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Neuronal networks in rodent primary visual
cortex (V1) can generate oscillations in differ-
ent frequency bands depending on the network
state and the level of visual stimulation. High-
frequency gamma rhythms, for example, domi-
nate the network’s spontaneous activity in adult
mice but are attenuated upon visual stimulation,
during which the network switches to the beta
band instead. The spontaneous LFP of juve-
nile mouse V1, however, mainly contains beta
oscillations and presenting a stimulus does not
elicit drastic changes in collective network oscil-
lations. We study, in a spiking neuron network
model, the mechanism in adult mice that allows
for flexible switches between multiple frequency
bands and contrast this to the network structure
in juvenile mice that do not posses this flexibility.
The model is comprised of excitatory pyramidal
cells (PCs) and two types of inhibitory interneu-
rons: the parvalbumin expressing (PV) interneu-
ron, which produces gamma oscillations, and the
somatostatin expressing (SOM) cell, which gen-
erates beta rhythms. Our model simulations sug-
gest that both of these oscillations are gener-
ated by a pyramidal-interneuron gamma (PING)
mechanism. Furthermore, prominent gamma
and beta oscillations in, respectively, the spon-
taneous and visually evoked activity of the sim-
ulated network only occurred within the same
network configuration when there was a bal-
ance between both types of interneurons so that
SOM neurons are able to shape the dynamics of
the pyramidal-PV cell subnetwork without dom-
inating dynamics. Taken together, our results
demonstrate that the effective strengths of PV
and SOM cells must be balanced for experimen-
tally observed V1 dynamics in adult mice. More-
over, since spontaneous gamma rhythms emerge
during the well-known critical period, our find-
ings support the notion that PV cells become in-
tegrated in the circuit of this cortical area during
this time window and additionally indicate that
this integration comprises an overall increase in
their synaptic strength.

Introduction

Over the past decade, the primary visual cortex (V1)
of mice has been intensively studied using transgenic
techniques. Distinct subtypes of inhibitory interneurons
that use gamma-aminobutyric acid (GABA) as neuro-

transmitter were, for example, identified and linked to
various spiking behaviors [1, 2]. These different subpop-
ulations also have specific connectivity patterns with re-
spect to one another; parvalbumin-expressing (PV) in-
terneurons are mutually inhibited and receive inhibition
from somatostatin-expressing (SOM) cells, while the lat-
ter subtype primarily receives inhibition from vasoac-
tive intestinal peptide expressing (VIP) interneurons [3].
These subtype-specific connection motifs also have an
additional geometric component: PV interneurons in
cortical layer 2 and 3 (L2/3) predominantly receive ver-
tical inputs originating from cortical layer 4 (L4) com-
pared to horizontal ones from other L2/3 cells, whereas
the opposite is true for SOM cells as these receive more
horizontally than vertically aligned inputs [4].

This particular subtype-specific arrangement of the
a- and efferents within the network probably underlies
the different synchronization regimes that have been ob-
served in mouse V1 [5, 6, 7]. One of these changes
is the attenuation of gamma oscillations when visually
stimulating the adult mouse; synchronization is instead
achieved in the beta frequency band (Figure 1C-D)
[5, 6]. The extent to which gamma and beta rhythms
are decreased and enhanced, respectively, depends on
the size of the stimulus, which led to the hypothesis
that an inhibitory surround effect underlies this switch
in synchrony [4, 6]. These gamma oscillations are not
present in younger mice as they develop during the
critical period (CP) (Figure 1A), a period well-known
for its increased levels of ocular dominance plasticity
[5, 8]. Furthermore, before the CP, visual stimulation
does not alter the network’s synchronization frequency,
even though beta power is still slightly enhanced (Fig-
ure 1B) [5]. What exactly initiates the development of
gamma rhythms during this time window is unclear, but
PV cells are likely involved: studies using optogenetic
perturbations indicate that PV and SOM cells can be
associated with the gamma and beta oscillations, respec-
tively [6, 9, 10]. PV cell progenitors transplanted into
the V1 of adult mice differentiate into the PV (hence not
the SOM) subtype, integrate successfully in the network
and initiate a period with enhanced plasticity that re-
sembles the CP [11, 12]. These findings thus indicate
that PV cells are involved in gamma oscillation genera-
tion and in CP associated plasticity, but even more ev-
idence can be found in the experimental literature that
strengths these associations. One other study, for in-
stance, shows that gamma rhythms in V1 are transiently
amplified right after the start of monocular deprivation
(MD) in juvenile mice and in adult ones that have been
depleted of the perineuronal nets (PNNs), which pre-
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Figure 1: Visual stimulation elicits a change in the synchronization of the neural ensemble in the adult, but not juvenile, mouse primary

visual cortex (V1)

(A-B) Spectral density characterization of the spontaneous (A) and visually evoked (B) local field potential (LFP) in V1 of juvenile mice

(< P20).

