




 

Figure 4. Mice successfully integrate priors into their decisions and task strategy. a, Block structure in an example                  
session. Each session started with 90 trials of 50:50 prior probability, followed by alternating 80:20 and 20:80 blocks of varying                    
length. Presented stimuli (black, 10-trial running average) and the animal’s choices (red, 10-trial running average) track the                 
block structure. b, Psychometric curves shift between biased blocks for the example mouse (left) and averaged over all animals                   
(right). For each animal and signed contrast, we computed their ‘bias shift’ by reading out the difference in choice fraction                    
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between the 80:20 and 20:80 blocks (dashed lines). c, Shift in rightward choices as a function of signed contrast. Each line                     
represents an individual mouse (grey), with the example mouse in black. d, Average shift in rightward choices as a function of                     
signed contrast for each laboratory (colors as in c; error bars show mean +- 68% CI). e, Shift in rightward choices at signed                       
contrast = 0, for each lab (grey) and the IBL as a whole (yellow). f, Mice change their strategy across tasks. Psychometric                      
curves as a function of choice and reward history, with previous rightward/leftward choices shown in blue/green, and previous                  
rewarded/unrewarded trials in dark/light colors and solid/dashed lines. Error bars show mean +- 68% CI across animals. g,                  
Each animal’s ‘history strategy’, quantified as the shift in the psychometric function by previous choice, separately after correct                  
and error trials and between the basic (circles) and biased (triangles) task; colors as in c.  

The change in block statistics caused comparable shifts in the psychometric curves of mice in all 7                 
laboratories (Figure 4c,d). As expected, block structure had the greatest impact on choices when              
sensory evidence was absent (contrast = 0%, Figure 4c,d ). In this condition, rightward choices in the                
two conditions differed by an average of 29.6%, and this value did not significantly differ across                
laboratories (Figure 4e, one-way ANOVA F(6) = 1.179, p = 0.333). 
 
Lastly, we compared how stimulus statistics influenced choice behavior in both of the task variants               
(Figure 4f,g ). For both the unbiased and biased versions of the task, we constructed psychometric               
functions conditioned on the previous trial’s choice (Figure 4f, blue vs green) and outcome (Figure 4f,                
dark vs light). Mice tended to repeat their choices, both after rewarded and unrewarded choices. The                
tendency for repetition was weak in the basic task (Figure 4f, left) and much stronger in the biased task                   
(Figure 4f , right). Representing each animal’s change in ‘history strategy’ from the basic task (circles) to                
the biased task (triangles) as a vector (Figure 4g), we found no significant difference in the vector’s                 
norm (one-way ANOVA F(1,6) = 0.5523, p = 0.7663) or angle (circular Watson-Williams test, F(1,6) =                
0.5601, p = 0.7603) between labs. Mice in different laboratories, therefore, incorporated history into their               
task strategy in similar ways. 

Discussion 
Like other scientific disciplines, neuroscience has been subject to concerns about reproducibility (Baker,             
2016 ). This could be due to insufficient standardization of protocols and equipment across laboratories,              
or to the choice of behaviors that depend on too many internal and external factors. We developed and                  
employed identical experimental equipment and a standard set of protocols to examine whether mouse              
decision-making can be reproduced across laboratories. We trained 101 mice in this task across 7               
laboratories in 3 countries, and obtained ~3 million mouse choices. Once mice learned the task, their                
performance was indistinguishable across laboratories. Mice in different laboratories had similar           
psychophysical performance in a purely sensory version of the task, and adopted similar choice              
strategies in a more advanced version of the task that required tracking the stimulus prior probability.  

