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Abstract 
 
Imbalance between neurophysiological excitation versus inhibition (E:I) has been theorized as a 
pathophysiological mechanism of autism. However, a majority of the evidence behind the E:I 
theory comes from animal models of rare genetic mutations that account for only a small fraction 
of the autistic population. Scale-free metrics of neural time-series data could represent 
biomarkers for E:I imbalance and could enable a greater understanding of how E:I imbalance 
affects different types of autistic individuals and how such mechanisms relate to behavior. Here 
we show that a measure of scale-free dynamics, the Hurst exponent (H), measured in-vivo in 
resting state fMRI (rsfMRI) data, is a surrogate marker of E:I imbalance and differentially affects 
autistic males versus females. In-silico modeling of local field potentials (LFP) from recurrent 
networks of interacting excitatory and inhibitory neurons shows that increasing the E:I ratio by 
specifically enhancing excitation attenuates H and flattens the 1/f slope. These in-silico 
predictions are confirmed in-vivo with chemogenetic manipulations to enhance excitation of 
prefrontal cortex in mice. In humans, social brain areas such as ventromedial prefrontal cortex 
(vMPFC), show decreased H specifically in autistic males but not females. However, continuous 
variation in vMPFC H correlates with ability to behaviorally camouflage social-communicative 
difficulties in autistic females but not males. These effects may be underpinned by the male-
specific effect of androgen hormones on autism-associated genes expressed in excitatory 
neuronal cell types. This work provides insight into how in-vivo neuroimaging readouts can be 
utilized to understand E:I imbalance in human clinical populations. E:I imbalance in social brain 
circuitry may differentially affect autistic males versus females and may help explain sex-related 
differences in compensatory phenomena. 
 
 
Keywords:  autism; heterogeneity; excitation; inhibition; scale-free; fMRI; Hurst exponent; 
DREADD; sex/gender; camouflaging 
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Excitation-inhibition (E:I) balance in the brain has been hypothesized to be atypical in 

many neuropsychiatric conditions1,2, including autism. Rubenstein and Merzenich originally 
suggested that some types of autism may be explained by an E:I imbalance that may lead to 
hyper-excitability in cortical circuitry and potentially enhanced levels of neuronal noise1. 
However, coming to a better understanding of how E:I balance is affected across a 
heterogeneous mixture of autistic individuals has proven to be challenging because of the limited 
availability of robust E:I biomarkers that are non-invasive and applicable in humans and which 
can be measured on a large scale. A majority of the literature about E:I balance in autism extends 
from investigations of  prominent single gene mutations associated with autism and the animal 
model research around these genes2,3. This leaves a significant gap in evaluating the E:I theory 
on a larger majority of the autistic population. 

 
While no one theory can fully explain all individuals with an autism diagnosis4,5, the E:I 

imbalance theory may have utility for understanding subtypes of autistic individuals6–8. 
Sex/gender may be an important stratifier of relevance for highlighting E:I imbalance 
subtypes9,10. Many highly penetrant autism-associated genes are located on the sex chromosomes 
(e.g., FMR1, MECP2, NLGN3, GABRA3, ARX, SYN1) and are known to lead to pathophysiology 
implicating E:I dysregulation1,11,12. Other genes playing important roles in the balance between 
excitation and inhibition in the brain (e.g., MEF2C, GRIK2, GRIA1, SCN3A, SCN9A, NPTX2) 
are highly sensitive to androgens in human neuronal stem cells and are highly expressed in 
‘social brain’ circuitry such as the default mode network, and in particular, the medial prefrontal 
cortex (MPFC)13. Optogenetic stimulation to enhance excitation in mouse MPFC also results in 
changes in social behavior14,15. These results hint that sex-relevant biological mechanisms affect 
E:I balance and that key social brain regions such as MPFC may be of particular importance for 
explaining how E:I imbalance affects social behavior.  

 
Sex/gender heterogeneity may also lead to differing clinical presentations and 

compensatory mechanisms in autism. It is known that many cognitively able adult autistic 
women engage in camouflaging behaviors that tend to compensate or mask their social-
communicative difficulties moreso than males16–18. Prior work has shown that whereas autistic 
males show reduced ventral MPFC (vMPFC) self-representation neural response, autistic 
females show intact vMPFC function. Furthermore, the degree of intact vMPFC self-
representation neural activation response in autistic females is associated with enhanced ability 
to camouflage19. If E:I imbalance asymmetrically affects vMPFC function in males versus 
females, intrinsic E:I neurophysiology could help explain differential camouflaging in adult 
autistic females.   

 
Scale-free dynamics of neural time-series data measured with non-invasive neuroimaging 

techniques such as fMRI could represent surrogate markers of E:I imbalance. It has been long 
known that rsfMRI data exhibits a background of 1/f noise, that is indicative of scale-free 
characteristics of brain dynamics, such as long memory, self-similarity, and fractality20–22. In past 
work we have shown that one such metric, the Hurst exponent (H), is atypically decreased in 
rsfMRI data of adult autistic males, particularly for social brain areas like MPFC23. H is 
statistically relevant to neural noise since lower levels of H can be interpreted as closer to what 
would be expected of a completely noisy random signal (e.g., white noise produces an H = 0.5). 
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At the neurophysiological level, the exponent of the 1/f spectral power law has been recently 
suggested to reflect the E:I imbalance24. Simulated local field potential (LFP) data based on 
manipulating directly the E:I ratio show flatter 1/f slopes when E:I ratio is high24. Flatter 1/f 
slopes are related to decreased levels of H25. Thus, neurophysiologically heightened E:I ratio 
generates flatter 1/f slope in LFP data which could drive H (as measured in BOLD) to be 
decreased.  
 
 This work aims to better understand how E:I imbalance may differentially affect autistic 
males and females. To achieve this aim, we first took a bottom-up approach by using 
computational models of local neuronal microcircuitry to make in-silico predictions about how H 
and 1/f slope in local field potentials (LFP) and rsfMRI data may behave when there are 
underlying changes in E:I balance. Importantly, our computational approach takes a major step 
forward from prior work24 by utilizing a model that includes interactions within and between 
excitatory and inhibitory neuronal populations. Our in-silico predictions are then tested in-vivo 
with a combination of rsfMRI and chemogenetic manipulations in mice that either increase 
neurophysiological excitation or that silence the local activity in the network. At the genomic 
level we then examine what cell types could possibly underlie sex-related heterogeneity in E:I 
imbalance. Finally, we then turn to the human rsfMRI data to show how E:I imbalance may 
differ amongst autistic males and females and how such mechanisms may explain individual 
differences in camouflaging behavior. 
 
Results 
 
In-silico modeling of H in simulated LFP data with modulated E:I ratio or 1/f slope 
 

As a starting point for understanding how scale-free indices such as the1/f slope may be 
related to E:I mechanisms, we utilized the model reported by Gao and colleagues24. In this 
model, two independent, non-interacting excitatory and inhibitory neuronal populations are 
simulated and their post-synaptic currents summed into a local field potential (LFP) signal 
(Figure 1A). When changing the E:I ratio by means of independently varying the strengths of the 
inhibitory (��) and excitatory (��) synaptic conductances, we reproduced the primary finding 
from Gao et al., that 1/f slope becomes flatter (i.e. less negative) when the E:I ratio in the model 
becomes larger24 (Figure 1B). This finding can be explained by the fact that the excitatory 
AMPA post-synaptic currents have shorter time constants than inhibitory GABA and this leads 
to a higher frequency power and shallower slope of the excitatory components of the spectrum.  