(C-D) Spectral density characterization of the spontaneous (C) and visually evoked (D) LFP in adult mouse V1 (> P60).

Abbreviations: stim. = stimulus.

dominantly ensheath PV cells, in that area [7, 13]. Al-
though the exact cause for this rise in gamma power is
unknown, it has been shown that, in the same time in-
terval after the start of MD during the CP, the spike
rates of pyramidal cells (PCs) were at first reduced but
gradually rose to their original values through a decrease
of the PV cell activity in the network [14]. Taken to-
gether, these two findings also support the notion that
PV cells generate gamma rhythms and are involved in
the plasticity mechanisms that are active during the CP.
With respect to the former of these two studies, how-
ever, it must be mentioned that there is a controversy
as to whether the stronger gamma oscillations follow-
ing PNN removal critically depend on MD. A recent
study, namely, has demonstrated that merely removing
the PNNs results in enhanced gamma power as well and
that stronger thalamic inputs to the PV cells in 1.4 could
account for this; however, this rise in gamma power is
attenuated by depleting the PNNs and starting MD im-
mediately thereafter [15].

So far, the phenomenon of surround inhibition and the
shift from gamma to beta oscillations via visual stimu-
lation has only been explained at the level of neural
mass models [6, 16]. These models, however, do not
reveal the spiking-dependent network mechanisms and,
furthermore, do not explain the emergence of gamma
oscillations during the CP. Therefore, we, inspired by
the phenomena mentioned above, developed a spiking
neuron network model comprising pyramidal, PV and
SOM cells to determine the network configurations that
enable the switch in synchronization from the gamma
to the beta frequency band upon visual stimulation.

Separate considerations of the pyramidal-PV and
pyramidal-SOM cell subnetworks in our model not only
confirm the hypotheses that PV and SOM cells are in-
volved in the generation of gamma and beta oscilla-
tions respectively, but additionally suggest that these
rhythms are both realized via pyramidal-interneuron

gamma (PING) mechanisms. Analogously, the results
acquired through the variation of the size of the stimu-
lated area agree with previous models that the respec-
tive enhancement and attenuation of beta and gamma
rhythms through visual stimulation are a consequence
of surround inhibition and, in addition, show that this
switch is realized by SOM cells outcompeting the PV
cells generating the gamma oscillation so that the net-
work produces beta rhythms instead. Finally, by sam-
pling network activity for various settings of the PV and
SOM cell projection strength, we demonstrate that only
a restricted range of values for these parameters gives
rise to the attenuation of gamma and amplification of
beta oscillations following visual stimulation. This in-
dicates that these two subtypes must exert an approxi-
mately equal influence on the PCs in adult mice; if this
balance is not present, the characteristic switch in the
network synchronization frequency cannot be induced in
one and the same network realization. Moreover, given
that the spontaneous LFP of the pre-CP mouse V1 con-
tains primarily beta oscillations and the post-CP one
predominantly gamma, our result also suggest that PV
cell projections are, on average, strengthened across the
CP, which is consistent with the notion of PV cells be-
ing integrated in the local network of this cortical area
during that time window.

Method

The results presented in this article were obtained
through means of a network model, which was com-
prised of 4500 neurons. These neurons were modeled
using Izhikevich’s model [17] and received input from
three sources: background activity, visually induced cur-
rents and recurrent inputs. With respect to the latter
input source, the connectivity patterns depicted in Fig-
ure 2A were implemented. The model’s equations will
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be elaborated upon in the remainder of this section, fol-
lowed by a brief description explaining how they were
implemented and how the analysis was carried out.

Membrane potential dynamics

In our model, a total of 4500 neurons situated in L2/3
were considered: N©¢ = 3600 pyramidal, NV = 495
PV and NSYM — 405 SOM neurons, which roughly
matched the reported relative abundances of these cell
types in V1 [2, 18]. They were distributed across a 2 x 2
square patch by randomly assigning them positions in a

Cartesian coordinate system (r;-‘) via
A A A
i = (@7, y5) = (s 5), (1)

where the index j € {1,2,..., N4} denotes a cell within
neuron population A € {PC, PV,SOM} and 7, ; and
7y,; are independent random values drawn from a uni-
form distribution between —1 and 1. The square’s size
was defined to be dimensionless as we wanted to inves-
tigate how the extent of the activated area relative to
the entire patch of cortex influenced the oscillations gen-
erated by the model. An example of the resulting cell
positions is shown in Figure 2B.

