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Abstract 

 

It is widely accepted that pooled library CRISPR knockout screens offer greater sensitivity and 

specificity than prior technologies in detecting genes whose disruption leads to fitness defects, a 

critical step in identifying candidate cancer targets. However, the assumption that CRISPR 5 

screens are saturating has been largely untested. Through integrated analysis of screen data in 

cancer cell lines generated by the Cancer Dependency Map, we show that a typical CRISPR 

screen has a ~20% false negative rate, beyond library-specific false negatives previously 

described. Replicability falls sharply as gene expression decreases, while cancer subtype-specific 

genes within a tissue show distinct profiles compared to false negatives. Cumulative analyses 10 

across tissues suggest only a small number of lineage-specific essential genes and that these 

genes are highly enriched for transcription factors that define pathways of tissue differentiation. 

In addition, we show that half of all constitutively-expressed genes are never hits in any CRISPR 

screen, and that these never-essentials are highly enriched for paralogs. Together these 

observations strongly suggest that functional buffering masks single knockout phenotypes for a 15 

substantial number of genes, describing a major blind spot in CRISPR-based mammalian 

functional genomics approaches.  

 

Introduction 

 20 

The search for essential genes - genes whose loss of function results in a severe fitness defect - 

has been of outstanding interest to the scientific community. Prior to advanced genomic 

technologies, the assumption was that the majority of genes were essential for life (Horowitz and 

Leupold, 1951). This idea was dismissed by several studies that utilized saturating random 

mutagenesis to show that in C. elegans and S. cerevisiae, 12-15% of the genome was estimated 25 
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to be essential (Brenner, 1974; Goebl and Petes, 1986). These studies were limited by the 

methods at the time and the lack of the availability of complete genome sequences.  

 

After improvements in shotgun sequencing, initial studies to define essential genes in bacteria 

were driven by the desire to identify antimicrobial targets with the first minimal genome screen 30 

performed in Mycoplasma genitalium (Hutchison et al., 1999). Later studies revealed the essential 

genes in other bacteria including M. tuberculosis, P. aeruginosa and H. influenza (Sassetti et al., 

2001) (Jacobs et al., 2003)(Akerley et al., 2002). 

  

With the advances in genome technologies that enabled sequencing of eukaryotic organisms, 35 

systematic gene knockout studies were performed in S. cerevisiae, identifying essential genes by 

deletion of open reading frames in the yeast genome (Giaever et al., 2002; Winzeler et al., 1999). 

This method identified that 17% of yeast genes were essential for growth in rich medium (Winzeler 

et al., 1999).  However, a later study showed that a binary classification of genes into essential 

and non-essential was misleading due to the context dependent nature of gene essentiality and 40 

that 97% of yeast genes showed some growth phenotype under different environmental 

conditions (Hillenmeyer et al., 2008).  

 

Developments in RNA interference (RNAi) technology provided valuable insight into detection of 

fitness genes. Generation of genome scale RNAi libraries to conduct genome-wide RNAi screens 45 

facilitated the study of essential genes in multiple organisms (Dietzl et al., 2007; Kamath et al., 

2003; Meister and Tuschl, 2004; Moffat and Sabatini, 2006). In these RNAi screens, 30% of the 

genome was shown to be essential in D.melanogaster cell lines, (Dietzl et al., 2007), compared 

to only 8.5% of the C.elegans genome in whole worms (Kamath et al., 2003).  

 50 
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Identifying essential genes in human cancer cells is of special interest in oncology since the 

cancer-specific essential genes represent genomic vulnerabilities that can potentially be targeted 

with novel therapeutic agents. An initial study showed that some colorectal cell lines were 

dependent on a specific KRAS mutation for growth and survival (Shirasawa et al., 1993).  Later 

this idea was explored under the term “oncogene addiction” that describes the dependency of 55 

cancer cells on specific oncogenes for sustained growth and proliferation (Weinstein and Joe, 

2008). To identify these oncogenes, RNAi screens were performed on small arrays of cancer cells 

to search for essential genes (Moffat et al., 2006; Schlabach et al., 2008; Silva et al., 2008). 

Subsequent larger-scale efforts such as the Project Achilles of the Broad Institute focused on 

context specific gene essentiality across 216 human cancer cell lines screened with an shRNA 60 

library (Cowley et al., 2014).  Similarly, another relatively big scale study in 72 cell lines (Marcotte 

et al., 2012) produced consistent results with the previous studies, indicating confidence in the 

methodology. Even though significant efforts have been made to optimize reagent design and 

analytical methods, RNAi technology was shown to have significant limitations such as incomplete 

loss of function due to RNAi, decreased sensitivity for genes with low expression levels (false 65 

negatives) and confounding off-target effects (false positives) (Boutros and Ahringer, 2008; 

Echeverri et al., 2006; Hart et al., 2014). 

 

More recently, adaptation of the bacterial CRISPR-Cas9 system to mammalian cells enabled 

genome-scale approaches to define human essential genes. Studies using this technology 70 

revealed that mammalian cells have more essential genes than RNAi screens were able to detect 

and that, at the same false discovery rate, CRISPR screens generated 3-4 times more essential 

genes (Hart et al., 2014). Moreover, multiple groups revealed lists of ~2000 highly concordant 

human essential genes, and comparison of CRISPR technology to orthogonal techniques such 

as random insertion of gene traps also showed consistent results  (Blomen et al., 2015; Hart et 75 

al., 2015; Wang et al., 2015). These findings were initially thought to indicate that the CRISPR-
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Cas9 screens are saturating and that a well-designed screen can detect a cell's full complement 

of essential genes. However, it is still poorly understood how the possible systematic biases and 

blind spots in CRISPR screens affect our understanding of human gene essentiality. In the 

absence of a ground truth, the actual true positive, false positive and false negative rates are in 80 

an average genome-wide CRISPR-Cas9 knockout screen are still unknown.  

 

Moreover, even with the CRISPR technology, the number of essential genes detected through 

these screens is still far less than the number of genes expressed in a given cell line. Large-scale 

experiments exploring genetic and environmental buffering in both yeast (Costanzo et al., 2010, 85 

2016; Hillenmeyer et al., 2008; VanderSluis et al., 2014) and C. elegans (Ramani et al., 2012) 

suggest that virtually every gene is required for optimal growth in some condition. A major open 

question remains whether these findings hold true for human cells generally and cancer cells 

specifically. 