 
Since 1/f slope is related to H25, we next computed H from the simulated LFP data. There 

is a tight relationship between decreasing H and increasing E:I ratio (Figure 1C). Because of this 
relationship between H and 1/f slope, we next simulated LFP data with prespecified 1/f slopes 
and then computed H both in the LFP data itself but also when the LFP data is convolved with a 
canonical hemodynamic response function in order to simulate BOLD signal26. Figure 1D shows 
that H linearly tracks well with 1/f slope in LFP data. In BOLD data, the change in H over 1/f 
slopes is attenuated relative to how H changes in LFP data. The attenuated change in H in 
simulated BOLD signal is explained by the fact that the log of power of convolved signal is the 
sum of the log of the power of the original signal and of the power of the convolution kernel (in 
our case, the canonical HRF). Given that the additive term of the HRF convolution kernel is the 
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same for all simulated slopes, the convolution with the HRF will flatten out the differences in 
slopes that are present in the original signal. In sum, the inferences from the Gao model24 suggest 
that H can be utilized as a marker to track changes in E:I balance in LFP and BOLD data. 
However, H or 1/f slope differences identified in BOLD signal may be strongly attenuated 
relative to actual differences in those metrics when computed directly on underlying neural time-
series represented by the LFP. Thus, changes observed in H in BOLD data can be considered as 
reflecting true and potentially larger changes in H in the underlying LFP data. In contrast, any 
lack of change in H measured in BOLD could reflect either a lack of difference within the 
underlying neural signals or a difference that is too small to survive the convolution with the 
HRF.   
 

 
Figure 1: In-silico predictions from a non-recurrent model of how scale-free metrics such as 
1/f slope and the Hurst exponent behave when the ratio between excitation and inhibition or 
1/f slope in LFP data change. Panel A shows a schematic of the Gao et al.,24 model that 
computationally generates LFPs based on manipulated E:I ratios. Panel B reproduces the 
relationship reported in Gao et al., between 1/f slope and E:I ratio. All 128 simulated channels 
are shown in gray, and their average is shown in blue.  Panel C shows the relationship between 
H and E:I ratio from the Gao et al., model. Panel D shows H computed on simulated LFP where 
the 1/f slope is prespecified. H computed on LFP data is shown in pink. H is plotted in cyan 
when the LFP data is convolved with a canonical hemodynamic response function to simulate 
BOLD signal.  
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Recurrent network modeling of E:I balance  
 

One missing feature of the Gao et al., model24 is that it does not include interactions 
between and within excitatory and inhibitory neuronal populations. These interactions indeed 
exist and are fundamental to neural dynamics. For example, an increase in inhibitory 
conductance will not only affect the power spectral density of inhibitory post-synaptic currents, 
but will also have a profound influence on the firing of both excitatory and inhibitory neurons. 
To test whether E:I ratio is linked to changes in 1/f slope and H under this more realistic 
situation, we simulated a biologically plausible recurrent network model of a canonical cortical 
circuit incorporating excitatory and inhibitory spiking neurons, that interact through recurrent 
connections and receive external inputs (both a sensory driven thalamic input and a sensory 
unrelated intracortical input, see Figure 2A). The model parameters are perturbed starting from a 
baseline reference set of parameters that set the network in a configuration that has been shown 
by previous work to capture a large fraction (> 90%) of the variance of LFP across frequencies 
and stimulus conditions, and to reproduce the information encoding and dynamical properties of 
the primate visual cortex over a wide range of visual stimulation and spontaneous activity 
conditions27–32. We computed LFP power spectral densities for two levels of strength of thalamic 
input (�� = 1.5 spikes/second and �� = 2 spikes/second), and we verified that our results hold 
qualitatively for a wider range of input levels (1.5 to 4 spikes/second). Following established 
procedures24,33, we calculated the 1/f slopes over the range in which the spectrum was linear in 
the log-log plot. This range was 40-70 Hz for a thalamic input of 1.5 spikes/second and 50-80 Hz 
for 2 spikes/second, see Figure 2B. Interestingly, these frequency ranges are consistent with the 
gamma frequency range that mostly influences the BOLD signal34, thereby making in principle 
these 1/f slope fluctuations particularly detectable in the BOLD signal. Analogous to Gao et al.,24 
first we studied how the 1/f slope varies when modifying the relative ratio between inhibitory 
(�� ) and excitatory (�� ) conductances (� � ��/�� ). Figure 2C shows flatter slopes if �  is 
reduced (i.e. E:I ratio is increased) from a baseline reference value (� = 11.3) shown in previous 
studies to reproduce cortical data well. However, an increase in � towards stronger inhibition has 
weaker effects on the slope, particularly for �� = 2 spikes/second. The 1/f slope values found in 
our simulations (from -4 to -1) are broadly in agreement with the range of values measured in 
LFPs and intracranial recordings across species24,33,35–38. We next computed H from the same 
simulated LFPs. Figure 2D confirms the relationship of decreasing H with decreasing � (i.e. 
increasing E:I ratio) in the regime in which � is smaller than the baseline reference value. If � is 
greater (i.e. decreasing E:I ratio) than the baseline reference value, we observed that H remained 
largely unchanged.  
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Figure 2: In-silico predictions from a recurrent network model for how 1/f slope and H 
behave when there are changes to the relative ratio of excitatory and inhibitory synaptic 
conductances. Panel A shows a sketch of the point-neuron network that includes recurrent 
connections between two types of populations: excitatory cells (E) and inhibitory cells (I). Each 
population receives two types of external inputs: intracortical activity and thalamic stimulation. 
Panel B shows examples of normalized LFP power spectral densities (PSDs) generated for two 
different firing rates of thalamic input (��=1.5 and ��=2 spikes/second; spikes/second indicated 
as s-1) using the baseline reference parameters of the model. The slope of the regression line that 
fits the log-log plot of the LFP PSD is computed over different frequency ranges (40-70 Hz for a 
thalamic input of ��=1.5 spikes/second and 50-80 Hz for ��=2 spikes/second). The relationship 
between 1/f slope (panel C) and H (panel D) is plotted as a function of the ratio between 
inhibitory and excitatory conductances (� � ��/��). The baseline reference value of parameters 
(which has shown in previous studies to reproduce cortical data well) is represented by a dashed 
black line. 
 
Enhancing excitability of excitatory neurons in the recurrent network model  
 

We next investigated manipulations of candidate recurrent network model parameters 
that approximate the effects of empirical Designer Receptors Exclusively Activated by Designer 
Drugs (DREADD) manipulations of neurons. These simulations are useful to both gain a better 
understanding of the empirical BOLD measures under DREADD manipulations presented in the 
next section, and to better characterize the specificity of the origin of the 1/f slope in terms of the 
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E:I ratio. We first studied the specific effect of solely increasing excitation within the recurrent 
network model. This can be achieved experimentally by using the hM3Dq DREADD 
manipulation to increase the excitability of excitatory neurons only39. We simulated this 
manipulation by increasing the excitability of pyramidal neurons in the recurrent network model 
by lowering their voltage threshold (���) for spike initiation. In the range in which excitation is 
increased with respect to the baseline reference parameter, -52 to -53 mV, the 1/f slopes were 
flatter and H decreased (Figure 3A). When ��� increased from the baseline reference value, we 
observed no detectable changes in 1/f slope or H. Similar results were found with an alternative, 
yet similarly realistic manipulation in which we applied an external constant small current (��) to 
pyramidal neurons (see Supplementary Figure 1A-B). These results predict that specific 
increases of excitation, as in the application of the hM3Dq DREADD to enhance excitability of 
pyramidal neurons, should flatten the 1/f slope and lead to a decrease in H. These results also 
confirm our above finding that, in recurrent networks in which excitatory and inhibitory neurons 
interact, decreases in excitation from a baseline reference value are harder to detect from 1/f 
slopes or H than increases in excitation. 
 
Silencing both excitatory and inhibitory neurons in the recurrent network model  
 

To study whether the changes in 1/f slope are specific to modulations in excitability of 
only excitatory neurons, we modeled the effect of an overall change in excitability of both 
excitatory and inhibitory neurons. A decrease in excitability of both excitatory and inhibitory 
neurons can be obtained experimentally by application of the hM4Di DREADD under the 
control of a pan-neuronal promoter (see next Section). In the recurrent network model, we 
simulated a reduction of overall excitability of excitatory and inhibitory cells by decreasing the 
resting potential, ��, in both excitatory and inhibitory neurons. Decreasing �� from the baseline 
reference value of -70 to -75 mV produced flatter 1/f slopes for �� = 2 spikes/second (1/f slope 
for �� = 1.5 spikes/second remained largely unaltered), and resulted in a slight increase of H 
(Figure 3B). However, these effects were far less prominent than those observed when enhancing 
excitation specifically (Figure 3A). Similar results were found when modelling the possible 
effect of the hM4Di DREADD as a silencing of the network through an overall reduction of the 
transmission probability of recurrent synapses (ptransmit) (Supplementary Figure 1C-D). Given 
that BOLD dynamics are less sensitive to changes in 1/f slope and H than the underlying neural 
dynamics (Figure 1D), these results predict a very small, or null, effect of the hM4Di DREADD 
on BOLD H and 1/f slope. These results also imply that decreased H in BOLD signal are more 
likely to result from specific increases in excitation than from non-specific decreases of 
excitability across both excitatory and inhibitory neuronal populations.   
 