The dynamics of the membrane potentials were simu-
lated using Izhikevich’s model, which comprises a set of
two coupled differential equations [17]. The first of them
specifies the membrane potential (V]A(t), in Volts),

avA()
dt

= 40,000 - V/A()? + 5,000 - V;*(¢)

I (1)
L @)

and the other describes a slower gating variable
(u?l(t), in Volts/second),

u
d (jﬁ(t) _ CLA . (bA . V]A(t) _ UJA(L‘)) (3)

In these two equations, C,, and IJA(t) represent the
membrane capacitance of and the total input current
received by the neuron under consideration (see below),
respectively. An action potential is detected when the
membrane potential exceeds 30 mV; such a detection
imposes the following reset condition on the membrane
potential and the gating variable:

VjA(t) —cA
u (t) < ud(t) +d*

+ 140 — uf'(t)

if VA(t) > 0.030 V then {
(4)

In the two preceding equations, a®, b, ¢* and d* are
parameters chosen such that the modeled spiking behav-
ior resembles its experimentally observed counterpart.
The parameter values are given in Table 1; these values
were based on the values given in the literature for these
cell types [1, 17], but have been adjusted in order to ap-
proximately match the oscillation frequencies emerging
from the model to those observed in experimental stud-
ies [5, 6, 9]. Additionally, the cell capacitance was set
to C,, = 100 pF for all subtypes.

We recognize that Eqs. 2-4 are in a somewhat differ-
ent form than in [17]. In the Supplementary method it
is explained how the forms shown here derive from our
choice of units.

Input currents

The total input current received by each cell consisted
of three different components, which are the background
currents (I,g’j(t)), the visually induced input from L4

(I, ;(t)) and the recurrent inputs (I}, .(t)):

v18,J rec,j

L () = Iig ; () + Lji 4 (8) + Liee (1), (5)

The background represents inputs originating from an
ensemble of Kbq neurons that are not explicitly mod-
eled but whose spike trains are characterized by Pois-
son processes with a constant firing rate of RAg. When
the product of the latter two parameters is denoted by
RK ,f;, the resulting background current received by the
neuron can be approximated via [19]

Il;?;»]‘(t) = gli;,j (t) (Ebg — VjA(t)), where (6)

.5(8) = 9o (R + /R, - €5,5,0). ()

In these equations, gfg j( ) denotes the conductance in-

duced in the cell and gbq and Ep4 are the overall scale
of conductance induced by and the reversal potential
of the background neuron ensemble, respectively. Fi-
nally, {I;‘;,j(t) is a Gaussian distributed random vari-
able with zero mean and a temporal correlation of
<£l;4g,j(t) ~§;277j (t')) = exp(—|t —t'|/Tog) /276g. The values
for the subtype-specific parameters are shown in Table
1. The remaining parameters, Ep, and 7,4, were respec-
tively set to 0 mV and 2 ms. Finally, note that the value
for RK;,” was changed in some simulations to assess
whether a particular circuit produced rhythms via an
interneuron gamma (ING) or a PING mechanism; if the
excitability of the pyramidal cells is increased, an ING
and PING mechanism give rise to similar and altered
oscillation frequencies, respectively [20].

The dorsal part of the lateral geniculate nucleus,
which receives its input from the retina, projects to L4
of V1 [21]. The signals are subsequently forwarded to
L2/3 [22, 23]. Since the model represents L2/3 neu-
rons, visually induced activity was therefore assumed
to be provided by the afferents originating from the
same horizontal location but in L4. Following a pre-
vious study [4], it was decided that only pyramidal and
PV cells (A € {PC, PV'}) received visually induced cur-
rents that thus presumably originate from L4 (Figure
2A). Not all the cells within these subgroups received
visual input: cells needed to be within a square field
with length 2- D,,;s that was concentric with the square
patch. Approximately half of the cells within this area
were randomly selected to receive the visually induced
currents. Taken together, the following condition thus
had to be met by a pyramidal or PV cell to receive vi-
sually induced input:

2 < Duis A [yl < Duis A 0.5 >0, . (8)

Here, A is the logical AND operator and 77;“2-57]- is a num-
ber randomly drawn from the standard uniform distri-
bution (interval between 0 and 1). The visually induced
current had the following form:

I 5(2)

v1s,J

= I’uis,O : (1 + Vfis,j(t))’ (9)
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Table 1: Values for the subtype-specific parameters in the model. A + sign designates a Gaussian distributed random variable following

the notation mean + standard deviation.

Abbreviations: PV = parvalbumin expressing, Pyr. = pyramidal, SOM = somatostatin expressing.