 90 

In this study, we examine some of the biases and blind spots characteristic of genome-wide 

CRISPR-Cas9 knockout screening. Using publicly available genome wide screen data from 517 

genetically heterogeneous cell lines from the Cancer Dependency Map initiative (Meyers et al., 

2017; Tsherniak et al., 2017), we demonstrate the systematic biases in these screens, investigate 

and model the actual number of essential genes identifiable with CRISPR technology, estimate 95 

the false discovery rate (FDR) and false negative rate (FNR) in a "typical"  CRISPR screen, and 

reveal blind spots that can offer fruitful areas for further research. 

 

Results 

To systematically evaluate the biases and blind spots in genome-wide CRISPR-Cas9 knockout 100 

screening, we processed the raw read counts of loss of function screens performed in 517 
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genetically heterogeneous cell lines from the 2018Q4 release of the publicly available Avana data 

(Meyers et al., 2017). We applied our computational pipeline as described in the methods section 

to correct for copy number effects  using the previously described CRISPRcleanR algorithm (Iorio 

et al., 2018) and assign an essentiality score (Bayes Factor, BF) to each gene in every screen 105 

using an updated version of our BAGEL algorithm (Hart and Moffat, 2016). After applying quality 

control metrics (see Methods), our final dataset included 446 screens meeting the F-measure 

criteria of 0.80 and above (Supplementary Figure 1A-B, Supplementary Table1). These 446 cell 

lines are derived from 23 tissue types, with varying representation (Figure 1A). 

 110 

 

Figure 1. Synthetic genome modeling of Avana data. A) The representation of each tissue type in the 

446 high-performing screens in the Avana data. Tissue types with >=16 high-performing cell lines are 

indicated with red bars. B) The cumulative number of essential genes (BF>=10) and newly discovered 

essential gene curves in any randomly selected set of  20 Avana screens show a curve that converges into 115 
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a positive slope. C) Diagram overview of the synthetic genome modeling of essential genes. From a 

synthetic genome of 17,427 genes, 1267 hits were randomly sampled from the essential (n) and non-

essential gene (NEG) populations based on the defined false discovery rate (FDR) in the simulation. The 

resulting cumulative essential hits across 8 iterations were plotted and compared to the mean cumulative 

essentials curve from the Avana data. D) The synthetic genome modeling revealed that the best fitting 120 

model was the one with n=1600 genes and 9% FDR. E) Plot showing the model with the best fit (in blue) 

to the Avana data (red). F) An average screen false negative rate (FNR) was determined by comparing the 

number of essential genes from the best fit model in each tissue type to the mean number of observed 

essentials in each tissue type. The red dashed line indicates a mean FNR of 20.6% across all tissue types 

tested. 125 

Synthetic genome modeling of essential genes in 446 screens 

To estimate the total number of essential genes in a cell, we first considered an approach based 

on the cumulative observations across all screens. The expectation is that, for a sufficient number 

of identical screens with no false positives, a plot of the cumulative number of essential genes 

would flatten to zero slope as the total population of cell-essential genes was identified. In 130 

contrast, in screens with either cellular heterogeneity or some low false discovery rate (or both), 

the slope of the cumulative essential plot would remain positive, reflecting the ongoing 

accumulation of false positives (or, alternatively, cell-specific essential genes) in otherwise 

saturated screens. We previously applied this principle to estimate the total population of essential 

genes assayable by shRNA screens (Hart et al., 2014). 135 

We plotted the cumulative essential genes across sets of 20 cell lines randomly selected without 

replacement from all screens (100 iterations). Filtering for genes with BF>10 in each screen, a 

strict threshold representing a posterior probability of gene essentiality of ~99% (Supplementary 

Figure 1C; see Methods), yielded a curve that converged to a positive slope (Figure 1B), similar 

to that shown previously in shRNA screens. We reasoned that this curve represents three factors: 140 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909606
http://creativecommons.org/licenses/by/4.0/


 7 

first, there exists a fixed population of essential genes across all screens. Second, the screening 

platform does not reliably capture all of these genes in a single experiment. Each screen therefore 

carries some unknown false negative rate, and multiple screens are required before saturation. 

Third, after saturation, additional screens continue to detect some combination of false positives 

and context-specific essential genes that were either not detectable or not present in the prior set 145 

of screens, and that the rate at which these genes are observed offers some estimate of the false 

discovery rate of each screen. 

To model these factors, we carried out repeated screens in silico and compared synthetic 

cumulative essential curves to those derived from the data. Starting with a genome of N=17,427 

genes – the number of genes tested in the Avana library – we arbitrarily defined n essential genes, 150 

leaving N-n nonessential. We further defined an arbitrary screen false discovery rate between 1-

15%. Then we repeatedly sampled this genome with a screen that randomly drew 1,267 hits – 

the mean number of hits at BF>10 across all Avana screens -- from the essential and nonessential 

populations based on the defined FDR (e.g. at 10% FDR, 127 nonessentials and 1,140 essentials 

were randomly selected; see Figure 1C). Finally, we determined the cumulative hits across eight 155 

iterations, estimating that eight samples was a good estimate of screen saturation in the data 

(Figure 1B) and judging that it was more important to fit the model to our observations in this 

region than in the saturated region. We calculated the root-mean-squared deviation from the 

mean cumulative essentials curve determined from the Avana data and plotted RMSD vs. the two 

parameters of the model (Figure 1D), observing that the best fit occurred with n=1,600 essential 160 

genes and FDR=9% (Figure 1E). Notably, a region of good fits, with RMSD < 2xRMSDmin, occurs 

between n=1,400-1,900 essential genes and a corresponding decrease in per-screen FDR from 

9% to ~5% (Supplementary Figure 1D). 

Given the broad range of lineages from whence the screened cell line models were derived, it 

seems clear that context-specific essential genes will be included in these putative false positives. 165 
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To minimize the contribution of these tissue-specific essentials, we repeated the analysis using 

screens derived only from a single tissue or lineage, filtering for lineages represented by at least 

16 high-quality screens (Figure 1A, red; n=15 lineages). Every tissue yielded a similar cumulative 

essential curve (Supplementary Figure 2). We repeated the synthetic genome modeling approach 

in each tissue, with remarkably similar results (Supplementary Figures 3 and 4). By comparing 170 

the best-fit number of essential genes to the mean number of hits observed each screen, we 

calculated an average false negative rate across each tissue (Figure 1F). Across all tissues, we 

determined the mean FNR to be ~20% in each screen. 