The most prominent type of variability we observed was in a factor we had not attempted to control: the                   
learning rates of individual mice, both within and across laboratories. While we cannot ascertain the               
source of cross-laboratory variability in learning rates, we believe the variability might originate from              
differences in the expertise and familiarity of different labs with visual neuroscience and mouse behavior.               
We speculate that as experimenters gain more experience, the differences in learning times will              
decrease. Indeed, one approach to standardizing learning rates might be to introduce full automation in               
behavioral training, reducing the need for human intervention [e.g., Scott et al., 2013 ; Poddar et al.,                
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2013 ; Aoki et al 2017 ]. We anticipate that approaches such as self-head fixation, live-in home cage                
training systems, and individualized dynamic training methods [Roy et al., 2018 ] used independently or              
in combination may reduce variability in learning rates. 

Nonetheless, the origin of individual differences in learning times is a key question that we plan to                 
investigate. The full dataset contains data from many mice, but the number of animals per laboratory is                 
relatively small and quite variable, as different experimental sites became active in the collaboration at               
different times. As these laboratories continue to train the much larger cohort of mice needed for our                 
map of brain activity [International Brain Laboratory, 2017 ], we expect that the increased statistical              
power in the larger data set will enable us to more extensively examine the sources of variability in                  
learning rates.  

In addition to demonstrating reproducibility, we hope that the resources we have created will be useful to                 
the community (see Appendices for a detailed description of all aspects of the behavioral apparatus               
and its associated automated training protocol). The apparatus designs, hardware and software that we              
used are entirely open-source and modular, allowing adjustments to accommodate different scientific            
questions. The data are freely accessible at data.internationalbrainlab.org , and include all 3 million             
choices made by all the mice during the task.  

We aim to support the wider adoption of this experimental apparatus and task by other laboratories. To                 
this end, we have released the documentation, protocols, and code required to implement the task, train                
mice, and analyze the behavioral data. We hope that these resources catalyze the development of new                
adaptations and variations of our approach, and accelerate the use of mice in high quality, reproducible                
studies of neural correlates of decision-making.  
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Methods 
All procedures and experiments were carried out in accordance with the local laws and following               
approval by the relevant institutions such as the Animal Welfare Ethical Review Body in the UK and the                  
Institutional Animal Care and Use Committee in the US. 

Animals 
Animals (all C57BL6/J mice obtained from Jackson Laboratory or Charles River) were co-housed             
whenever possible, with a minimum enrichment of nesting material and a mouse house. Mice were kept                
in a 12-h light-dark cycle, and fed with food that was 5-6% fat and 18-20% protein. See Suppl. Table 1                    
for details on standardization. 

Surgery 
A detailed account of the surgical methods is in Appendix 1 . Briefly, mice were anesthetized with                
isoflurane and head-fixed in a stereotaxic frame. The hair was then removed from their scalp, much of                 
the scalp and underlying periosteum was removed and bregma and lambda were marked. Then the               
head was positioned such that there was a 0 degree angle between bregma and lambda in all directions.                  
The headbar was then placed in one of three stereotactically defined locations and cemented in place.                
The exposed skull was then covered with cement and clear UV curing glue, ensuring that the remaining                 
scalp was unable to retract from the implant.  