Neuron type a (s1) b (s1) ¢ (mV) d (Vs RK{?g (Hz) gﬁg (pS-s)
Pyr. 40+14 200 —65.0£6.5 8.0£0.8 1,500 ) 6
PV 100 £ 10 250 —65.0+6.5 2.0£0.2 200 22
SOM 40+4 250 —65.01+6.5 20+0.2 1 6

where I,;, o represents the magnitude of the current and
Viis ;(t) is Gaussian white noise with a mean of 0 and
a standard deviation of 1. If not specified otherwise,
Iyis,0 had a value of 100 pA. The variable D,;s was var-
ied to assess its effect on the network’s synchronization.
It approximately reflected the effects of stimulus size,
without specifically taking into account the retinotopic
mapping as well as other feature maps that are present
in the mouse visual cortex [24].

The recurrent inputs included the currents that the
explicitly modeled neurons in the network received from
one another. The probability of neuron j from subtype
A to have neuron k from subtype B as an afferent was
calculated via

PB—}A ( A|$B B—)A) B B—>A) PB—>A

con ’

(10)
where the factor P24 has been included so that the
relative number of connections approximately matched
the subtype-specific connection probabilities listed in
the experimental literature [3, 25, 26]. In addition,
the function G(x|m, s) represents the periodic Gaussian

probability distribution function

i = 53 o (- ),

(11)
where L corresponds to the length of the square patch.
In this context, one can interpret ¢®~4 as the width
of the area around a cell from subpopulation B wherein
it is possible for that neuron to connect to a neuron
from subtype A. Note also that Eq. 10 and 11 imply
that the probability distribution is not strictly circularly
symmetric. Instead, the periodic Gaussian increases the
likelihood that a neuron close to one side of the square
patch is connected to a cell that is near the opposite
side so that the number of inputs to a neuron from a
particular subtype is approximately equal throughout
the square patch. The weights of the connections wEJﬁA
were initialized via

wBoA _ SB  with probability PBHA
& 0  with probability 1 — PE=4"

Gy lyr,

(12)

where SP is the subtype-specific projection strength.
Given these weights, the recurrent input received by
neuron j from subpopulation A € {PC, PV,SOM} was

determined via
Z _BA (B A BoA
rec j Grec Erec - V E Sk * W .

(13)
In this expression, EZ_ is the reversal potential of the
synapse type associated with the cell type at the presy-
naptic side and gf;A is the amplitude of the conduc-
tance induced in the postsynaptic cell by a presynaptic

spike. In addition, sP(¢) is the synaptic gating variable

attached to presynaptic neuron k from population B,
even though it represents changes at the postsynaptic
side. It obeys the dynamics described by

dsg(t) _ s (t)
T B and (14)
sB(t) < s (t) + 1 if the neuron spikes, (15)
where 7.2 _ is the synaptic decay time constant. It should

be noted that Eq. 13 implies that this quantity is then
also the decay time constant of the postsynaptic cur-
rent. The values for the subtype-specific parameters
that were introduced in this paragraph are given in Ta-
ble 2, which is based on multiple papers that explored
subtype-specific properties in mouse V1 [3, 25, 27]. In
addition, oP¢750M — 1/2 and oB=7FPC = oB=PV =
1/6 where B € {PC, PV, SOM?}, which reflects the ex-
perimental finding that intralaminar projections to PC
and PV cells are more spatially restricted than the ones
to SOM cells. Furthermore, we set ELS = 0 mV and
EPV = E5OM — _80 mV. Finally, S¥¢ = 0.5 and STV
and S°9M were varied to assess their effect on the net-
work’s synchronization. Figure 2A shows a schematical
depiction of the network architecture that results from
these parameter settings.

Parameter variations

As mentioned before, our model consisted of 3600 PCs,
495 PV cells and 405 SOM cells which were explicitly
modelled using Izhikevich’s model of the spiking neuron
[17]. They could receive background, visually induced
and recurrent inputs. Here, we discuss the different pa-
rameter variations that were used to investigate a wide
variety of aspects of our model.

First, we wanted to determine which mechanism (ING
or PING) generated the oscillations. Therefore, we
considered both subnetworks (the pyramidal-PV cell
and pyramidal-SOM cell subnetwork) separately, i.e.
we set the projection strength of one interneuron sub-
type to STV/SOM — (5 and the other to SSOM/PV —
0.0. We then varied the drive to the PCs by vary—
ing the background spike rate parameter (RK €
{1500 Hz, 2000 Hz, 3000 Hz}) and examined the resuli-
ing power density spectra and correlograms. The stimu-
lus size parameter was set to D,;s = 0.0. For all param-
eter settings, 85 s of network behavior were simulated.