Saturation modeling to differentiate essential genes and false positives  

 175 

While the synthetic genome modeling approach described above can estimate the total number 

of essential genes in a tissue, it does not provide any way to differentiate true hits from false 

positives. To address this issue, we took an alternative view of the saturating behavior of CRISPR 

screens. Based on our judgment that screening in virtually all lineages achieved saturation after 

roughly eight cell lines had been effectively screened, we again selected the lineages with at least 180 

twice this number of cell lines (Figure 1A). From each lineage, we randomly selected eight screens 

(“initial screens”) without replacement and determined the number of cell lines in which each gene 

was classified as essential (BF>10; Figure 2A). We then randomly selected an additional eight 

screens (“subsequent screens”), again without replacement, and determined the number of cell 

lines in which each gene was classified as new hits – that is, BF>10 but not a hit in any of the 185 

initial eight screens. We assumed that all of these new hits were false positives, and that the 

histogram of observations of these false positives estimates the frequency of false positives in 

the initial screens. It is almost certainly not the case that all of these are actually false positives, 

given the known presence of tumor subtypes within each tissue/lineage, the high likelihood of 

subtype-specific essential genes, and the probability that any given subtype escaped being 190 
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 9 

selected in the initial eight screens. However, this assumption is useful for modeling purposes, as 

it provides an estimate of the upper bound of the false discovery rate using this saturation 

modeling approach. We repeated this process 100 times and plot the resulting histogram in Figure 

2A. 

 195 

Figure 2. Saturating modeling approach, differentiating essential genes, false positives, false 

negatives and subtype-specific essential genes. A) Histogram showing the distribution of the number 

of essential genes and the number of cell lines in which each gene was classified as essential in colorectal 

cancer cell lines. Blue bars represent the distribution of true positives (TPs) and the orange bars represent 

the frequency of false positives (FPs). The error bars represent the standard deviation of observed 200 

essentials in 100 iterations. B)  For the TPs in colorectal cancer cell lines depicted in A, the mean mRNA 

expression (log2(TPM)) of the gens in each bin shows higher expression where more frequently observed 

essential genes show higher levels of expression. C) Violin plot showing the distribution of the essentiality 

scores (Bayes Factor, BFs) of the TP genes in A and B, in the screens where they were not observed as 

essential. D) Functional enrichment of genes in colorectal cancer cell lines based on their mean number of 205 

hits observations out of 8 screens in 100 iterations. Grey dashed line indicates significance at p=0.01 E) 
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mRNA expression (log2(TPM)) in colorectal cancer cell lines of the genes involved in the enriched pathways 

shown in D. Marginal histogram on the right shows the distribution of  expression levels of all genes assayed 

in the Avana library. F) Hierarchical clustering of the colorectal cancer cell lines based on the essentiality 

scores of the genes involved in pathways showed in D and E. 210 

 

Notably, the putative false positives follow the expected distribution: most are detected in only a 

single screen (Figure 2A). We can estimate both binwise and cumulative false discovery rates 

(Supplementary Table 2) by comparing the ratio of putative false positives per bin to the total 

number of hits. We assess that genes observed in 3 or more of 8 randomly selected screens 215 

represent the high-confidence set of essential genes in a given lineage, including both genes that 

are frequently false negatives as well as those that are subtype-specific within a lineage.  

 

False negatives vs. subtype-specific genes 

The familiar U-shaped histogram in Figure 2A carries strong implications for the underlying 220 

experiment. Genes observed in an intermediate number of screens (3 to 6, out of 8) are either 

false positives that are repeatedly observed, false negatives that are repeatedly missed, or 

subtype-specific genes that are only hits in some cells, violating the modeling assumption that the 

cells are identical (in reality, some combination of the three is likely). We show from the hit 

frequency in subsequent screens that these genes are unlikely to be false positives. Here we 225 

attempt to differentiate between false negatives and context-dependent genes. 

 

First, we find the mean mRNA expression of genes in each bin (Figure 2B). A clear trend emerges, 

whereby more frequently observed hits show higher gene expression. Genes observed in only 

one of eight screens, highly enriched for false positives, show markedly lower expression. In 230 

addition, putative false positives from subsequent screens show a similarly lower average gene 

expression than more frequently observed hits (Supplementary Figure 5). Second, we examine 
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the BF scores of genes in screens where the gene is not a hit. This measures whether a gene 

that is essential (BF>10) in, for example, 5 screens is truly nonessential in the remaining 3 screens 

(BF<-10) or falls in the indeterminate range near BF=0. Figure 2C shows that, the more frequently 235 

a gene is classified as a hit in the initial screens, the higher its average BF in screens where it is 

not a hit. This is strongly consistent with false negatives rather than context-specific hits. 

 

Finally, we measured functional enrichment of gene annotations as a function of stringency 

thresholds. We plotted the P-value of annotation enrichment for several terms that demonstrate 240 

the major trends in the data. Genes associated with the cytoplasmic ribosome, which should be 

essential in every cell, show peak enrichment at high hit frequency (hits in n>=7 of 8 screens in 

100 random samples; Figure 2D). Consistent with the expression bias shown in Figure 2B, these 

genes are very highly expressed in the cell (Figure 2E). Similarly, genes encoding proteasome 

subunits are critical for proliferation of all cells, show near-maximal enrichment at high frequency 245 

of observation (n>6.5, Figure 2D), and are relatively highly expressed (Figure 2E). In contrast, 

genes involved in tRNA aminoacylation and RNA degradation—which should also, in principle, 

be universally essential—show consistent increase in enrichment as frequency of observation is 

relaxed (Figure 2D), and these genes are expressed at intermediate levels (Figure 2E). Taken 

together, these trends are consistent with a significant false negative rate among moderately 250 

expressed genes that should otherwise exhibit consistent fitness defects across cell lines. 