Materials and Apparatus 
For a detailed parts lists and installation instructions, see Appendix 3 . Briefly, all labs installed               
standardized behavioral rigs inspired by Burgess et al., 2017, consisting of an LCD screen (LP097QX1,               
LG), a custom 3D-printed mouse holder and head bar fixation clamp to hold a mouse such that its                  
forepaws rest on a steering wheel (86652 & 32019, LEGO). Silicone tubing controlled by a pinch valve                 
(225P011-21, NResearch) was used to deliver water rewards to the mouse. The general structure of the                
rig was constructed from Thorlabs parts and was placed inside an acoustical cabinet (9U acoustic wall                
cabinet 600 X 600, Orion). LCD screen refresh times were captured with a Bpod Frame2TTL               
(Sanworks). Ambient temperature, humidity and barometric air pressure were measured with the Bpod             
Ambient module (Sanworks), wheel position was monitored with a rotary encoder (05.2400.1122.1024,            
Kubler) connected to a Bpod Rotary Encoder Module (Sanworks). Video of the mouse was recorded               
with a USB camera (CM3-U3-13Y3M-CS, Point Grey). A speaker (HPD-40N16PET00-32, Peerless by            
Tymphany) was used to play task-related sounds, and an ultrasonic microphone (Ultramic UM200K,             
Dodotronic) was used to record ambient noise from the rig. All task-related data was coordinated by a                 
Bpod State Machine (Sanworks). 
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Habituation, Training and Experimental Protocol 
For a detailed protocol on animal training, see Appendix 2 . Mice were handled for at least 10 minutes                  
and given water in hand for at least for two consecutive days prior to head fixation. On the second of                    
these days, mice were also allowed to freely explore the rig for 10 minutes. Subsequently, mice were                 
gradually habituated to head fixation over three consecutive days (15-20, 20-40, and 60 minutes,              
respectively), observing an association between the visual grating and the reward location. On each trial,               
with the steering wheel locked, mice passively viewed a Gabor stimulus (100% contrast, 0.1              
cycles/degree spatial frequency, random phase, vertical orientation) presented on a small screen (size:             
approx. 246 mm diagonal active display area). The screen was positioned 8 cm in front of the animal                  
and centralized relative to the position of eyes to cover ~102 visual degree azimuth. The stimulus                
appeared for ~10 s randomly presented at -35° (left), +35° (right), or 0° (center) and the mouse received                  
a reward in the latter case (3ul water with 10% sucrose).  

On the fourth day, the steering wheel was unlocked and coupled to the movement of the stimulus. For                  
each trial, the mouse must use the wheel to move the stimulus from its initial location to the center to                    
receive a reward. Initially, the stimulus moves 8° per mm of movement at the wheel surface. If the                  
mouse completes at least 200 trials within a session, the gain is immediately halved and remains at                 
4°/mm for all future sessions. At the beginning of each trial, the mouse must not move the wheel for a                    
quiescence period of 200-500 ms (randomly drawn from an exponential distribution with a mean of 350                
ms). If the wheel moves during this period, the timer is reset. After the quiescence period, the stimulus                  
appears on either the left (-35°) or right (+35°) with a contrast randomly selected from a predefined set                  
(initially, 50% and 100%). Simultaneously, an onset tone (5 kHz sine wave, 10 ms ramp) is played for                  
100 ms. As soon as the stimulus appears, the mouse has 60 s to move the stimulus. If it correctly moves                     
the stimulus 35° to the center of the screen, it receives a 3 μL reward; if it incorrectly moves the stimulus                     
35° away from the center (20° visible and the rest off-screen), it receives an error timeout. If the mouse                   
responds incorrectly or fails to reach either threshold within the 60-s window, a noise burst is played for                  
500ms and the inter-trial interval is set to 2 s. If the response was incorrect and the contrast was 'easy'                    
(≥50%), a ‘repeat’ trial follows, in which the previous stimulus contrast and location is presented with a                 
high probability (see Appendix 2).  

Mice were classified as having learned the basic visuo-spatial detection task once three criteria were               
met: (1) 0% and 6% contrasts had been introduced to the contrast set, (2) >200 trials were completed                  
with >80% performance on easy (100% and 50% contrasts) trials in each of the last three sessions, and                  
(3) a four-parameter psychometric curve (bias, lapse left, lapse right, threshold) fitted to performance on               
all trials from the last three sessions had parameter values of bias < 16, threshold < 19, and lapses <                    
0.2. 