For the following two parameter variations, which
were carried out to investigate whether our model could
reproduce the attenuation of gamma and the increase
of beta power upon visual stimulation (network acti-
vation), the projection strengths of the interneurons
were set to STV = §99M — (.5 and the background
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Figure 2: Schematic of the subtype-specific connectivity patterns in the network, cell positions and graphical depiction of areas used for
the analysis.

(A) Schematic that shows the connectivity patterns embedded in the network. Long-distance connections are only shown for the center
column.

(B) Example of cell positioning. Green triangles, red dots and blue squares represent pyramidal, parvalbumin expressing (PV) and
somatostatin expressing (SOM) neurons, respectively. The black and orange shaded areas additionally depict the center and reference
regions.

Other abbreviations: EC = excitatory cell from cortical layer 4, 1.2/3 = cortical layer 2 and 3, L4 = cortical layer 4.

Table 2: The values for subtype-specific parameters associated with the recurrent inputs.

Abbreviations: Presyn. = presynaptic, PV = parvalbumin expressing, Pyr. = pyramidal, SOM = somatostatin expressing.
Presyn. cell | PE FPC [ PEIPY [ PR ISOM [l PC (nS) | g ¥ (0S) | Broe o0 (nS) | 77, (ms)
(B)
Pyr. 0.07 0.44 0.44 0.2 0.8 0.2 2
PV 1.00 1.00 0.00 2.4 2.4 0.0 5
SOM 1.00 0.86 0.00 1.6 0.8 0.0 15

spike rate parameter to its standard value (RKlngC =
1500 Hz). We first varied the stimulus size parameter
from 0.0 to 1.0 in steps of 0.1 (Dy;s = {0.0,0.1, ..., 1.0})
and examined the results extensively. For each param-
eter setting, 85 s of network behavior were simulated.
We, additionally, wanted to confirm that our model can
dynamically reproduce the frequency switching. To do
so, we changed the stimulus size parameter during the
simulation. Here, the data was acquired in epochs of 5
s. The stimulus size parameter was set to D,;, = 1.0
and we varied the magnitude of the visually induced
current. It was set to 0 pA in the first two and the
last second, while, during the third and fourth second
of the epoch, it was set various values to assess its in-
fluence on the network’s synchronization; it could as-
sume values between 20 and 180 pA in steps of 40 pA
(Zyis,0 = {20 pA,60 pA, ..., 180 pA}). 17 epochs of 5 s
were acquired for each parameter setting.

Finally, we wanted to determine for which combina-
tions of PV and SOM cell projection strengths the fre-
quency switching behaviour could be observed. In order
to do so, we varied the PV cell projection strength from
0.3 to 0.9 in steps of 0.1 (STV = {0.3,0.4,...,0.9}) and

the SOM cell projection strength from 0.3 to 1.3 also in
steps of 0.1 (S°9M = {0.3,0.4,...,1.3}). The network
could be either in the resting (D,;s = 0.0) or in an acti-
vated (Dy;s = 1.0) state. For each parameter setting, 85
seconds of network behavior were simulated. We, fur-
thermore, wanted to investigate in more detail how in-
creasing the PV cell projection strength influenced the
network’s dynamical behavior. To do so, the network
was simulated for a much longer period during which
the PV strength was gradually increased from 0.3 to 0.7
in steps of 0.001 (S*V = {0.300,0.301,...,0.7}) while
the SOM strength was fixed at S°°M = 0.5. Again, the
network could either be in the resting (D,;s = 0.0) or
the activated (D,;s = 1.0) state. 5 s of network behavior
were simulated for each setting of the PV cell projection
strength and the stimulus size parameter. In all these
simulations, the background spike rate parameter was
fixed to its standard value (RKlngC = 1500 Hz).

Implementation and analysis

The model was implemented using the software pack-
age MATLAB R2017a (The Mathworks, Inc., Natick,
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Massachusetts, United States) and the integration fol-
lowed Euler’s method. The integration time step size
was set to 0.5 ms (sampling rate of f; = 2000 Hz). The
first 5 s of every network simulation were removed prior
to analysis so that the initial conditions did not influ-
ence the results. Each simulation was repeated for 10
different settings of the random seed, which controlled
the random variables in both the realization of network
connectivity and the temporal dynamics, to estimate
the variance in the results as a consequence of a partic-
ular choice of random variables. The mean potentials
across the separate neuron subtypes and the spike times
were stored for further analysis. We used two measures
as LFP estimate (V(t)) to make sure that observed ef-
fect sizes did not critically depend on out choice of LFP
model: the mean potential of the PCs and the peris-
timulus time histogram (PSTH) of the spikes produced
by the PCs, which was calculated using a 1 ms bin size
(sampling rate of fs = 1000 Hz). Both of these mea-
sures were used in three types of analysis: spectral anal-
ysis, the construction of spectrograms and the calcula-
tion of spike-LFP pair-wise phase consistencies (PPCs).
The PSTHs across the other cell types were also derived
from the spike times and were used to calculate cross-
correlation functions, so that these functions reflected
the relative spike timings of the individual neuron sub-
types with respect to one another. The analysis of the
recordings was performed using MATLAB’s signal pro-
cessing toolbox. We will now briefly describe each of the
used analysis methods.