Changes in H in BOLD after chemogenetic manipulation to enhance excitability of excitatory 
neurons 
 

The in-silico modeling presented thus far makes the prediction that in real BOLD data, if 
E:I ratio is increased via enhanced excitability of excitatory neurons, then H should decrease. To 
empirically test this prediction, we measured rsfMRI BOLD signal in prefrontal cortex of mice 
under conditions where a chemogenetic manipulation (hM3Dq DREADD)39 is used to enhance 
excitability of pyramidal neurons. Using a sliding window analysis, we find that H is modulated 
over time by the DREADD manipulation (condition*time*treatment phase interaction F = 
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349.03, p < 0.0001). During the baseline phase of rsfMRI scanning before the DREADD-
actuator clozapine N-oxide (CNO) was injected, H under DREADD or a SHAM control 
conditions are not affected (condition main effect F = 0.82, p = 0.37; condition*time interaction 
F = 0.36, p = 0.54). However, during the transition phase of the experiment where the CNO 
begins to have its effects, we find a condition*time interaction (F = 4.94, p = 0.0262), whereby 
H drops over time at a steeper rate during the DREADD condition compared to the SHAM 
condition. Finally, during the treatment phase of the experiment, where the drug exerts its 
maximal effect, there is a significant main effect of condition (F = 12.92, p = 0.0011) and no 
condition*time interaction (F = 0.66, p = 0.4182) (Figure 3C) (Table 1). This effect is explained 
by H being reduced in the DREADD vs SHAM condition. These in-vivo results are directly in 
line with the in-silico prediction that enhancing the excitability of excitatory neurons results in a 
decrease in H as measured in real BOLD rsfMRI data. 
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Figure 3:  Effect of manipulations to enhance excitation of excitatory neurons or to silence 
excitatory and inhibitory neurons. Panel A shows how 1/f slope and H behave in a manipulation 
of the recurrent network model to simulate the effects of enhanced excitation of excitatory 
neurons that recapitulates the experimental manipulation of hM3Dq DREADD. This 
manipulation enhances excitability of excitatory neurons by varying the voltage threshold for 
spike initiation in excitatory neurons (���) from the baseline reference value of -52 mV to -53 
mV. Panel B shows how 1/f slope and H behave under a manipulation of the recurrent network 
model to simulate the effects of silencing both excitatory and inhibitory neurons that 
recapitulates the experimental manipulation of hM4Di DREADD. This manipulation varies the 
resting potential of excitatory and inhibitory neurons (��) from the baseline reference value of -
70 mV to -75 mV. Baseline reference values are indicated as the dashed line in panels A and B. 
Turquoise and pink lines in panels A and B represent data for two different firing rates of 
thalamic input (��=1.5 (turquoise) and ��=2 spikes/second (pink)). Panel C shows the hM3Dq 
DREADD manipulation to enhance excitability of excitatory neurons, while panel D shows the 
hM4Di DREADD manipulation to silence activity in both excitatory and inhibitory neurons. 
Baseline (pink), transition (green), and treatment (blue) periods are annotated with different 
colors. Data from each individual mouse is shown in light gray. * = p<0.05, ** = p < 0.005. 
 
Chemogenetically silencing both excitatory and inhibitory neurons has no effect on H in 
BOLD 
 

While the above results show that specific enhancement of excitability in excitatory 
neurons results in a decrease in BOLD H, it is interesting to investigate whether reducing non-
specifically both the excitability of excitatory and inhibitory neurons might have the opposite 
effect and increase H in BOLD. By expressing the inhibitory hM4Di DREADD40 under the 
control of a pan-neuronal promoter, we chemogenetically reduced the excitability of both 
excitatory and inhibitory neurons and re-ran the same rsfMRI neuroimaging protocol as before. 
While a significant 3-way interaction between condition, time, and treatment phase was present 
(F = 85.8, p < 0.0001), there were no strong main effects of condition or condition*time 
interactions in any of the baseline, transition, or treatment phases of the experiment (see Table 2) 
(Figure 3D). Overall, these results provide some specificity for the effects of enhanced excitation 
as the primary driver behind decreasing H in BOLD. Non-specific silencing of activity has no 
remarkable reverse effects of increasing H in BOLD. These in-vivo results are again in line with 
in-silico predictions and directly showcase that in-silico predictions derived from simulated LFP 
data translate to empirical differences in H in BOLD data.  
 
Autism-associated genes in excitatory neuronal cell types in the human brain are enriched for 
genes that are differentially expressed by androgen hormones 
 

The findings thus far suggest that excitation affects scale-free metrics of neural time-
series data. Applied to the idea of sex-related heterogeneity in E:I imbalance in autism, these 
results make the prediction that excitatory neuronal cell types would be the central cell type 
affecting E:I neuroimaging phenotypes that leverage scale-free metrics such as H.  To test this 
hypothesis, we examined autism-associated genes that affect excitatory neuronal cell types41,42 
and test whether these genes are differentially expressed when neurons are treated with a potent 
androgen hormone, dihydrotestosterone (DHT)13,43. Genes differentially expressed by DHT are 
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highly prominent within the gene set of autism-associated genes that affect excitatory neurons 
(OR = 1.67, p = 0.03), with most of the overlapping genes being those whereby DHT upregulates 
expression (Figure 4A). By contrast, genes associated with autism that affect inhibitory neuronal 
cell types or other non-neuronal cells (e.g., microglia, astrocytes, oligdendrocytes) are not 
enriched for DHT differentially expressed genes (inhibitory neurons: OR = 1.51, p = 0.12; 
microglia: OR = 0.78, p = 0.78; astrocytes or oligodendrocytes: OR = 1.11, p = 0.49). This result 
suggests that excitatory neuronal cell types are most affected by autism-associated genomic risk 
and male-specific androgen influence. We additionally examined how such DHT-sensitive and 
autism-associated excitatory neuron genes spatially express in the human adult brain. A one-
sample t-test of gene maps from the Allen Institute Human Brain Atlas44 shows that this subset 
of DHT-sensitive and autism-associated excitatory neuron genes are also highly expressed in 
MPFC, PCC, and anterior insula, amongst many other areas (Figure 4B-C). 

 
Figure 4: Autism-associated genes within excitatory neuronal cell types are enriched for genes 
differentially expressed by androgen hormones. Panel A shows a Venn diagram depicting the 
enrichment between autism-associated genes affected excitatory neurons and DHT-sensitive 
genes. Panel A also includes a heatmap of these genes whereby the color indicates z-normalized 
expression values. The column dendrogram clearly shows that all samples with DHT treatment 
are clustered separately from the control DMSO samples. Each row depicts the expression of a 
different gene. Panel B shows a t-statistic map from a whole-brain one-sample t-test on these 
DHT-sensitive and autism-associated genes in excitatory neurons. Results are thresholded at 
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FDR q<0.01. Panel C shows spatial gene expression profiles on a representative surface 
rendering of the medial wall of the cortex for specific genes shown in panel B. Each map shows 
expression as z-scores with the color scaling set to a range of -2<z<2. 
 