Once an animal was classified as trained on the basic task, it moved to a biased version of the visual                    
detection task. In this variant of the task, the trial structure is identical, except that stimuli are more likely                   
to reappear on the same side for variable blocks of trials, and counterbiasing ‘repeat’ trials are not used.                  
Each session begins with 90 trials in which stimuli are equally likely to appear on the left or right (10                    
repetitions at each contrast), after which the probability of the stimulus appearing on the left alternates                
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between 0.8 and 0.2 for a given block. The number of trials in each block is drawn from a truncated                    
exponential (range = 20-100, mean 50, τ = 60) 

Classification of laboratory membership 
Three different classifiers were used to try to predict in which laboratory a mouse was trained based on                  
behavioral metrics: Random Forest, Naive Bayes and Logistic Regression. We used the scikit-learn             
implementation available in Python with default configuration settings for the three classifiers. The             
dataset was split into a training set and a testing set according to 3-fold cross-validation, this random                 
split was repeated 2000 times. For every split, the classification accuracy was calculated as the F1 score                 
(equation 1) which is a standard way of measuring a classifier’s accuracy. An F1 score of 0 indicates                  
complete misclassification and a score of 1 indicates perfect classification. 

 
Equation 1 

 

Data and code availability 
The data can be accessed in two ways (International Brain Laboratory, 2019 ): via DataJoint and web                
browser tools at data.internationalbrainlab.org or via Open Neurophysiology Environment (ONE) through           
FigShare at https://doi.org/10.6084/m9.figshare.11636748 . Python scripts to produce all the figures are           
available at github.com/int-brain-lab/paper-behavior, and a Jupyter notebook for re-creating Figure 2 can            
be found at https://jupyterhub.internationalbrainlab.org/.  

 

Appendices 
Appendices are available online: 

Appendix 1 

Appendix 2 

Appendix 3 

CAD drawings of the components listed in the Appendices and used to build the Behavior Rig are also                  
available online 
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Supplementary Tables 

Suppl. Table 1. Standardization 

Category Variable Standardized Standard Recorded 

Animal Weight  Within a range 18 - 30g at headbar implant Per session 

 Age Within a range 10-12 weeks at headbar implant Per session 

 Strain Exactly C57BL/6J Once 

 Sex No Both Once 

 Provider Two options Charles River (EU) Jax (US) Once 

Training Handling One protocol Appendix 2 No 

 Hardware Exactly Appendix 3 No 

 Software Exactly Appendix 3 Per session 

 Fecal count N/A N/A Per session 

 Time of day No As constant as possible Per session 

Housing Enrichment Minimum requirement At least nesting and house Once 

 Food Within a range Protein: 18 - 20%, Fat: 5 - 6.2% Once 

 Light cycle Two options 12 Hr inverted or non-inverted Once 

 Weekend water  Two options Citric acid water or measured water Per session 

 Co housing status No Co-housing preferred, separate problem    
mice 

Per change 

Surgery Aseptic protocols One protocol Appendix 1 No 

 Tools/Consumable
s 

Required parts Appendix 1 No 
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Suppl. Table 2. Training progression criteria 

Adaptive parameter Initial value 

Contrast set [100, 50] 

Reward volume 3  μL 

Wheel gain 8 deg/mm 

 

Criterion Outcome 

200 trials completed in a session Wheel gain decreased 4 deg/mm 

> 70% correct Contrast set = [100, 50, 25] 

> 70% correct after above Contrast set = [100, 50, 25, 12.5] 

200 trials after above Contrast set = [100, 50, 25, 12.5, 6.25 ] 

200 trials after above Contrast set = [100, 50, 25, 12.5, 6.25,0 ] 

200 trials after above Contrast set = [100, 25, 12.5, 6.25, 0 ] 

200 trials complete in a session &  
reward volume >= 1.5 μL 

Next session decrease reward by 0.1 μL  

For each of the last 3 sessions:  
>200 trials completed, & 
>80% correct on 100% contrast &  
all contrasts introduced &  
psychometric absolute bias <16 &  
psychometric threshold <19 & 
psychometric lapse rates < 0.2 

Training on the basic task obtained.  
Proceed to training on the biased task.  