For spectral analysis, the spectral power was based
on segments with a length of 5 s, which were demeaned
by subtracting the mean across time for each individ-
ual segment. Subsequently, each demeaned segment was
subjected to the multitaper spectral density estimation
method with 5 tapers that had a time half bandwidth
product of 3 [28]. Finally, the mean was taken across
the 16 spectra to obtain the average power spectrum for
each setting of the parameters and the random seed.

The calculation of the spike-LFP PPCs required the
use of the total length of the recordings; the data was
not cut into smaller segments. For the analysis, two re-
gions had to be defined with respect to the square patch.
The spikes that were used to determine the PPCs were
those corresponding to the neurons from the center area
(Figure 2B, black shaded area), while the LFP estimate
(mean potentials or PSTH) was calculated on basis of
the PCs that were located in a reference region (Figure
2B, orange shaded area). These distinct regions were
defined to avoid spurious PPCs. The LFP estimate was
demeaned and bandpass-filtered using two filters with
distinct frequency bands: one filter only kept the beta
band (15 — 25 Hz) and another one only the gamma
band (40 — 60 Hz) oscillations. The filtering was per-
formed using an elliptic IIR filter with a passband rip-
ple of 0.1 dB and a stopband attenuation of 60 dB via
the MATLAB functions designfilt and filter. The
discrete Hilbert transform was taken of both bandpass-
filtered signals [29]. The intermediate result, therefore,
comprised two bandpass-filtered analytical signals (sig-
nals with both real and complex valued components),
one for each frequency band. The phase of all com-
plex values within these two signals were calculated so

that estimates for the instantaneous phases (¢ and ¢7)
were retrieved. The spikes that had been produced by
neurons located in the center region were assigned their
corresponding phases, i.e. the phases that each of the
oscillation types had when these action potentials ap-
peared. Then the spike-LFP PPCs (Y and Y7) were
calculated for all neurons separately via [30]

Th= Z Z Fof, 6. (16)

j=1 k=j+1

In this expression, ¢Jf-b is the phase that was assigned to
the j* spike from the considered neuron with respect
to frequency band f;, € {8,~} and f(qb;b, ib) represents
the inner product of the two angles:

f(¢] ) = cos <¢;‘b> cos (g{)ib)

4 sin (Qsjb) sin (¢£b).

In addition, M is the total number of action potentials
that were produced by that cell. Finally, the mean was
taken across the PPCs from the individual neurons in
the center region per subtype to yield the PPC of that
group of cells for a given setting of the parameters and
the random seed.

Correlation analysis was also performed across the en-
tire length of the recordings, though now the LFP esti-
mates were constructed for each individual cell type by
calculating the PSTHs on the basis of all the neurons of
that particular type in the network. Each LFP estimate
was again demeaned and, from the resulting signal, the
cross-correlations between subpopulations (RZ~4 (7))
as functions of the lag between the postsynaptic and the
presynaptic activity (7;) were determined via [31, 32]

(17)

RB=A(7 Z v t+Tz) (18)

These functions were normalized using the autocorrela-
tions of each separate subpopulation yielding the nor-

malized cross-correlation functions (EBHA(Tl)):
RB—>A (Tl)
\/RB—>B (0)RA—=4(0) ’

B—A

R (m)=

(19)

Correlation functions were in some cases subjected to
spectral analysis by using the fast Fourier transform
(FFT). First the correlation function was transformed
and, subsequently, the absolute values were taken of the
complex valued outcome. Next, this two-sided spectrum
was transformed to a one-sided one. Finally, the values
were squared to get the power density spectrum. From
such a spectrum, it could be determined to what ex-
tent the beta and gamma oscillations were present in
the correlation functions.