H is on-average reduced in adult autistic men but not women 
 

We next move to application of this work to human rsfMRI data in adult autistic men and 
women. If E:I ratio is affected by sex-related mechanisms13, we predict that H would be 
differentially affected in autistic males versus females and manifest as sex-by-diagnosis 
interactions in a 2x2 factorial design (Sex: Male vs Female; Diagnosis: Autism vs Typically-
Developing (TD)). Mass-univariate analysis uncovered one region in ventromedial prefrontal 
cortex (vMPFC) with a sex-by-diagnosis interaction passing FDR q<0.05 (F(5,104) = 15.13, p = 
0.0001, partial η2 = 0.12) (Figure 5A). This interaction effect is driven by a large TD>Autism 
effect in males (Cohen’s d = 1.30) and a small Autism>TD effect in females (Cohen’s d = -0.27) 
(Figure 5B). We also used a multivariate partial least squares (PLS) analysis to uncover that 
vMPFC is part of a more distributed neural system expressing the same sex-by-diagnosis 
interaction (d = 2.04, p = 0.036) as other areas that include relevant default mode network 
(DMN) areas in posterior cingulate cortex/precuneus (PCC) (Supplementary Figure 2), and other 
non-DMN areas such as anterior insula, lateral prefrontal cortex, somatosensory and motor 
cortices, amongst others (Figure 5C). The PLS result allows for detection of other regions that 
were subthreshold in the mass-univariate analysis, but which showed heightened effect sizes 
(e.g., white and light blue areas in the unthresholded map shown in Figure 5A). Detection of 
these regions in a mass-univariate analysis may require a larger sample size to enhance statistical 
power. 
 
Correlation between H and camouflaging in autistic women but not men 
 

In prior task-evoked fMRI work we found a similar sex-by-diagnosis interaction in 
vMPFC self-representation response and a female-specific brain-behavioral correlation with 
camouflaging ability19. Given that adult autistic females engage more in camouflaging on-
average16–18, we next tested the hypothesis of whether H as an index of intrinsic E:I balance, 
would be related to camouflaging in a sex-specific manner. In autistic females, increased 
camouflaging was strongly associated with increased H in vMPFC (r = 0.60, p = 0.001). 
However, no significant association was apparent in autistic males (r = -0.10, p = 0.63). The 
strength of this brain-behavioral correlation significantly differed between autistic males and 
females (z = 2.58, p = 0.009) (Figure 5D). 
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Figure 5: Autism rsfMRI sex*diagnosis interaction results. Panel A shows unthresholded and 
thresholded with FDR q<0.05 mass-univariate results for the sex*diagnosis interaction contrast. 
Panel B shows H estimates from vMPFC (area p32) across males and females with and without 
autism. Panel C shows partial least squares (PLS) results unthresholded and theresholded to 
show the top 20% of brain regions ranked by bootstrap ratio (BSR). Panel D shows correlation 
between vMPFC H and behavioral camouflaging score in autistic males (orange) and females 
(blue). 
 
Discussion 
  

In this work we set out to better understand how intrinsic E:I imbalance affects the 
autistic brain. Evidence from animal models of rare genetic variants associated with autism have 
typically been used as the primary evidence for the E:I imbalance theory1,2. However, these 
variants affect only a small percentage of the autism population. Thus, it is unclear how E:I 
imbalance might affect the majority of heterogeneous individuals within the total autism 
population. To bridge this gap we need multi-level methods that can be applied to understand the 
‘living biology’ behind actual human individuals45, such as in-vivo neuroimaging data and 
metrics applied to such time-series data that are linked to actual underlying neural E:I 
mechanisms. Bridging this gap will help us identify mechanistic targets that explain neural and 
behavioral variability across a much larger portion of individuals in the autism population. 
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Based on earlier computational models of E:I imbalance24, we reasoned that metrics of 
scale-free signal complexity characterizing asynchronous 1/f background signal of neural time-
series data would be relevant as an in-vivo neuroimaging marker of E:I mechanisms. Prior 
work24 suggested this relationship via a model that considers inhibition and excitation as separate 
entities. However, excitation and inhibition in the brain are inseparably linked. Furthermore, 
prior work24 considered only 1/f slopes in simulated LFP data and did not explore the effect of 
the transformation between LFP neural activity to BOLD. Our simulations address these 
problems and significantly extend prior work24 on the relationship between E:I imbalance and 1/f 
slope. We showed that when excitation and inhibition interact in a recurrent network model, 
flatter 1/f slopes and decreases in H are specific markers of increases in E:I ratio. We showed 
that H tracks with the 1/f slope, with decreases in H corresponding to flatter 1/f slopes. We 
showed that convolution of neural signals with the HRF leads to flattening of the relationship 
between 1/f signal and H. Taken together, these results imply that changes in H found in fMRI 
BOLD data can be interpreted as a shift in E:I balance in the underlying LFP data that is 
proportionally larger than the change in H observed BOLD.   

 
The power of our in-silico modeling approach is that it provides explicit predictions of 

what to expect in real BOLD data when E:I imbalance occurs in the underlying neural data. 
Remarkably, these in-silico predictions are confirmed in-vivo with rsfMRI BOLD data in mice 
after experimental chemogenetic manipulations that specifically enhance neural excitation. 
Intriguingly, and consistent with in-silico predictions, non-specific manipulations that decrease 
the excitability of both excitatory and inhibitory neurons do not have a detectable effect on H in 
BOLD. These results are in line with optogenetic studies showing that specifically enhancing 
excitation in MPFC seems to have the biggest effects on social behavior in mice14. The present 
work clearly shows that enhancement of neurophysiological excitation results in measurable 
changes in BOLD readouts as decreases in H levels. This insight allows us to leverage H as an 
in-vivo biomarker in rsfMRI data that has strong relevance back to E:I neurophysiological 
mechanisms. 
  
 With regards to how sex-related heterogeneity in E:I imbalance might manifest in autism, 
we first utilized genomics data and found that autism-associated genes that affect excitatory 
neuronal cell types are enriched for genes that are differentially expressed by DHT. This 
inference extends prior work implicating excitatory neuron cell types in autism-relevant 
biology41,42,46,47 by linking genomic mechanisms in these cell types to male-specific influence of 
androgen hormones. Importantly, other cell types such as inhibitory neurons do not express 
autism-associated genes that are also influenced by DHT. 
 

Moving to human rsfMRI data on adult patients with autism, we utilized H as a 
neuroimaging biomarker of E:I imbalance. Specifically, we examined whether H differs between 
adult males and females with and without autism. Mass-univariate analysis highlighted one 
region, vMPFC, which showed a sex-by-diagnosis interaction - that is, H was specifically 
reduced in adult autistic males, but not in autistic females. Reduced H in autistic males is 
compatible with the inference of elevated E:I ratio potentially driven by enhanced excitation. 
Multivariate PLS analysis extended this finding by showing that a distributed neural system 
structurally and functionally connected to vMPFC, such as default mode network (DMN) areas 
like PCC48,49, and anterior insula50, also expressed a similar but more subtle sex-by-diagnosis 
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interaction. Interestingly, these regions highlighted by the PLS analysis are remarkably similar to 
the map of brain regions where autism-associated excitatory and DHT-sensitive genes highly 
express (Figure 4B-C). Therefore, important social brain circuitry such as the DMN, and other 
integrative hubs of the salience network (e.g., anterior insula) that connect DMN to other 
important large-scale networks50 may be asymmetrically affected by heightened E:I ratio in 
autistic males more than autistic females.  

 
These human rsfMRI results are not only compatible with the in-silico predictions and 

the in-vivo mouse rsfMRI data presented here, but is also compatible with several prior lines of 
work. Our prior work highlighted that DMN functional connectivity in adolescent males, but not 
females, is affected by heightened levels of fetal testosterone and this network was heavily 
comprised of MPFC and PCC13. In the same work, we showed that a cortical midline DMN 
subsystem comprising MPFC and PCC highly expresses several genes relevant for excitatory 
postsynaptic potentials (e.g., MEF2C, GRIK2, GRIA1, SCN3A, SCN9A, NPTX2). The current 
findings linking autism-associated genes in excitatory neuron cell types (Figure 4) dovetails with 
and extends these findings with specific inferences about the importance of excitatory cell types 
over and above other inhibitory cell types, where evidence about their role in E:I imbalance in 
autism is more mixed (e.g., 51,52). Importantly, the expression of these genes in human neuronal 
stem cells are elevated after exposure to the potent androgen DHT13. Thus, one potential 
explanation for the male-specific reduction of H in vMPFC could have to do with early 
developmental and androgen-sensitive upregulation of genes that play central roles in excitatory 
neuron cell types, and thus ultimately affecting downstream E:I imbalance. Such effects may be 
sex-differential and thus less critical in human females, serving an important basis of sex-
differential human brain development53 and explaining the sex-based heterogeneity and 
qualitative sex differences of autism neurobiology in human10,54.  
 

