egim
e 4

R
egim

e 5
R

egim
e 6

20 25 30 35 40

2.5

3.0

3.5

4.0

2.5

3.0

3.5

4.0

2.5

3.0

3.5

4.0

2.5

3.0

3.5

4.0

2.5

3.0

3.5

4.0

2.5

3.0

3.5

4.0

Temperature (°C)

G
ro

w
th

 r
at

e 
(m

m
/h

)

Selection differentialsA

Generation 1 Generation 3 Generation 5

R
egim

e 1
R

egim
e 2

R
egim

e 3
R

egim
e 4

R
egim

e 5
R

egim
e 6

20 25 30 35 40 20 25 30 35 40 20 25 30 35 40

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

Temperature (°C)

G
ro

w
th

 r
at

e 
(m

m
/h

)
Response to selectionB

Figure S4: Selection for increased growth rate in a single temperature. Selection differential is
0.2 mm/h at each generation. A) Selection differentials for each selection regime. B) Simulated
responses to selection.
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Figure S5: Selection for increased growth rate in two temperatures. Selection differential is 0.2
mm/h at each generation for each temperature, so 0.4 in total for each selection regime. A) Selec-
tion differentials for each selection regime. B) Simulated responses to selection.
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Figure S6: Selection for increased growth rate in three temperatures. Selection differential is 0.2
mm/h at each generation for each temperature, so 0.6 in total for each selection regime. A) Selec-
tion differentials for each selection regime. B) Simulated responses to selection.
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Supplementary Tables775

Table S1: List of strains. Column origin indicates wheter strain
was sampled from a natural population or if it was from a fam-
ily obtained by crossing two natural strains. Column source indi-
cates which strains were obtained from the Fungal Genetics Stock
Center (FGSC) and which were generated in this study. LA =
Louisiana, USA. FL = Florida, USA. Strains 10948 and 10886
are parents of family A, 10932 and 1165 are parents of family B,
4498 and 8816 are parents of family C, 3223 and 8845 are parents
of family D, and 10904 and 851 are parents of family G.