Spectrograms were constructed to confirm that the
frequency changes following visual stimulation could
also be obtained dynamically and to determine the range
of the PV projection strengths that allowed for this be-
havior while the SOM cell projection strength was fixed.
For the analysis used to confirm the dynamical nature
of the frequency switching, a square window function
with a size of 200 ms was slid over the time series in
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Figure 3: The two circuits comprising pyramidal and parvalbu-
min (PV) and pyramidal and somatostatin (SOM) expressing
neurons, respectively, both generate oscillations via a pyramidal-
interneuron gamma (PING) mechanism

(A-B) Frequency spectra corresponding to mean potentials of the
pyramidal cells (PCs) when considering the pyramidal-PV cell
circuit (A) and the pyramidal-SOM cell circuit (B) for various
amounts of background input to the pyramidal cells (RKZZC).

(C-D) Cross-correlogram of the peristimulus time histograms
(PSTHs) of the PV and pyramidal cells for the pyramidal-PV
cell subnetwork (C) and of the PSTHs of the SOM and pyrami-
dal cells when taking the pyramidal-SOM cell subnetwork into
consideration (D). The gray scale represents different amounts of
background input to the pyramidal cells (RK;‘;C ).
Abbreviations: act. = activation, coef. = coefficient, corr. =
correlation

steps of 100 ms. As 16 usable 5 s long segments were
acquired for each setting of the random seed for this
investigation, 49 windows were obtained from each seg-
ment. The power density spectrum of each of them was
calculated by demeaning the LFP estimates and subse-
quently subjecting them to the same procedure that was
used to calculate the power density spectra of the corre-
lation functions (see above). Finally, the average across
these 16 segments was calculated to retrieve the average
spectrogram for each setting of the random seed.

The simulations used for the assessment of the PV
projection strengths allowing for the frequency switch-
ing behavior, yielded 401 usable 5 s long segments per
setting of the random seed. Each of these segments re-
flected the network behavior for a different setting of
the PV projection strength. The segments were divided
into 5 smaller 1 s long segments. The power density
spectra of these smaller segments were calculated by
demeaning them and subsequently subjecting them to
the same approach that was used to calculate the power
density spectra of the correlation functions (see above)
and, finally, their mean was taken. Via this procedure,
a spectrogram consisting of 401 power density spectra
was obtained for each setting of the random seed.

Results

Our spiking neuron network model comprising 3600
PCs, 495 PV cells and 405 SOM cells is introduced in
the Method section. All neurons were spread out across
a 2 x 2 square patch of cortex, their membrane potential
dynamics were simulated via Izhikevich’s neuron model
[17] and each neuron within the network could receive
input from three sources at most: the background, the
visually induced activity and the recurrent connections.
The recurrent connections comprised the inputs the ex-
plicitly modelled neurons sent to and received from one
another and were initialized according to the scheme de-
picted in Figure 2A. With regard to the visually induced
activity we defined a stimulus size parameter (D.,;s)
which could vary from 0 to 1 and determined the area
within the simulated cortical patch in which neurons
could receive visual input. This parameter thus approx-
imately reflected the effects of stimulus size, without
specifically taking into account any maps present in the
mouse visual cortex [21]. By varying the stimulus size
parameter as well as the projection strengths of the in-
terneurons, we explored the oscillatory properties of our
model. For the specifics of our model and the parameter
variations, we refer to the Method section.

In this section, we will discuss the results of this ex-
ploration. Firstly, we show that a PING mechanism un-
derlies both the beta and gamma oscillations generated
by our model. Subsequently, via the presentation of the
results from the stimulus size parameter variation, we
demonstrate that our model reproduces the experimen-
tally observed phenomenon of beta power enhancement
and gamma power reduction following visual stimula-
tion. Additional simulations confirmed that our model
is also able to simulate this frequency switching in a dy-
namical manner. By means of a grid search with respect
to the PV and SOM cell projection strengths, we, how-
ever, show that the network only exhibits this frequency
switching behavior for a small subset of all possible com-
binations of these two parameters. Finally, by keeping
the SOM cell projection strength fixed and increasing
the one of the PV cells in small steps, we investigated
the mechanism for switching in more detail.

Both the pyramidal-PV and pyramidal-SOM
cell circuits generate oscillations via a PING
mechanism.

We first assessed whether the oscillations in the network
were generated by means of an ING or a PING mecha-
nism. In order to do so, either the PV or the SOM cells
were connected to the PCs and the background activ-
ity reaching the PCs was altered. Specifically, we set the
strength of one of the subtypes to STV/SOM — (.5 while
setting the other to SSOM/PV — (.0. The stimulated
field parameter was set to D,;s = 0.0 and the back-
ground activity to the PCs was varied using RKZZC €
{1500 Hz, 2000 Hz, 3000 Hz}. For both circuits, increas-
ing this quantity increased the frequency of the oscilla-
tions obtained from the mean potentials of the PCs (Fig-
ure 3A-B) but also for those obtained from the PSTHs
of the PCs (Figure SIA-B). This increase indicates that
the circuits embedded in the model use a PING mech-
anism to generate the rhythms; if an ING mechanism
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Figure 4: Enlarging the model’s stimulated field elicits a rise and
fall of beta and gamma power, respectively.