Moreover, this trend is easily differentiated from context-specific modular functions: genes related 

to mitochondrial translation and oxidative phosphorylation only show enrichment at low frequency 

of observation (Figure 2D), despite their robust gene expression (Figure 2E). A summary of gene 

essentiality scores and trends in the cell lines displayed here is shown in Figure 2F, with context-255 

dependent oxphos genes driving the hierarchical clustering of cell lines. A complete table of gene 

frequency of observation by tissue type is presented in Supplementary Table 3. 
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Context-specific essential genes define lineage relationships 

After judging that genes observed in 3 or more (of 8) screens represent the high-confidence set 260 

of essential genes in a given lineage, we identified 954 genes that are hits at that frequency in all 

15 lineages we evaluated (Figure 3A). In addition, each lineage carries an additional 300-600 

context-specific essential genes (Figure 3A, inset). These additional genes are also widely, but 

not universally, shared across backgrounds: each lineage has only three (CNS) to 49 

(hematopoietic) genes uniquely essential to that lineage (Figure 3A). Many known gene-tissue 265 

relationships are described in this set of unique context essentials. For example, the SOX10 

transcription factor was found to be essential in only skin cells where it plays a major role in the 

production and function of melanocytes (Harris et al., 2010; Nonaka et al., 2008). CTNNB1 and 

TCF7L2 are essential only in colorectal cancer cell lines, where  activation of the Wnt pathway 

results in accumulation of B-catenin that interacts with and acts as a coactivator for TCF7L2 that 270 

in turn activates downstream genes responsible for colorectal cancer cell survival as well as 

resistance to chemo-radiotherapy (Albuquerque and Pebre Pereira, 2018; Emons et al., 2017; 

Murphy et al., 2016). ER+ breast cancer cell lines specifically depend on transcription factors 

FOXA1 and GATA3, which are overexpressed in ER+ breast carcinomas (Albergaria et al., 2009; 

Davis et al., 2016). E2F1, which was uniquely essential in only pancreatic cancer cells, is known 275 

to regulate both pancreatic B cell development and cancer growth by increasing the expression 

of PDK1 and PDK3 which results in increased aerobic glycolysis and growth in pancreatic cancers 

(Denechaud et al., 2017; Kim and Rane, 2011; Wang et al., 2016). Nevertheless, genes unique 

to a particular context are very rare, while hundreds of genes are shared across some but not all 

lineages. We tested whether clustering of these integrative tissue profiles of gene essentiality 280 

would recapitulate known lineage relationships. Hierarchical clustering of all context essential 

genes (Figure 3B) clearly separates epithelial-derived carcinomas from cancers of hematopoietic 

and bone/soft tissue origins. A complete table of common and context essential genes are listed 

in Supplementary Table 4. 
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 285 

Figure 3. High-confidence essential genes, their characteristics and comparison to previously 

defined gold standard sets of core essential genes. A) Upset plot showing the number of intersection 

between high-confidence essential genes in each tissue type. Inset: Daisy plot showing the relationship 
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between high-confidence context-essential genes and common essential genes. Genes essential in a given 

tissue type is represented by the petals of the daisy indicating their numbers for each tissue type. The petals 290 

overlap to varying degrees, but all tissues share the common set of essential genes (N=954). B) 

Hierarchical clustering of the high-confidence context-essential genes in different tissues based on their 

mean number of hits observations out of 8 screens in 100 iterations. C) Venn diagram comparing common 

essential genes to previously defined gold standard set of core essential genes. D) Box plots showing the 

mean mRNA (TPM) expression of common core essentials (n=300), genes unique to new common 295 

essentials identified here (n=323), Core V2 specific essentials (n=136) and core essential genes specific 

to the Sanger dataset. E) Biological process enrichment for core essential genes unique to a specific 

approach. F) Comparison of the distribution of essentiality scores of Sanger specific core essentials in 

common cell lines between the Avana and Sanger data. 

 300 

Comparing common essentials to previous gold standards 

The common essentials defined here include genes that are identified as hits in every tissue at a 

frequency of at least 3/8 screens. They should, in principle, define a superset of previously defined 

gold standard sets of essential genes. We compared our set of 954 common essentials to the Core 

Essential Genes v2 that we previously defined as a gold standard training set for our BAGEL algorithm 305 

(Hart et al., 2017), as well as the core essentials recently published Sanger dataset derived from 

342 CRISPR screens performed at the Wellcome Trust Sanger Centre. (Behan et al., 2019). 

Since the initially reported Avana data does not contain guides targeting genes on the X 

chromosome, we removed these genes from both other datasets to perform direct comparisons. 

Common essentials comprise 494 of 665 (74%) CEGv2 genes and 437 of 535 (82%) of Sanger 310 

core essentials (Figure 3C). The 300 genes common to all three approaches have median gene 

expression roughly twice that of the genes unique to each approach (median log2(TPM) 6.4 vs 

5.3 for new common specific genes, 5.5 for CEGV2 and 5.1 for Sanger specific genes; Figure 

3D), consistent with an increased false negative rate among essential genes with moderate levels 

of mRNA expression. This is also consistent with the increased overlap of common essentials 315 
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with CEGv2 as stringency is increased (Supplementary Figure 6). Genes specific to each 

approach are listed in Supplementary Table 5. 

 

Interestingly, the genes unique to each dataset show a strong bias reflecting the approach used. 

Genes unique to the common essentials defined here are highly enriched for ribosome genesis and 320 

mRNA processing genes (Figure 3E). Genes unique to CEGv2 are strongly biased toward nuclear 

genes encoding subunits of the mitochondrial ribosome and the electron transport chain. Cellular 

dependence on these biological processes is subtype-specific in the approach described here (Figure 

2D,E,F) and these genes are likely excluded from the Sanger core essentials for the same reason. 