rsfMRI H in autistic adults was also relevant in a sex-specific manner to a clinical 
behavioral phenomenon known as ‘camouflaging’. Camouflaging relates to a set of 
compensatory or masking strategies or mechanisms that allows individuals to cope with their 
social-communicative difficulties in everyday social situations16,17,55. It is known that cognitively 
able adult autistic females tend to engage in more camouflaging behavior than males16–18 and the 
extent to which individual females engage in camouflaging is linked to vMPFC function19. One 
of the most important known functions of vMPFC has to do with self-representation56 and 
simulating others based on information about the self57. In prior task-evoked fMRI work we 
found a similar sex-by-diagnosis interaction effect whereby males are more impaired in vMPFC 
self-representation response than their female autistic counterparts. Furthermore, increased 
magnitude of vMPFC self-representation neural response correlates with increased camouflaging 
ability, but only in adult autistic females19. Strikingly, here we find a similar sex-by-diagnosis 
interaction effect in vMPFC H as well as a female-specific correlation with camouflaging - as 
vMPFC H increases, indicative of a more normative or intact level of E:I balance, camouflaging 
also increases. This converging set of results provides strong evidence that intrinsic mechanisms 
such as E:I balance may be atypical only in cognitively able autistic males at vMPFC. vMPFC in 
similarly cognitively able autistic females likely has more intact, or normalized, intrinsic E:I 
balance and this more intact mechanism potentially allows for intact levels of neural self-
representation and enhanced camouflaging ability. Future work changing E:I balance in vMPFC 
may provide a useful avenue for ameliorating daily life social-communication adaptation and 
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coping difficulties in autistic males and enable them to optimally engage in compensatory 
processes such as camouflaging to the similar extent as autistic females, despite the underlying 
potentially sex-differential neurobiological bases of autism. It may also be fruitful to examine 
how intact E:I balance in vMPFC of females may be an expression of protective factors that are 
hypothesized to buffer risk for autism in females58,59. 
 

In conclusion, we show that scale-free metrics from in-vivo neuroimaging data in humans 
such as H can be utilized as a biomarker for underlying E:I-relevant mechanisms. In-silico 
predictions from simulated LFP and BOLD data were confirmed in-vivo with rsfMRI BOLD 
data where excitation was enhanced through chemogenetic manipulation. Finally, in application 
to humans, we show that H in rsfMRI data is reduced in vMPFC and other DMN areas of adult 
autistic males, but not females. Reduced H is indicative of enhanced excitation and thus points to 
sex-specific dysregulation of E:I balance in social brain networks of autistic males. This male-
specific dysregulation of E:I balance may be linked to sex-differential early developmental 
events such as androgen-upregulation of gene expression for genes that play important roles in 
excitatory postsynaptic potentials13. The intact levels of H in females may help facilitate elevated 
levels of compensation known as camouflaging to cope with daily social-communicative 
difficulties. This important female-specific brain-behavioral correlation may also be key for 
future innovation in intervention targeting E:I mechanisms and MPFC-related brain regions that 
may enable better coping with daily social-communicative adaptation difficulties related to 
autism. More generally, this work extends the relevance of the E:I imbalance theory of autism 
beyond evidence from autism-associated rare genetic variants and specify a larger portion of the 
autism population whereby these E:I mechanisms may be of critical importance. 
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Methods 
 
Human Participants 
 

All procedures contributing to this work comply with the ethical standards of the relevant 
national and institutional committees on human experimentation and with the Helsinki 
Declaration of 1975, as revised in 2008. All human participants’ informed consent was obtained 
in accord with procedures approved by the Suffolk Local Research Ethics Committee. Adult 
native English speakers (n=136) with normal/corrected-to-normal vision participated: n=33 
typically developing (TD) males, n=34 autistic males, n=34 TD females and n=34 autistic 
females (Table 3). They all reported cis-gender identity based on a single item inquiring their 
birth-assigned sex and another on their identified gender. Groups were not statistically different 
on age or full-scale IQ (FIQ) on the Wechsler Abbreviated Scales of Intelligence (WASI) (Table 
3). Exclusion criteria for all participants included a history of or current psychotic disorders, 
substance-use disorders, severe head injury, genetic disorders associated with autism (e.g. fragile 
X syndrome and tuberous sclerosis), intellectual disability (i.e. Full-scale IQ (FIQ) < 70), or 
other medical conditions significantly affecting brain function (e.g. epilepsy). 
 

The inclusion criterion for both male and female autistic participants was a formal 
clinical diagnosis of International Statistical Classification of Diseases and Related Health 
Problems 10th Revision (ICD-10) childhood autism or Asperger’s syndrome, or Diagnostic and 
Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV-TR) autistic disorder or 
Asperger’s disorder, as assessed by a psychiatrist or clinical psychologist in the National Health 
Service, UK. Since all participants were adults, we further considered available information of 
developmental history to include only those with clinically evident childhood autistic symptoms, 
for example, from information collected using the Autism Diagnostic Interview–Revised (ADI-
R)60 where possible, or from the participants’ clinical diagnosis letters shared with the research 
team to determine eligibility. We used this clinically based criterion for inclusion for the purpose 
of sampling autistic individuals currently diagnosed by specialists in mental health services in 
the daily practice and to align with best clinical practice as recommended by the UK National 
Institute for Health and Clinical Excellence (NICE) guideline61. For assessing levels of autism 
characteristics, we administered the Autism Spectrum Quotient (AQ)62, module 4 of the Autism 
Diagnostic Observation Schedule (ADOS)63, and ADI-R60 where possible, before the fMRI 
session. Autistic male and female groups were not different on ADI-R Reciprocal-Social-
Interaction scores or Reading the Mind in the Eyes Test (RMET)64 performance (Table 3).  
 

We further used criteria for inclusion based on characteristics about data quality (see next 
paragraphs for data preprocessing). In particular, we excluded participants where the number of 
volumes was not acquired due to scanner hardware issues (n=1), the preprocessing pipeline could 
not adequately preprocess the data (e.g., bad registrations; n=5). Participants were also excluded 
if their head motion exceed a mean framewise displacement (meanFD) of >0.4mm (n=8). For the 
remaining subjects we further visually inspected plots of framewise displacement (FD) and 
DVARS65 traces to determine whether the wavelet despiking step sufficiently attenuated artefact-
related variability that would leave DVARS spikes. Here we made a qualitative and consensus 
judgement amongst authors (S.T. and M.V.L) to exclude individuals (n=9) whereby there were 
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numerous FD spikes above 0.5mm or numerous DVARS spikes leftover after wavelet despiking 
was applied. Other exclusions included any VIQ or PIQ <70 (n=1) and co-morbid agenesis of the 
corpus callosum (n=1). The final sample sizes included in all further analyses was n=29 TD 
males, n=23 autistic males, n=33 TD females, and n=25 autistic females. The final groups used 
in all analyses did not statistically differ on age (Diagnosis main effect: F(3,106) = 0.03, p = 
0.85; Sex main effect: F(3,106) = 0.14, p = 0.70; Sex*Diagnosis interaction: F(3,106) = 0.25, p = 
0.61) or FIQ (Diagnosis main effect: F(3,106) = 3.38, p = 0.07; Sex main effect: F(3,106) = 0.48, 
p = 0.48; Sex*Diagnosis interaction: F(3,106) = 2.24, p = 0.13) (see Table 3). 
 
Human fMRI data acquisition 
 

Imaging was performed on a 3T GE Signa Scanner at the Cambridge Magnetic 
Resonance Imaging and Spectroscopy Unit. Participants were asked to lie quietly in the scanner 
awake with eyes closed for 13 minutes and 39 seconds during sequential acquisition of 625 
whole-brain T2*-weighted echo planar image volumes with the following parameters: relaxation 
time = 1302 msec; echo time = 30 msec; flip angle = 70°; matrix size = 64 x 64; field of view = 
24 cm; 22 anterior commissure-posterior commissure aligned slices per image volume; 4 mm 
axial slice thickness; 1 mm slice gap. The first five time-points were discarded to allow for T2-
stabilization. During analysis of the Hurst exponent (H) for BOLD time-series, due to the 
discrete wavelet transform using volumes in power of 2, only the first 512 volumes (29) were 
utilized. A high-resolution spoiled gradient anatomical image was acquired for each participant 
for registration purposes. 
 