Strain Origin Source Collection site
847 Natural population FGSC LA
851 Natural population FGSC Costa Rica
1131 Natural population FGSC Panama
1132 Natural population FGSC Panama
1133 Natural population FGSC Panama
1165 Natural population FGSC Panama
1693 Natural population FGSC LA
2229 Natural population FGSC Welsh, LA
2489 Laboratory strain FGSC Marrero, LA
3200 Natural population FGSC Coon, LA
3210 Natural population FGSC Sugartown, LA
3211 Natural population FGSC Sugartown, LA
3212 Natural population FGSC Ravenswood, LA
3223 Natural population FGSC Elizabeth, LA
3943 Natural population FGSC Houma, LA
3968 Natural population FGSC Okeechobee, FL
3975 Natural population FGSC FL
4448 Natural population FGSC Franklin, LA
4452 Natural population FGSC Franklin, LA
4459 Natural population FGSC Franklin, LA
4479 Natural population FGSC Franklin, LA
4494 Natural population FGSC Franklin, LA
4496 Natural population FGSC Franklin, LA
4497 Natural population FGSC Franklin, LA
4498 Natural population FGSC Franklin, LA
4708 Natural population FGSC Haiti
4712 Natural population FGSC Haiti
4713 Natural population FGSC Haiti
4715 Natural population FGSC Haiti
4716 Natural population FGSC Haiti
4730 Natural population FGSC Venezuela
4824 Natural population FGSC Haiti
5910 Natural population FGSC Digitima Creek, Guyana
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
5914 Natural population FGSC Torani Canal, Guyana
6203 Natural population FGSC Aguda Rd, Costa Rica
8783 Natural population FGSC Homestead, FL
8784 Natural population FGSC Homestead, FL
8787 Natural population FGSC Homestead, FL
8789 Natural population FGSC Homestead, FL
8790 Natural population FGSC Homestead, FL
8816 Natural population FGSC Carrefour Dufort, Haiti
8819 Natural population FGSC Carrefour Dufort, Haiti
8829 Natural population FGSC Tiassale, Ivory Coast
8845 Natural population FGSC Kabah, Yucatan, Mexico
8848 Natural population FGSC Sayil, Yucatan, Mexico
8850 Natural population FGSC Uxmal, Yucatan, Mexico
8851 Natural population FGSC Uman, Yucatan, Mexico
10881 Natural population FGSC Franklin, LA
10882 Natural population FGSC Franklin, LA
10883 Natural population FGSC Franklin, LA
10884 Natural population FGSC Franklin, LA
10885 Natural population FGSC Franklin, LA
10886 Natural population FGSC Franklin, LA
10887 Natural population FGSC Franklin, LA
10888 Natural population FGSC Franklin, LA
10889 Natural population FGSC Franklin, LA
10890 Natural population FGSC Marrero, LA
10891 Natural population FGSC Welsh, LA
10892 Natural population FGSC Northside Planting, LA
10893 Natural population FGSC Houma, LA
10894 Natural population FGSC Houma, LA
10895 Natural population FGSC Welsh, LA
10896 Natural population FGSC Iowa, LA
10897 Natural population FGSC Iowa, LA
10898 Natural population FGSC Iowa, LA
10899 Natural population FGSC Marrero, LA
10900 Natural population FGSC Houma, LA
10901 Natural population FGSC Houma, LA
10902 Natural population FGSC Houma, LA
10903 Natural population FGSC Houma, LA
10904 Natural population FGSC Houma, LA
10905 Natural population FGSC Welsh, LA
10906 Natural population FGSC Roanoke, LA
10907 Natural population FGSC Roanoke, LA
10908 Natural population FGSC Roanoke, LA
10909 Natural population FGSC Iowa, LA
10910 Natural population FGSC Iowa, LA
10911 Natural population FGSC Elizabeth, LA
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
10912 Natural population FGSC Elizabeth, LA
10914 Natural population FGSC Northside Plantation, LA
10915 Natural population FGSC Franklin, LA
10916 Natural population FGSC Houma, LA
10917 Natural population FGSC Elizabeth, LA
10918 Natural population FGSC Bayou Chicot, LA
10919 Natural population FGSC Coon, LA
10920 Natural population FGSC Fred, LA
10921 Natural population FGSC Franklin, LA
10922 Natural population FGSC Welsh, LA
10923 Natural population FGSC Welsh, LA
10925 Natural population FGSC Roanoke, LA
10926 Natural population FGSC Coon, LA
10927 Natural population FGSC Coon, LA
10928 Natural population FGSC Georgia Plantation, LA
10929 Natural population FGSC Georgia Plantation, LA
10930 Natural population FGSC Houma, LA
10931 Natural population FGSC Houma, LA
10932 Natural population FGSC Welsh, LA
10934 Natural population FGSC Roanoke, LA
10935 Natural population FGSC Welsh, LA
10936 Natural population FGSC Welsh, LA
10937 Natural population FGSC Welsh, LA
10938 Natural population FGSC Roanoke, LA
10939 Natural population FGSC Sugartown, LA
10941 Natural population FGSC Iowa, LA