Sanger-specific core essentials do not show strong functional enrichment, compared to the other 325 

groups (Figure 3E). In fact, among the 63 Sanger-specific essentials, 14 were not targeted in the 

Avana library and the remainder tend to show intermediate BF scores in 117 high-performing Avana 

screens of the same cell lines (Figure 3F). This is consistent with there being a set of CRISPR library-

specific false negatives, as previously reported by Kosuke Yusa and colleagues (Ong et al., 2017), 

which may be independent of the expression-associated false negatives reported here.  330 

 

Genetic buffering is systematically excluded from monogenic CRISPR screens 

Beyond the false negatives detected by the saturation analyses described above, we sought to 

determine whether other systematic sources of bias exist in the CRISPR knockout screen data. We 

first attempted to correct for lineage-specific effects by defining a set of 7,378 constitutively expressed 335 

genes (logTPM > 2 and stdev < 1 across the cell lines for which Avana screening data was available; 

Supplementary Figure 7A). Common essentials are almost all constitutively expressed (Figure 4A), 

while roughly two-thirds of context-dependent essentials are also constitutively expressed (Figure 

4A). Conversely, nearly half of all constitutively expressed genes (N=3,361; 46%) show no strong 

knockout phenotype in any Avana CRISPR screen (“never essentials”). 340 
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Figure 4. Paralogs are 

under-represented in 

CRISPR-Cas9 screens. B) 345 

Stacked bar graph showing 

the numbers of common, 

context and never essential 

genes among all genes, 

constitutively expressed and 350 

not constitutively expressed 

genes.Nearly half (46%) of all 

constitutively expressed 

genes are not observed as 

essential in any of the Avana 355 

screens. B) Scatter plot of the 

percentage of constitutively 

expressed never essentials 

with paralogs to that of 

constitutively expressed 360 

common essentials with 

paralogs based on shared 

percentage of sequence 

similarity thresholds.  C) The 

number and D) significance of 365 

synthetic essentiality of 

paralog pairs identified in 

Broad and Sanger screens. Only pairs with p-value less than 0.05 were considered in these plots. E-H) 

Scatter plots of the synthetic lethality caused by mutational disruption of one paralog partner between E) 
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SMARCA2-SMARCA4 F) ARID1A_ARID1B and by depletion of one paralog partner between G) RPP25-370 

RPP25L and H) FAM50A-FAM50B.  

 

These observations regarding the constitutively expressed genes raised the question about why 

we observe so few essential genes in these genetically heterogenous screens. Based on work in 

yeast (Hillenmeyer et al., 2008) and nematodes (Ramani et al., 2012), we naively assumed that 375 

all constitutively expressed genes should be essential in some context, and hypothesized that 

some combination of environmental or genetic buffering masks the fitness consequences of 

individual gene knockouts.  

 

To examine the possible role of genetic buffering, we tested whether paralogs are 380 

overrepresented among the never-essentials. We obtained the list of the paralogs of human 

protein coding genes from Ensembl Biomart along with percent protein sequence similarity 

information (see Methods). After filtering for constitutively expressed genes, we observed 

paralogs show a wide range of amino acid sequence similarity, but that the majority of the paralog 

pairs as defined in Ensembl exhibit low similarity (Supplementary Figure 7B). To evaluate whether 385 

paralogs are enriched in never-essentials, we adopted a sliding scale of sequence identity and 

measured, at each threshold, the fraction of never-essentials and the fraction of common 

essentials captured. As shown in Figure 4B, as sequence similarity stringency is relaxed, never-

essentials are much more likely to have a paralog than common essentials. At 45% or greater 

sequence similarity, nearly a third (30.2%) of constitutively expressed never-essentials have a 390 

paralog, compared with only 12.2% of common essentials, a ratio of ~2.5:1. This is highly 

consistent with previous observations by De Kegel and Ryan (De Kegel and Ryan, 2019) and by 

Dandage and Landry (Dandage and Landry, 2019), who used similar approaches.  
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To further validate this observation, we explored the Avana data to find cases where loss of 395 

function of one member of a paralog pair resulted in increased dependency on the other. 

Unfortunately, the cell lines screened by CRISPR knockout libraries only contain LOF alleles of a 

fraction of the candidate paralogs, limiting this discovery avenue to a few dozen pairs (Figure 4C-

D). Unlike previous approaches, limiting the search for functional redundancy to constitutively 

expressed genes excludes false positives arising from tissue-specific expression of paralog family 400 

members. Two well-described cases in the BAF (SWI/SNF) complex were immediately apparent: 

mutations in SMARCA4 are strongly associated with dependency on paralog SMARCA2 (P<10-

10; Figure 4E), and mutations in ARID1A are associated with ARID1B dependency (P<10-9; Figure 

4F). Expanding loss-of-function to include significantly depleted gene expression also reveals an 

emergent dependency on RPP25L when RPP25 is depleted (P<10-52; Figure 4G). The two genes 405 

encode redundant subunits of RNAse P, a ribonuclease critical for maturation of tRNA, whose 

functional buffering was previously observed (Wang et al., 2015). A fourth example is 

FAM50A/FAM50B putative functional redundancy (Figure 4H). Interestingly, virtually nothing is 

known about the biological role of these genes.  

 410 

Discussion 

CRISPR technology has revolutionized mammalian functional genomics and cancer targeting by 

leveraging endogenous DNA repair machinery to generate gene knockouts on a genomic scale. 

Extensive screening of cancer cell lines under the DepMap project—and, critically, the open 

availability of this data--affords an opportunity for re-evaluating the assumptions under which 415 

these assays have been carried out. Notably, assumptions about replication and library- and 

batch-specific effects have been addressed in some detail (Wang et al., 2019; Dempster et al., 

2019; Rauscher et al., 2018), but questions about what might be systematically missing from 

these data have, to our knowledge, not been rigorously explored. 

 420 
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We developed a model that estimates the true positive rate, false positive rate, and false negative 

rate from a typical genome-scale CRISPR screen. The model which most closely matches data 

from a large panel of CRISPR screens suggests that a typical cell expresses 1,600-1,900 

essential genes, but a single knockout screen only detects ~80% of these, and multiple screens 

are required to saturate the essential genes of any tissue or tumor subtype. Hits among highly 425 

expressed genes are often replicated but false negatives are more prevalent among genes 

expressed at moderate levels. This carries severe implications for the identification of differentially 

essential genes, in particular using isogenic cell lines to identify synthetic lethals, as it suggests 

numerous replicates need to be screened in order to confidently discriminate cell-line-specific hits 

from false negatives/false positives. 430 

 

A further implication of the false negative rate is that most cells/tissue types carry a larger number 

of overlapping essential genes that had been previously recognized. After allowing for false 

negatives, we identify nearly a thousand genes that are observed across all lineages that are 

deeply sampled in the Avana screens. In contrast, we find only 300-600 tissue-specific genes per 435 

lineage, with most showing overlap between related tissues. In fact, each tissue only carries at 

most a few dozen tissue-unique genes, and these are highly enriched for lineage-specific 

transcription factors. 