Human fMRI data analysis 
 

Preprocessing of the resting state data was split into two components; core preprocessing 
and denoising. Core preprocessing was implemented with AFNI66 (http://afni.nimh.nih.gov/) 
using the tool speedypp.py (http://bit.ly/23u2vZp)67. This core preprocessing pipeline included 
the following steps: (i) slice acquisition correction using heptic (7th order) Lagrange polynomial 
interpolation; (ii) rigid-body head movement correction to the first frame of data, using quintic 
(5th order) polynomial interpolation to estimate the realignment parameters (3 displacements and 
3 rotations); (iii) obliquity transform to the structural image; (iv) affine co-registration to the 
skull-stripped structural image using a gray matter mask; (v) nonlinear warping to MNI space 
(MNI152 template) with AFNI 3dQwarp; (v) spatial smoothing (6 mm FWHM); and (vi) a 
within-run intensity normalization to a whole-brain median of 1000. Core preprocessing was 
followed by denoising steps to further remove motion-related and other artifacts. Denoising steps 
included: (vii) wavelet time series despiking (‘wavelet denoising’); (viii) confound signal 
regression including the 6 motion parameters estimated in (ii), their first order temporal 
derivatives, and ventricular cerebrospinal fluid (CSF) signal (referred to as 13-parameter 
regression). The wavelet denoising method has been shown to mitigate substantial spatial and 
temporal heterogeneity in motion-related artifact that manifests linearly or non-linearly and can 
do so without the need for data scrubbing68. Data scrubbing (i.e. volume censoring) cannot be 
used in our time-series-based analyses here as such a procedure breaks up the temporal structure 
of the time-series in such a way that invalidates estimation of the Hurst exponent (H) that 
examine long-memory characteristics. Wavelet denoising is implemented with the Brain Wavelet 
toolbox (http://www.brainwavelet.org). The 13-parameter regression of motion and CSF signals 
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was achieved using AFNI 3dBandpass with the –ort argument. To further characterize motion 
and its impact on the data, we computed FD and DVARS65. Between-group comparisons showed 
that all groups were similar with respect to head motion as measured by meanFD with no 
Diagnosis (F(3,106) = 1.77, p = 0.18) or Sex (F(3,106) = 0.51, p = 0.47) main effects or 
Sex*Diagnosis interaction (F(3,106) = 1.10, p = 0.29). All groups showed average meanFD of 
less than 0.2 mm (see Table 3).  

 
Mean time-series for each of the 180 parcels within the Human Connectome Project 

Multimodal Parcellation (HCP-MMP)69 were extracted from the final preprocessed data, to 
estimate H. The estimation of H utilizes a discrete wavelet transform and a model of the time-
series as fractionally integrated processes (FIP) and is estimated using maximum likelihood 
estimation. This method utilizing the FIP model for estimating H differs from our prior work23, 
which used a model of fractional Gaussian noise (fGn). fGn is one type of process subsumed 
under the FIP model. However, the fGn model has the limitation of assuming that the BOLD 
time-series is stationary and also limits the upper bound of H at 1. In practice, we have seen that 
the upper bound of H=1 from the fGn model results in ceiling effects for many brain regions and 
subjects. Thus, to remove the assumption of stationarity and upper bound of H=1, the FIP model 
offers more flexibility and potentially added sensitivity due to better estimation of between-
subject variability when estimates are near or exceed H=1. When H>1 the time-series is 
considered non-stationary and has long memory characteristics (e.g., is fractal). H is computed 
using the nonfractal MATLAB toolbox written by one of the co-authors (WY) 
(https://github.com/wonsang/nonfractal). The specific function utilized is bfn_mfin_ml.m 
function with the ‘filter’ argument set to ‘haar’ and the ‘ub’ and ‘lb’ arguments set to [1.5,10] 
and [-0.5,0], respectively. 

 
After H was estimated for each of the 180 HCP-MMP parcels, we used a general linear 

model to test for Sex*Diagnosis interactions as well as main effects of Sex and Diagnosis in H. 
These models also incorporated meanFD and FIQ as covariates of no interest. Multiple 
comparison correction was achieved using an FDR q<0.05 threshold. Visualization of effect 
sizes for figures was achieved using the ggseg library in R (https://github.com/LCBC-
UiO/ggseg). 

 
In addition to mass-univariate analysis, we also utilized multivariate partial least squares 

(PLS) analysis70 to highlight distributed neural systems that capture the effect of a sex*diagnosis 
interaction. This analysis was implemented with code from the plsgui MATLAB toolbox 
(http://www.rotman-baycrest.on.ca/pls/). A matrix with participants along the rows and all 180 
HCP-MMP parcels along with columns was input as the primary neuroimaging matrix for PLS. 
We also inserted a vector describing the sex*diagnosis contrast as the matrix to relate to the 
neuroimaging matrix. This vector describing the sex*diagnosis interaction was computed by 
matrix multiplication of the contrast vector of [1, -1, -1, 1] to a design matrix that was set up with 
columns defining TD males, autism males, TD females, and autism females, respectively. The 
PLS analysis was run with 10,000 permutations to compute p-values for each latent-variable 
(LV) pair and 10,000 bootstrap resamples in order to compute bootstrap ratios (BSR) to identify 
brain regions of importance for each LV pair. To isolate specific brain regions of importance for 
a statistically significant LV, we selected the top 20th percentile of brain regions ranked by BSR. 
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Relationships between H and camouflaging were conducted within autistic males and 
females separately. Pearson’s correlations were used to estimate the strength of the relationship 
and groups were compared on the strength of the relationship using Fisher’s r-to-z transform as 
implemented with the paired.r function in the psych library in R. 

 
Behavioral index of camouflaging 
 

Camouflaging (consciously or unconsciously compensating for and/or masking 
difficulties in social–interpersonal situations) was operationalized as prior work16,19: the 
discrepancy between extrinsic behavioral presentation in social–interpersonal contexts and the 
person’s intrinsic status. We used both the AQ score and RMET correct score as reflecting 
intrinsic status (i.e. self-rated dispositional traits and performance-based socio-
cognitive/mentalizing capability), and the ADOS Social-Communication total score as reflecting 
extrinsic behavioral presentation. The three scores were first standardized (SADOS, SAQ and 
SRMET) within our sample of autistic men and women by mean-centring (to the whole autism 
sample in this study) and scaling (i.e. divided by the maximum possible score of each) to 
generate uniformly scaled measures that can be arithmetically manipulated. The first estimate of 
camouflaging was quantified as the difference between self-rated autistic traits and extrinsic 
behaviors (CF1 = SAQ − SADOS), and the second estimate between mentalizing ability and 
extrinsic behaviors (CF2 = −SRMET − SADOS). Then, using principal component analysis, the first 
principal component score of CF1 and CF2 (accounting for 86% of the total variance) was taken 
as a single, parsimonious measure of camouflaging for all subsequent analyses. This measure 
should be interpreted by relative values (i.e. higher scores indicate more camouflaging) rather 
than absolute values. This operationalization only allows for estimating camouflaging in autistic 
individuals in our cohort, as it partly derives from the ADOS score which was not available in 
TD participants. This approach remains informative, as qualitative studies suggest that 
camouflaging in autism can be different from similar phenomenon (e.g. impression management) 
in TD individuals71,72.  
 
In-vivo chemogenetic manipulation of excitation in mouse prefrontal cortex 
 

All in-vivo studies in mice were conducted in accordance with the Italian law (DL 116, 
1992 Ministero della Sanità, Roma) and the recommendations in the Guide for the Care and Use 
of Laboratory Animals of the National Institutes of Health. Animal research protocols were also 
reviewed and consented to by the animal care committee of the Istituto Italiano di Tecnologia. 
The Italian Ministry of Health specifically approved the protocol of this study, authorization no. 
852/17 to A.G. All surgical procedures were performed under anesthesia. 
 