10942 Natural population FGSC Iowa, LA
10943 Natural population FGSC Iowa, LA
10946 Natural population FGSC Elizabeth, LA
10948 Natural population FGSC Bayou Chicot, LA
10950 Natural population FGSC Coon, LA
10951 Natural population FGSC Coon, LA
10954 Natural population FGSC Roanoke, LA
10982 Natural population FGSC Roanoke, LA
10983 Natural population FGSC Elizabeth, LA
A1 Family A This study -
A2 Family A This study -
A3 Family A This study -
A4 Family A This study -
A5 Family A This study -
A6 Family A This study -
A7 Family A This study -
A8 Family A This study -
A9 Family A This study -
A10 Family A This study -
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
A11 Family A This study -
A12 Family A This study -
A13 Family A This study -
A14 Family A This study -
A15 Family A This study -
A16 Family A This study -
A17 Family A This study -
A18 Family A This study -
A19 Family A This study -
A20 Family A This study -
A21 Family A This study -
A22 Family A This study -
A23 Family A This study -
A24 Family A This study -
A25 Family A This study -
A26 Family A This study -
A27 Family A This study -
A28 Family A This study -
A29 Family A This study -
A30 Family A This study -
A31 Family A This study -
A32 Family A This study -
A33 Family A This study -
A34 Family A This study -
A35 Family A This study -
A36 Family A This study -
A37 Family A This study -
A38 Family A This study -
A39 Family A This study -
A40 Family A This study -
A41 Family A This study -
A42 Family A This study -
A43 Family A This study -
A44 Family A This study -
A45 Family A This study -
A46 Family A This study -
A47 Family A This study -
A48 Family A This study -
A49 Family A This study -
A50 Family A This study -
A51 Family A This study -
A52 Family A This study -
A53 Family A This study -
A54 Family A This study -
A55 Family A This study -
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
A56 Family A This study -
A57 Family A This study -
A58 Family A This study -
A59 Family A This study -
A60 Family A This study -
A61 Family A This study -
A62 Family A This study -
A63 Family A This study -
A64 Family A This study -
A65 Family A This study -
A66 Family A This study -
A67 Family A This study -
A68 Family A This study -
A69 Family A This study -
A70 Family A This study -
A71 Family A This study -
A72 Family A This study -
A73 Family A This study -
A74 Family A This study -
A75 Family A This study -
A76 Family A This study -
A77 Family A This study -
A78 Family A This study -
A79 Family A This study -
A80 Family A This study -
A81 Family A This study -
A82 Family A This study -
A83 Family A This study -
A84 Family A This study -
A85 Family A This study -
A86 Family A This study -
A87 Family A This study -
A88 Family A This study -
A89 Family A This study -
A90 Family A This study -
A91 Family A This study -
A92 Family A This study -
A93 Family A This study -
A94 Family A This study -
B1 Family B This study -
B2 Family B This study -
B3 Family B This study -
B4 Family B This study -
B5 Family B This study -
B6 Family B This study -
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
B7 Family B This study -
B8 Family B This study -
B9 Family B This study -
B10 Family B This study -
B11 Family B This study -
B12 Family B This study -
B13 Family B This study -
B14 Family B This study -
B15 Family B This study -
B16 Family B This study -
B17 Family B This study -
B18 Family B This study -
B19 Family B This study -
B20 Family B This study -
B21 Family B This study -
B22 Family B This study -
B23 Family B This study -
B24 Family B This study -
B25 Family B This study -
B26 Family B This study -
B27 Family B This study -
B28 Family B This study -
B29 Family B This study -
B30 Family B This study -
B31 Family B This study -
B32 Family B This study -
B33 Family B This study -
B34 Family B This study -
B35 Family B This study -
B36 Family B This study -
B37 Family B This study -
B38 Family B This study -
B39 Family B This study -
B40 Family B This study -
B41 Family B This study -
B42 Family B This study -
B43 Family B This study -
B44 Family B This study -
B45 Family B This study -
B46 Family B This study -
B47 Family B This study -
B48 Family B This study -
B49 Family B This study -
B50 Family B This study -
C1 Family C This study -
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
C2 Family C This study -
C3 Family C This study -
C4 Family C This study -
C5 Family C This study -
C6 Family C This study -
C7 Family C This study -
C8 Family C This study -