 

Finally, we note that there are about 7,000 genes that are constitutively expressed in each cell, 440 

but only about half of these are ever detected as essential. Studies in model organisms suggest 

that virtually every gene shows a growth phenotype under some environmental condition 

(Hillenmeyer et al., 2008; Ramani et al., 2012). It is unknown whether this holds true for individual 

mammalian cells, though tumors are often modeled as though they are colonies of single-celled 

organisms. It is also the case that most genetic screens of tumor cells are carried out under 445 

permissive growth conditions, minimizing nutrient and oxidative stress to maximize growth rate 
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and improve detection of dropouts. Thus, the degree of environmental buffering is largely 

unknown for these constitutively expressed never-essentials.  

 

However, these never-essentials are highly enriched for paralogs. They are as much as 2.5 times 450 

more likely to have a paralog than always-essentials, suggesting that functional redundancy by 

related genes masks detection of a substantial population of genes in monogenic CRISPR 

knockout screens. This has profound implications for efforts to match targeted drugs with tumor 

genotypes, and to discover new candidate drug targets. Targeted small molecules often don’t 

discriminate, or discriminate poorly, between closely related paralogs, and it may be their 455 

promiscuity rather than their specificity that renders them effective. For example, MEK inhibitor 

trametinib effectively targets the protein products of both MAP2K1 and MAP2K2, redundant 

kinases downstream of RAS/RAF oncogenes, but the functional redundancy of these genes 

renders them both invisible to monogenic CRISPR screens, even in RAS/RAF backgrounds (Kim 

et al., 2019). A systematic survey of paralogs families, in particular those with only two family 460 

members that are constitutively expressed, for synthetic lethality could unmask this genetic 

buffering and yield greater insight into the constellation of targetable genes in a tumor. All in all, 

systematic CRISPR screens represent an impressive first step toward characterizing tumor-

specific genetic vulnerabilities, but genetic and environmental buffering may mask a substantial 

number of new targets. 465 

 

Methods: 

 

Essentiality data generation: 

A raw read count file of CRISPR pooled library screens for 517 cell lines using Avana library 470 

(Broad DepMap project 18Q4) was downloaded from the data depository 

(https://figshare.com/articles/DepMap_Achilles_18Q4_public/7270880). Also, we downloaded 
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Project Score (Sanger) screen (Behan et al., 2019)  raw read counts for 323 cancer cells from the 

data depository (https://score.depmap.sanger.ac.uk/). We filtered the dataset to keep only the 

protein-coding genes for further analysis and updated their names using HGNC (Yates et al., 475 

2017) and CCDS (Farrell et al., 2014) database. We discarded sgRNAs targeting multiple genes 

in Avana library to avoid genetic interaction effects. The raw read counts were processed with the 

CRISPRcleanR (Iorio et al., 2018) algorithm to correct for gene-independent fitness effects and 

calculate fold change. After that, the CRISPRcleanR processed fold changes of each cell line 

were analyzed through updated BAGEL v2 build 110 (https://github.com/hart-lab/bagel). In 480 

comparison with published BAGEL version v0.92 (Hart and Moffat, 2016), the updated version 

employed a linear regression model to interpolate outliers and 10-fold cross validation for data 

sampling. Essentiality of genes was measured as Bayes Factor (BF) based on gold standard 

reference sets of 681 core essential genes and 927 nonessential genes (Hart et al., 2014; Hart et 

al., 2017). Positive BF indicates essential genes and negative BF indicates non-essential genes. 485 

Lists of core essential genes and nonessential genes used in this study have been uploaded on 

the same repository with BAGEL v2 software. The screen quality was evaluated by using 

“precision-recall” function in BAGEL software, and F-measure (BF = 5), which is the harmonic 

mean of precision and recall at BF 5, was calculated for each screen. Finally, 446 cell lines for 

Broad screen and 320 cells for Sanger screen were selected for further study by F-measure 490 

threshold 0.8 to prevent noise from marginal quality of screens. 

 

Cumulative Essentials Analysis: 

A cumulative analysis approach was used to evaluate the cumulative distribution of essential 

genes and calculate the total number of true essentials (true positives), as well as the error rate 495 

(false discovery rate, FDR) in a screen. This is based on the principle described previously (Hart 

et al., 2014) that for screens with zero FDR, you would expect a cumulative essential gene 

observations plot that flattens out with a slope of zero at the total number of hits. For the actual 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909606
http://creativecommons.org/licenses/by/4.0/


 22 

screens, when the screens are repeated, the true hits are saturated but because false positives and 

cell-line specific essential genes might also be captured, you get a cumulative essentials curve with a 500 

positive slope as more false positives and context essentials are added. The BFs for all cell lines in 

the Avana18Q4 data were constructed in a matrix. We modeled the cumulative essentials plot in 

any sets of 20 screens from the Avana data. First, the initial set of 20 cell lines were sampled 

without replacement and the essential genes in the first screen out of 20 were identified with a BF 

of greater than or equal to 10. Then, the next screen was analyzed to obtain the essential genes 505 

in that screen and the newly discovered essential genes that were not present in the previous 

screen were added to the list of essential gene hits to obtain a cumulative essential gene list. The 

process was repeated for all subsequent cell lines to capture the cumulative essential genes in 

the 20 screens. The random sampling process was repeated for 100 times to sample different 

cell lines in different orders and prevent bias in the analysis. The resulting mean cumulative 510 

essentials curves were plotted with standard deviations of cumulative essential gene observations 

observed in each of 100 iterations. For each iteration, the newly discovered essential genes in 

each set of 20 screens were also identified and these new hits were also plotted on the same 

plot.  