Six to eight week-old adult male C57Bl6/J mice (Jackson Laboratories; Bar Harbor, ME, 
USA) were anesthetized with isoflurane (isofluorane 4%,) and head-fixed in a mouse stereotaxic 
apparatus (isofluorane 2%, Stoelting). Viral injections were performed with a Hamilton syringe 
mounted on Nanoliter Syringe Pump with controller (KD Scientific), at a speed of 0.05 �μl/min, 
followed by a 5–10 min waiting period, to avoid backflow of viral solution and unspecific 
labeling. Viral suspensions were injected bilaterally in PFC using the following coordinates, 
expressed in millimeter from bregma: 1.7 from anterior to posterior, 0.3 lateral, −1.7 deep. The 
inhibitory DREADD hM4Di was transduced using an AAV8-hSyn-hM4D(Gi)-mCherry 
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construct. Control animals were injected with a control AAV8-hSyn-GFP virus 
(www.addgene.com). These viral suspensions were injected using a 0.3 μL injection volume in 
n=15 hM4Di DREADD and n=19 SHAM mice, respectively. The excitatory DREADD hM3Dq 
was transduced using an AAV8-CamkII-hM3D (Gq)-mCherry construct. Control animals for this 
experiment were injected with a control AAV8-hSyn-GFP construct. This set of injection were 
carried out using a 1μL injection volume in n=17 hM3Dq DREADD and n=19 SHAM mice, 
respectively. We waited at least 3 weeks to allow for maximal viral expression.  
 
Mouse rsfMRI data acquisition  
 

The animal preparation protocol for mouse rsfMRI scanning was previously described in 
detail73. Briefly, mice were anesthetized with isoflurane (5% induction), intubated and artificially 
ventilated (2% maintenance). Then isoflurane was discontinued and substituted 
with halothane (0.75%), a sedative  that preserves cerebral blood flow auto-regulation and 
neurovascular coupling74. Functional data acquisition commenced 30 min after isoflurane 
cessation. CNO (2 mg/kg for hM4Di and 0.5 mg/kg for hM3Dq) was administered i.v. after 15 
minutes from the beginning of the acquisition both in virally transduced animals and in sham 
mice. 
 
Mouse rsfMRI data analysis 
 

Raw mouse rsfMRI data was preprocessed as described in previous work75,76. Briefly, the 
initial 120 volumes of the time series were removed to allow for T1 and gradient equilibration 
effects. Data were then despiked, motion corrected and spatially registered to a common 
reference template. Motion traces of head realignment parameters (3 translations + 3 rotations) 
and mean ventricular signal (corresponding to the averaged BOLD signal within a reference 
ventricular mask) were used as nuisance covariates and regressed out from each time course. All 
rsfMRI time series also underwent band�pass filtering to a frequency window of 0.01–0.1 Hz 
and spatial smoothing with a full width at half maximum of 0.6 mm. 
 
 The experimental design of the study allowed for computation of H during time-windows 
in the rsfMRI scan before drug injection (e.g., “Baseline”), a transition phase where the drug 
begins having its effect (e.g., “Transition”), and a treatment phase when the drug is thought to 
have its optimal effect (e.g., “Treatment”). Analysis of condition, treatment phase, time, and all 
interactions between such factors was achieved using a sliding window analysis. Each window 
was 512 volumes in length and the sliding step was 1 volume. H is computed at each window 
and results in an H time-series. The H time-series is used as the dependent variable in a linear 
mixed effect model (i.e. using the lme function within the nlme library in R) with fixed effects of 
condition, time, treatment phase, and all 2-way and 3-way interactions between such factors as 
well as a factor accounting for scan day. Random effects in the model included time within 
mouse as well as treatment phase within mouse, all modeled with random intercepts and slopes. 
This omnibus model was utilized to examine a 3-way interaction between condition, time, and 
treatment phase. If this interaction was present, we then split the data by the 3 levels of the 
treatment phase (e.g., Baseline, Transition, and Treatment), in order to examine the main effect 
of condition or the condition*time interaction. Plots of the data indicate each mouse (grey lines 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2020. ; https://doi.org/10.1101/2020.01.16.909531doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909531
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

in Figure 3) as well as group trajectories for each phase, with all trajectories estimated with a 
generalized additive model smoother applied to individual mice and group trajectories.  

 
In-silico modeling of LFP and BOLD data with a non-recurrent model 
 
 To establish that E:I ratio results in changes in H measured in LFP data in the case in 
which excitatory and inhibitory neurons do not interact neither across classes nor within each 
class, we first utilized the computational model from Gao et al.,24. This model simulates spike 
trains generated with exponential interspike intervals, and then computes the simulated LFP as a 
sum of excitatory and inhibitory post-synaptic AMPA and GABA currents, respectively. The 
higher slope of higher E;I ratio in this model arises because the AMPA currents have a faster 
decay and thus they have a higher power at high frequencies.  Using this model, we simulated 
LFPs based on user-input E:I ratios spanning from 1:2 to 1:6. All other parameters in the model 
stay consistent with parameters used by Gao et al.,24 (https://github.com/voytekresearch/EISlope) 
(see Table 4). To simulate LFP data based on manipulations to 1/f slope, we used the neurodsp 
library in python (https://neurodsp-tools.github.io/neurodsp/). First, we simulated 35 minutes 
(sampling rate = 500 Hz) of LFP data only using manipulations to 1/f slope (range 0 to -2 in 
steps of -0.1) and then computed H on the final LFP time-series. The final LFP time-series was 
also convolved with a canonical hemodynamic response function to simulate BOLD signal26. 
 
In-silico recurrent network modeling of LFP and BOLD data 
 

To establish how E:I ratio results in changes in H measured in LFP data in the more 
realistic case in which excitatory and inhibitory neurons interact both across classes and within 
each class, we use recurrent integrate-and-fire network modelling. The network structure and 
parameters of the recurrent network model are the same ones used in Cavallari et al.,31 with 
conductance-based synapses (for full details see31). In brief, the network is composed of 5000 
neurons, of which 4000 are excitatory (i.e., they form AMPA-like excitatory synapses with other 
neurons) and 1000 inhibitory (forming GABA-like synapses). Neurons are randomly connected 
with a connection probability between each pair of neurons of 0.2. Both populations receive two 
different types of external Poisson inputs: a constant-rate thalamic input and an intracortical 
input generated by an Ornstein-Uhlenbeck (OU) process with zero mean. A description of the 
baseline reference parameters used in simulations is given in Table 5. As in the Gao et al., 
model24, the LFP is computed as the sum of absolute values of AMPA and GABA postsynaptic 
currents on excitatory cells27,32.  

 
The estimate of the power spectral density (PSD) was computed using the Fast Fourier 

Transform with the Welch’s method, dividing the data into ten overlapping segments with 50% 
overlap. The 1/f power-law exponent was computed as the slope of the least-squares regression 
line that fits the log-log plot of the PSD over a specific frequency range, 40-70 Hz for an external 
input of 1.5 spikes/second and 50-80 Hz for 2 spikes/second. Following previous literature24,33,35–

38, the range of frequencies for computing the slope is chosen after inspecting the frequency 
range at which there was a linear power-frequency dependence in the log-log plot. As in these 
previous studies, this frequency region was located straight after the gamma peak occurs. The 
ranges of frequencies that we selected for the slope calculation in the simulations are in close 
accordance with previous ranges used in the experimental literature of the LFP24,33,35–38.  
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Analyses examining enrichment of autism-associted genes in different cell types with genes 
differentially expressed by androgen hormones 
 
 To test hypotheses regarding cell types that may be affected by androgen influence, we 
examined genes linked to autism via rare de novo protein truncating variants that are enriched for 
expression in specific cell types41. Of the 102 genes reported by Satterstrom et al., we split these 
lists by enrichments in early excitatory neurons (C3), MGE derived cortical interneurons (C16), 
microglia (C19), and astrocytes or oligodendrocyte precursor cells (C4). In addition to high risk 
mutations linked to autism, we additionally used a list of genes differentially expressed (DE) in 
different cell types within post-mortem prefrontal and anterior cingulate cortex tissue of autistic 
patients42. These DE gene lists were split into cell types, and we examined DE genes in any 
excitatory neuronal cell class (L2/3, L4/ L5/6), inhibitory cell classes (IN-PV, IN-SST, IN-VIP, 
IN-SV2C), microglia, astrocytes (AST-PP, AST-FB), and oligodendrocytes.  
 