C9 Family C This study -
C10 Family C This study -
C11 Family C This study -
C12 Family C This study -
C13 Family C This study -
C14 Family C This study -
C15 Family C This study -
C16 Family C This study -
C17 Family C This study -
C18 Family C This study -
C19 Family C This study -
C20 Family C This study -
C21 Family C This study -
C22 Family C This study -
C23 Family C This study -
C24 Family C This study -
C25 Family C This study -
C26 Family C This study -
C27 Family C This study -
C28 Family C This study -
C29 Family C This study -
C30 Family C This study -
C31 Family C This study -
C32 Family C This study -
C33 Family C This study -
C34 Family C This study -
C35 Family C This study -
C36 Family C This study -
C37 Family C This study -
C38 Family C This study -
C39 Family C This study -
C40 Family C This study -
C41 Family C This study -
C42 Family C This study -
C43 Family C This study -
C44 Family C This study -
C45 Family C This study -
C46 Family C This study -
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
C47 Family C This study -
C48 Family C This study -
C49 Family C This study -
C50 Family C This study -
D1 Family D This study -
D2 Family D This study -
D3 Family D This study -
D4 Family D This study -
D5 Family D This study -
D6 Family D This study -
D7 Family D This study -
D8 Family D This study -
D9 Family D This study -
D10 Family D This study -
D11 Family D This study -
D12 Family D This study -
D13 Family D This study -
D14 Family D This study -
D15 Family D This study -
D16 Family D This study -
D17 Family D This study -
D18 Family D This study -
D19 Family D This study -
D20 Family D This study -
D21 Family D This study -
D22 Family D This study -
D23 Family D This study -
D24 Family D This study -
D25 Family D This study -
D26 Family D This study -
D27 Family D This study -
D28 Family D This study -
D29 Family D This study -
D30 Family D This study -
D31 Family D This study -
D32 Family D This study -
D33 Family D This study -
D34 Family D This study -
D35 Family D This study -
D36 Family D This study -
D37 Family D This study -
D38 Family D This study -
D39 Family D This study -
D40 Family D This study -
D41 Family D This study -
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
D42 Family D This study -
D43 Family D This study -
D44 Family D This study -
D45 Family D This study -
D46 Family D This study -
D47 Family D This study -
D48 Family D This study -
D49 Family D This study -
D50 Family D This study -
D51 Family D This study -
D52 Family D This study -
G1 Family G This study -
G3 Family G This study -
G4 Family G This study -
G5 Family G This study -
G6 Family G This study -
G7 Family G This study -
G8 Family G This study -
G10 Family G This study -
G11 Family G This study -
G12 Family G This study -
G13 Family G This study -
G14 Family G This study -
G15 Family G This study -
G16 Family G This study -
G17 Family G This study -
G18 Family G This study -
G19 Family G This study -
G20 Family G This study -
G21 Family G This study -
G22 Family G This study -
G23 Family G This study -
G24 Family G This study -
G25 Family G This study -
G26 Family G This study -
G27 Family G This study -
G28 Family G This study -
G29 Family G This study -
G30 Family G This study -
G31 Family G This study -
G32 Family G This study -
G33 Family G This study -
G34 Family G This study -
G35 Family G This study -
G36 Family G This study -
Continued on next page. . .
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Table S1 – Continued
Strain Origin Source Collection site
G37 Family G This study -
G38 Family G This study -
G39 Family G This study -
G40 Family G This study -
G41 Family G This study -
G42 Family G This study -
G43 Family G This study -
G44 Family G This study -
G45 Family G This study -
G46 Family G This study -
G47 Family G This study -
G48 Family G This study -
G49 Family G This study -
G50 Family G This study -
G52 Family G This study -
G53 Family G This study -
G54 Family G This study -
G55 Family G This study -
G56 Family G This study -
G57 Family G This study -
G58 Family G This study -
G59 Family G This study -
G60 Family G This study -
G61 Family G This study -
G62 Family G This study -
G63 Family G This study -
G64 Family G This study -
G65 Family G This study -
G66 Family G This study -
G67 Family G This study -
G68 Family G This study -
G69 Family G This study -
G70 Family G This study -
G71 Family G This study -
G72 Family G This study -
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