Synthetic Genome Model- Estimating the number of essential genes per screen and screen 515 

average FDR: 

To estimate the number of essential genes per screen and the average error rate, we conducted in 

silico simulations of synthetic screens. A synthetic genome was constructed with the number of 

genes assayed in the Avana library (N=17427). For a given genome with N number of genes in 

it, there is a number of true essential genes; represented by n, and number of non-essential genes 520 

(N-n). Then, the precision (1 - False Discovery Rate) of the assay is represented by the ratio of 

true positives to that of the total number of hits. We defined a range of thresholds for false 

discovery rate to test in our model from 1-15%. We then randomly sampled this synthetic genome 

with a screen with randomly drawn 1267 hits (the mean number of essential gene hits at BF>10 
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across all Avana screens) from the essential (n) and non-essential (N-n) populations based on 525 

the defined FDR in the simulation (e.g. for 10% FDR, 127 nonessentials and 1,140 essentials 

were randomly selected). We observed the cumulative essential genes across 8 iterations since 

we estimated that sampling 8 screens was a good estimate of observing the trend in screen 

saturation in the Avana data. At the same time, we constructed a mean cumulative essentials curve 

determined from the Avana data for any 8 screens using bootstrapping for 100 iterations. After 530 

running the simulations for a range of different number of essential genes (n) and FDR values, 

cumulative observation curves were plotted for each simulation.  The root mean squared deviation 

for every synthetic screen was calculated by evaluating the difference between the observed 

values and the cumulative essentials curve determined from the Avana data using the 

sklearn.metrics module in SciKits package for Python version 3.6.  535 

Since the Avana data is composed of multiple different tissue types, it is possible that some of 

the tissue specific essential genes would be wrongly included in the false positives. To minimize 

this effect, we repeated the synthetic genome model in individual tissue types in the Avana data 

that were represented by at least 16 high-quality cell lines using the same parameters described 

above.   540 

 

Saturation Modeling- Modeling the number of high confidence essential genes and false 

positives: 

While the in-silico simulations enabled an estimation of the average number of essential genes per 

screen, they didn’t give information about which genes were truly essential. To distinguish essential 545 

genes from false positives, we identified the tissue types in the Avana data that were well represented 

(n>=16 screens). We concluded that 15 tissue types fit our criteria and for these tissues, we evaluated 

the frequency of essential gene observations in any 8 screens. For each tissue type, we randomly 

selected a set of 8 initial screens and identified the cumulative essential genes in this set and also 

plotted the frequency of essentiality observations. For our model, we assumed that if these first 8 550 
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screens have reached saturation (to approximate for our model), then the subsequent hits in the next 

set of screens would give us false positives. Therefore, we randomly selected a subsequent set of 8 

screens from the same tissue type without replacement and looked at the newly discovered 

cumulative essential genes that were not present in the initial screens to model the frequency 

distribution of the false positives. This process was repeated 100 times for each tissue type and the 555 

resulting distribution of essential gene counts in these screens were plotted, which were used to 

calculate the bin-wise FDR. For the 100 iterations that were performed per tissue type, genes 

observed as essential in at least 3 screens on an average out of 8 were considered as high confidence 

essential in that tissue. Finally, we assessed how many genes were captured as essential in common 

in all tissues to find the set of “common” essential genes (n=954) and context essentials in each tissue 560 

type. We used the UpsetR package in R to visualize the set of intersections of essential genes in 15 

tissue types. 

 

Expression data: 

We utilized the log2 transformed RNA-seq TPM expression data from Depmap Data Portal 565 

(https://depmap.org/portal/download/ CCLE_depMap_18Q4_TPM_v2.csv). We filtered the TMP 

expression data for the tissues and cell lines used in our analysis. 393 out of 396 cell lines used 

in downstream analysis had corresponding expression data.  

 

Expression analysis: 570 

Mean TPM expression was calculated for all the genes in each of the bins from the histogram of 

the frequency of essentiality observations of the initial set of 8 screens representing the true 

positives. The expression values were plotted on a secondary y-axis with the error bars 

representing the standard deviation of TPM expression of the genes in each bin. 

 575 
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Essentiality score distribution of genes in non-essential screens:To evaluate the mean 

essentiality score of genes representing true positives in the screens they were not observed as 

essential in, for each iteration, we determined the screens that the genes in each bin had a BF 

<10 and calculated a mean essentiality score for each gene in those screens.  

We visualized the distribution of mean essentiality score observations of genes in each bin in the 580 

non-essential screens as a violin plot. 

 

Process enrichment analysis: 

From our modeling of the number of essential genes and false positives per tissue type, we had 

evaluated the frequency of essential gene observations in the 100 iterations we performed. We 585 

constructed a table of mean number of screen essentiality observations out of 8 screens, in 100 

iterations for every gene in each tissue type. To investigate the trends of enrichment of essential 

pathways, we measured the functional enrichment of gene annotations depending on the 

thresholds for the mean number of screens that a gene was observed as essential in in 0.5 

increments. For each threshold, we used the python gseapy package version 0.9.13 for python 590 

3.6 to perform process enrichment in several databses including KEGG, CORUM and GO 

Biological Process using all 17,427 genes assayed in the Avana library as the set of background 

genes. Going in 0.5 increments in the frequency of screen essentiality observations out of 8 

screens, we plotted the P-value of annotation enrichment for several terms to show the different 

trends in the data. For every gene in the processes that were enriched, we calculated their mean 595 

TPM expression in the corresponding cell lines that the process enrichment analysis was 

conducted. Finally, we evaluated the essentiality scores of the genes in the enriched pathways in 

the corresponding cell lines where the mean number of screen essentiality observation was 

greater than 0 out of 8 screens. We used the seaborn.clustermap function of the seaborn package 

to plot the hierarchically-clustered heatmap of the essentialty scores of the genes in each pathway 600 
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in the corresponding tissue type using the average linkage method and the Euclidean distance 

metric. 

Defining constitutively expressed genes: 

The standard deviation of expression versus the mean expression values for all genes assayed 

in the Avana library (N=17,427) across all 393 cell lines, for which the expression data was 605 

available, were plotted. Constitutively expressed genes were defined as genes with mean 

expression > 2 log2(TPM) and standard deviation of expression expression <1 log2(TPM). With 

these thresholds we identified 7,378 constitutively expressed genes in the Avana dataset. Among 

these, 910 were commonly essential across all cell lines, 3107 context essentials showed 

essentiality profile in some of the Avana screens, whereas 3361 genes were not observed as 610 

essential in any screen. 

 

Paralogs: 

The human paralogous gene pairs for the protein coding genes were utilized from Ensemble 

Release 95 Biomart with GRCh38.p12 genome assembly (Zerbino et al., 2018). This release of 615 

Ensemble estimates paralogues from gene trees that are constructed with HMM as described in 

more detail at http://www.ensembl.org/info/genome/compara/homology_method.html. Other 

information such as chromosome location, paralogue percent sequence identity to human target 

gene and percent sequence identity of target gene to the paralogous gene were also downloaded. 