 

Suppl. Table 3. Within-session disengagement criteria 

Criterion Explanation 

Session length > 90 min Session too long 

< 400 trials completed & > 45 min elapsed Not enough trials 

> 400 trials & 20-trial rolling median RT > 5x          
session median RT 

Slow-down 
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Suppl. Table 4. Comparison of training times across laboratories 

  P values Dunn’s Multiple Comparisons Test,  
* p < 0.05, ** p < 0.01, *** p<0.001  

 Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 

Lab 1               

Lab 2 *0.01             

Lab 3 0.25 0.124           

Lab 4 0.894 0.027 0.361         

Lab 5 0.356 0.181 0.958 0.457       

Lab 6 0.107 ***<0.001 **0.005 0.103 *0.019     

Lab 7 **0.003 0.357 0.031 **0.007 0.050 **<0.001   

 

Suppl. Table 5. Comparison of trial completion times across laboratories 

  P values Dunn’s Multiple Comparisons Test, 
 * p < 0.05, ** p < 0.01, *** p<0.001  

 Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 

Lab 1               

Lab 2 0.682             

Lab 3 0.590 0.897           

Lab 4 0.062 0.119 0.145         

Lab 5 0.345 0.18 0.143 **0.009       

Lab 6 0.086 0.164 0.197 0.855 *0.014     

Lab 7 **0.004 **0.008 *0.01 0.261 ***<0.0001 0.19   
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Suppl. Table 6. Comparison of number of trials across laboratories 

  P values Tukey’s Multiple Comparisons,  
* p < 0.05, ** p < 0.01, *** p<0.001  

 Lab 1 Lab 2 Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 

Lab 1               

Lab 2 0.9             

Lab 3 0.9 0.63           

Lab 4 0.686 0.9 0.365         

Lab 5 0.06 0.361 *0.011 0.809       

Lab 6 0.9 0.9 0.9 0.861 0.140     

Lab 7 0.189 *0.016 0.349 *0.007 **0.001 0.147   
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Supplementary Figures 
 

 

Supplementary Figure 1. Session-ending criteria. Proportion of sessions that ended in each of the 3 criteria for all mice that                    
learned the task. The three criteria were, 1. Fewer than 400 trials in 45 minutes (green); 2. over 400 trials performed and                      
median reaction time over the last 20 trials was over 5x the median for the whole session (orange); 3. Over 400 trials performed                       
and session length over 90 minutes (blue). 
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Supplementary Figure 2. Behavioral metrics mice were not explicitly trained on varied over labs. a-b, For the three                   
sessions at which a mouse passes the “trained” criterion, box plots showing the distribution of ( a) trial duration from go cue to                      
correct or incorrect outcome in ms and ( b) the average number of trials over the three sessions. c-d, For the subsequent                     
sessions after criterion (14 ± 3.8 sessions per animal), using only data from the unbiased block (first 90 trials per session). Box                      
plots showing the distribution of (c) trial duration as in a and ( d) the average number of trials per session. 
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Supplementary Figure 3. Classification of lab membership by three different classifiers could not predict lab               
membership from behavior during criterion or subsequent sessions. a , Cross-validated classification performance of a              
Random Forest, Naive Bayes and Logistic Regression classifier while predicting lab membership based on behavioral metrics                
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from Fig. 3c-e (criterion sessions). The positive control included the time zone in which a mouse was trained in the dataset. b,                      
Normalized confusion matrices for the classifiers in a which indicates the proportion of occurrences that a mouse was classified                   
to be in the predicted lab (x-axis) while it was from the ‘actual lab’ (y-axis). c, Normalized confusion matrices as in b for the                        
positive control. d-e, Classification performance and confusion matrices as in a-c but for the subsequent sessions after criterion                  
had been reached. 

 

 

Supplementary Figure 4. Performance variability within and across laboratories goes down over training time. a-b,               
Variability in performance (s.d. of % correct) in easy trials (100% and 50% contrast) ( a) within, and ( b) across laboratories                    
during the first 40 days of training. 
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