To test the question of whether cell type autism-associated gene lists were enriched for 
genes known to be differentially expressed by DHT, we used a previous DE gene list from an 
RNA-seq dataset of DHT administration to human neuronal stem cells was utilized for these 
tests13. Custom code was utilized to compute enrichment odds ratios and hypergeometric p-
values for each enrichment test with different cell type autism-associated lists. The background 
total for these tests was the total number of genes considered in the original DHT-administration 
dataset (13,284).   
  
 To test how the DHT-sensitive and autism-associated genes in excitatory neurons are 
expressed across the human adult brain, we used whole-brain maps of expression for each gene 
in MNI space from the Allen Institute Human Brain Atlas44. Maps for each gene were 
downloaded from the Neurosynth website (https://neurosynth.org/genes/) and then submitted to a 
one-sample t-test in SPM12, with a threshold of FDR q<0.01. 
 
Data and code availability 
 

Tidy data and analysis code are available at https://github.com/landiit/EI_hurst. Source 
code of the recurrent network model is available at 
https://github.com/pablomc88/EEG_proxy_from_network_point_neurons. 
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Tables 
 

 Time 
 

Condition 
(DREADD - SHAM) 

Time x Condition 

Baseline 0.82 (0.372) 0.81 (0.369) 0.36 (0.549) 

Transition 5.65 (0.017)* 3.25 (0.081) 4.94 (0.026)* 

Treatment 0.61 (0.433) 12.92 (0.001)** 0.66 (0.418) 

 
Table 1: Results from DREADD manipulation to enhance excitation. F-statistics (p-values in 
parentheses) for main effects of time, condition, and time*condition interaction for each of the 3 
phases of the experiment (Baseline, Transition, Treatment). * = p<0.05, ** = p<0.001. 
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 Time 
 

Condition 
(DREADD - SHAM) 

Time x Condition 

Baseline 0.02 (0.876) 4.01 (0.054) 1.02 (0.137) 

Transition 0.04 (0.838) 0.35 (0.561) 1.36 (0.243) 

Treatment 0.40 (0.533) 0.20 (0.673) 0.10 (0.786) 

 
Table 2: Results from DREADD manipulation to enhance inhibition. F-statistics (p-values in 
parentheses) for main effects of time, condition, and time*condition interaction for each of the 3 
phases of the experiment (Baseline, Transition, Treatment). * = p<0.05, ** = p<0.001. 
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  TD males 
(N=29 

Autistic 
males 
(N=23) 

TD females 
(N=33) 

Autistic 
females 
(N = 
25) 

Sex Diagnosis Diagnosis * 
Sex 
Interactions 

Mean (SD) Mean (SD) Mean (SD) Mean 
(SD) 

F-statistic 
(p-value) 

F-statistic 
(p-value) 

F-statistic 
(p-value) 

Age 28.00 
(6.42) 

27.13 (7.14) 26.99 (5.34) 27.35 
(6.79) 

0.1489 
(0.7004) 

0.0320 
(0.8585) 

0.2508 
(0.6176) 

VIQ 110.62 
(11.53) 

114.70 
(13.04) 

120.30 
(10.06) 

114.08 
(12.79) 

5.3340 
(0.02285) 
* 

0.3837 
(0.53696) 

5.1815 
(0.02484) * 

PIQ 120.00 
(10.21) 

114.57 
(15.70) 

117.39 (9.27) 110.88 
(17.43) 

1.4972 
(0.22382) 

5.5542 
(0.02027) 
* 

0.0453 
(0.83188) 

FIQ 116.97 
(10.69) 

116.39 
(14.15) 

121.45 (8.33) 114.16 
(13.82) 

0.4863 
(0.48713) 

3.3889 
(0.06844) 

2.2417 
(0.13731) 

Camouflagin
g Score (z-
values) 

- -0.16  (0.38) - 0.15 
(0.34) 

 - - 

AQ 15.28 
(6.99) 

 32.70(8.47) 11.97 (4.93) 38.44 
(6.34) 

0.2606 
(0.61074) 

300.5921 
(2.2e-16) 

12.4871 
(0.0006) 

ADI-R 
Reciprocal-
Social-
Interaction 

-   
17.26 (4.77) 

- 16.56 
(4.52) 

- - - 

ADI-R 
Communicati
on 

- 14.83 (3.50) - 13.40 
(3.96) 

- - - 
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ADI-R 
Repetition 

- 5.17 (2.35) - 4.24 
(1.61) 

- - - 

ADOS 
Communicati
on 

- 3.30 (1.74) - 1.24 
(1.30) 

- - - 

ADOS Social - 5.48 (3.45) - 3.48 
(3.06) 

- - - 

ADOS 
Repetition 

- 1.09 (1.12) - 4.30 
(1.61) 

- - - 

ADOS 
Communicati
on + Social 
Total 

- 8.83 (4.87) - 4.72 
(4.09) 

- - - 

RMET 27.14 
(3.59) 

20.83 (6.87) 28.91(2.35) 22.84 
(6.40) 

3.9353 
(0.04989) 

42.3091 
(2.704e-9) 

0.0166 
(0.89769) 

Mean FD  0.17 (0.05) 0.20 (0.07) 0.18(0.06) 0.04 
(0.17) 

0.5184 
(0.4731) 

1.7716 
(0.1860) 

1.1041 
(0.2958) 

Note:  TD: Typically Developing; VIQ: verbal IQ; PIQ: performance IQ; FIQ: full-scale IQ ADI-R: Autism Diagnostic Interview–Revised; 
ADOS: Autism Diagnostic Observation Schedule; AQ: Autism Spectrum Quotient; RMET: Reading the Mind in the Eyes Test; FD: frame-
wise displacement; *: p < 0.05. 

 
Table 3. Descriptive statistics and group comparisons for the various demographic variables. 
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Parameter Value 

Population Firing Rate (E, I) 2 Hz, 5 Hz 

Population Size (E, I) 8000, 2000 

Resting Membrane Potential -65 mV 

Reversal Potential (AMPA, GABAA) 0 mV, -80 mV 

Conductance Rise Time (AMPA, GABAA) 0.1 ms, 0.5 ms 

Conductance Decay Time (AMPA, GABAA) 2 ms, 10 ms 

E:I Ratio 1:2 to 1:6 

 
Table 4:  Parameters for E:I model: Parameters utilized in the E:I model from Gao et al.,24, for 
simulating LFP data. 
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A: Neuron model 
Parameter Description Excitatory cells Inhibitory cells 
Vleak (mV) Leak membrane potential -70  -70  

Vthreshold (mV) Spike threshold -52  -52  

Vreset (mV) Reset potential -59  -59  

τrefractory (ms) Absolute refractory period 2  1  

gleak (nS) Leak membrane conductance 25  20  

Cm (pF) Membrane capacitance 500  200  

τm 

(ms) Membrane time constant 20  10  

B: Connection parameters 
Parameter Description Excitatory cells Inhibitory cells 
EAMPA (mV) AMPA reversal potential 0  0  

EGABA (mV) GABA reversal potential -80  -80  

τr(AMPA) (ms) Conductance rise time (AMPA) 0.4  0.2  

τd(AMPA) (ms) Conductance decay time (AMPA) 2  1  

τr(GABA) (ms) Conductance rise time (GABA) 0.25  0.25  

τd(GABA) (ms) Conductance decay time (GABA) 5  5  

τl (ms) Synapse latency 0  0  

gAMPA(rec.) (nS) AMPA conductance (recurrent) 0.178 0.233 

gAMPA(tha.) (nS) AMPA conductance (thalamic) 0.234 0.317 

gAMPA(cort.) (nS) AMPA conductance (intracortical) 0.187 0.254 

gGABA (nS) GABA conductance 2.01 2.7 

 
Table 5: Baseline reference parameters of the recurrent network model. Parameters used in 
Cavallari et al.,31 with conductance-based synapses. 
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Supplementary Information 
 
Supplementary Figure 1 
 
Panels A and B show an alternative approach to enhance excitation in the recurrent network 
model in which an external constant current (��) is applied to excitatory cells. In panels C and 
D, a decrease of excitation in the network is simulated by decreasing the transmission 
probability of all recurrent synapses. 
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Supplementary Figure 2 
 
Comparison of PLS results with 7 cluster rsfMRI parcellation from Yeo et al.,49 which shows 
prominent overlap between most important PLS regions and the default mode network (DMN). 
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