After removing duplicate gene pairs and filtering for constitutively expressed genes, the percent 620 

sequence identities of all human target genes to their paralogs were plotted against the percent 

sequence identities of the paralogs to the target human gene to reveal that the majority of the 

human paralogous gene pairs had low percentage sequence similarity. Next, the paralog pairs 

were binned according to different thresholds for percent sequence identity from a range of 10-

95% and for each bin the percentage of constitutively expressed never essentials with paralogs 625 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909606
http://creativecommons.org/licenses/by/4.0/


 27 

and the percentage of common essentials with paralogs were calculated and their distributions 

were plotted.  

 

Investigation of evidences of functional redundancy between paralog genes in CRISPR 

screens 630 

To investigate the functional redundancy between paralog genes in Broad and Sanger screens, 

we conducted statistical test of synthetic essentiality which is defined that a gene is essential 

when the other paralog partner is disrupted by damaging mutations (frameshift or nonsense) and 

depletion of expression (mean log TPM < 1.0). Statistical significance was calculated for all one-

one paralog pairs with at least 30% sequence similarity by Fisher’s exact test with a contingency 635 

table of presence of disruption in gene A and binary essentiality of gene B (BF threshold = 10). 

We found total 9 and 33 synthetic essentiality paralog pairs from Broad screens by mutation 

evidences and expression depletion evidences, respectively. Also, we found total 8 and 36 

synthetic essentiality paralog pairs from Sanger screens by mutation evidences and expression 

depletion evidences, respectively. 640 

 

Essential gene comparisons in different datasets: 

Previously defined core essentials from (Hart et al., 2017) and (Behan et al., 2019) were 

downloaded from their corresponding supplementary data sections. Raw read count data from 

Sanger Institution’s Project Score (Behan et al., 2019) was downloaded and processed with the 645 

same pipeline using CrisprCleanR and BagelV2 algorithms to generate Bayes factors for each 

gene in every screen. Genes located on the X-chromosome were removed from the core essential 

gene set V2 (CoreV2, from (Hart et al., 2017)) and Sanger data (Behan et al., 2019) prior to 

comparisons. The common cell lines between Avana and Sanger screens that have F-measures 

of greater than or equal to 0.8 were identified (N=117 cell lines). After filtering for genes assayed 650 

in both libraries, common essential genes and unique hits specific to each dataset were 
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investigated. For Sanger specific core essential genes, their Bayes Factors in the common cell 

lines between Sanger data and Avana data were compared and gseapy module of Python3.6 was 

used to perform biological process enrichment using 'GO_Biological_Process_2018' gene set. 

  655 
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Supplementary Figures 

 

Supplemental Figure 1. A) the distribution of the F-measures of 517 Avana Screens. The red dashed line 

indicates F-measure of 0.8 and screens with F-measure >0.8 were considered as high-performing and were 

retained for downstream analyses. B) Precision-recall curve specifying an example of a good performing 660 

screen (MIAPACA2, in blue) and a bad performing screen (WM115, in green). For all Avana screens, 

precision-recall curves were calculated using the reference gold standard sets of essential and non-

essential genes and the point on the precision-recall curve for each screen where the BF crossed 5 (red 

points) were identified and the F-measure of each screen was calculated at that point. C) Bayes factor of 

10 represents a strict threshold corresponding to a posterior probability of gene essentiality of ~99% D) The 665 

distribution of the root mean squared deviation (RMSD) values for each simulation reveals a range of 

models with RMSD < 2xRMSDmin indicated by the red dashed line. 
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Supplemental Figure 2. The cumulative essentials curves for lineages represented by more than or equal 

to 16 high-quality screens. Sets of 16 cell lines were randomly selected without replacement from all 670 

screens and the number of cumulative essential genes with BF>=10 in each consecutive screen were 

plotted in blue with the error bars indicating the standard deviation of cumulative essential gene 

observations across 100 iterations. The number of newly discovered essential genes in each consecutive  

screen was also plotted in green. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909606
http://creativecommons.org/licenses/by/4.0/


 31 

675 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909606
http://creativecommons.org/licenses/by/4.0/


 32 

Supplemental Figure 3. Synthetic genome modeling, applied to each tissue type, estimates the number 

of essential genes and false discovery rate (FDR) per tissue. Heatmaps showing the root mean squared 

deviation (RMSD) for the models versus the FDR and the number of essential genes in each simulation. 

The white boxes indicate models with RMSD <2 x RMSDmin. 
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Supplemental Figure 4. The best fitting models from the synthetic genome modeling approach for 

individual tissue types. The cumulative essentials curves were plotted for the best fitting model indicated 

by the blue lines and their fit to the Avana data in their corresponding tissue types (cumulative essential 705 

genes across sets of 8 call lines randomly selected without replacement from all available screens in that 

tissue type for 100 iterations) is shown in red. 
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Supplemental Figure 5. The number of genes in each bin and the mean mRNA expression (TPM) of the 730 

genes (indicated by the secondary Y-axis in orange) in corresponding bins for each tissue type for putative 

true positives (TPs) and false positives (FPs). Error bars indicate the standard deviation of expression of 

genes in each bin. 
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Supplemental Figure 6. Bar plots in each tissue type showing, for genes binned according to the mean 755 

number of screens they are observed as essential in 100 iterations, the distribution of their percentage in 

the previously defined gold standard set of core essential genes (Core V2). 
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Supplemental Figure 7. A) Scatter plot of the standard deviation versus mean mRNA expression (TPM) 760 

of all genes assayed in the Avana data across all cell lines for which the expression data was available. 

The red dashed lines indicate the thresholds to define constitutitvely expressed genes with mean logTPM>2 

and stdev <1 (n=7,378 genes). B) Scatter plot and marginal histograms of the constitutively expressed 

paralogs in Ensemble have low amino-acid sequence similarity. 
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Supplementary Table Legends 
Supplementary Table 1. Bayes Factors for the 446 cell lines used in this study with F-measure 780 

above 0.80 post CrisprCleanR processing. 
Supplementary Table 2. Table of binwise false discovery rates across 100 iterations for the 

tissue types investigated in this study. 
Supplementary Table 3. Gene frequency observations out of 8 screens across 100 iterations by 

tissue type.  785 
Supplementary Table 4. Table of 954 common essential genes and high confidence context 

essential genes in each tissue type. 
Supplementary Table 5. Common essential and core essential genes unique to each approach 

among previously defined core essential genes. 
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