(A—C) Mean spike rates of pyramidal (A), parvalbumin expressing
(B) and somatostatin expressing cells (C) in the center region as
function of the stimulus size relative to entire simulated area (Fig-
ure 2A). Solid lines and error bars depict the mean + standard
deviation across repeats of the simulation with different random
seeds.

(D) Frequency spectra for three different relative stimulus sizes.
Solid lines and shaded areas depict the mean+standard deviation
across repeats of the simulation with different random seeds. Spec-
tra were obtained by considering the mean potentials of the PCs.
(E-F) Mean power across the beta (15-25 Hz, E) and the gamma
(40-60 Hz, F) frequency bands as function of the relative stimulus
size. Bars and error bars depict the mean + standard deviation
across repeats of the simulation with different random seeds. The
spectra were derived from the mean potentials of the PCs.
Abbreviations: rel. = relative, stim. = stimulus.

was involved, the peak frequencies would not have been
affected as strongly and hence would have been observed
at approximately the same frequencies [20]. The exam-
ination of the cross-correlograms of the PSTHs of the
PCs and the interneurons confirmed this notion: PCs
consistently produced spikes before the interneuron as-
sociated with the considered subnetwork (Figure 3C-D),
which evidences a PING mechanism underlying the os-
cillations too [20].

Visual stimulation enhances beta rhythms via
the sculpting of the temporal structure of inhi-
bition

For the next series of simulations we set RK/ ¢ = 1500
Hz. In addition, the projection strengths of both in-

terneurons were set to STV = §50M — 05, We ex-
amined how enlarging the stimulated field, i.e. increas-

ing the value for the D,;s parameter, altered the syn-
chrony in the network activity. The results indicated
that the spike rates of the pyramidal and PV cells in
the center region (Figure 2B) initially rose but eventu-
ally decayed when the extent of the stimulated field was
increased (Figure 4A-B). The firing rates of the SOM
cells increased monotonously (Figure 4C). These trends
are in accordance to the empirically acquired size-tuning
curves [4]. Subsequently, we analyzed the power spectra
obtained from the mean potentials of the PCs. Three
peaks could be observed: a gamma peak at approxi-
mately 55 Hz, a beta peak around 18 Hz and another one
at roughly 36 Hz (Figure 4D). However, the last of these
is the harmonic of the beta peak because it appeared at
double that frequency. Considering these spectra for the
various stimulated field sizes revealed that the beta and
gamma peak were increased and reduced with increasing
area of activation, respectively (Figure 4D). This effect
was quantified by calculating the average power across
the beta (15 — 25 Hz) and the gamma (40 — 60 Hz) fre-
quency bands, which demonstrated that enlarging the
area wherein neurons received additional, visual input
indeed promoted beta and inhibited gamma oscillations
(Figure 4E-F). A consideration of the power spectra ob-
tained from the PSTHs of the PCs confirmed that these
findings did not critically depend on the use of the mean
potentials of the PCs as the LFP estimate (Figure S2).

We wondered how this transition in network synchro-
nization was accomplished. In order to answer this
question, the spike time rastergrams were first studied.
When none of the neurons received additional, visual
input, clear gamma periodic volleys of action potentials
originating from the pyramidal and PV cells could be
observed (Figure 5A). In contrast, a stimulated field
that spanned the whole area elicited strong synchronous,
beta rhythmic spiking of SOM cells which caused a
strong suppression of pyramidal and PV cells; conse-
quently, the gamma periodic spike volleys produced by
the pyramidal and PV cells were less visible (Figure 5B).
A larger stimulated field thus appeared to enable SOM
cells to produce their spikes more in sync with the beta
rhythm. To quantify this, the spike-LFP PPCs of the
neurons in the center region were determined for each
individual cell type by using the mean potential across
PCs as the LFP estimate. The results indicated that all
cell types gradually spiked more and less coherent with
the beta and the gamma oscillations, respectively, as
the stimulated field was increased (Figure 5C-E). The
same effect was observed when the PPCs were calculated
while using the PSTH of the PCs as the LFP estimate
(Figure S3A-C).

The inspection of the spike time rastergrams and their
associated spike-LFP PPCs raised the question as to
how the activities of the individual cell types were cor-
related to one another. Therefore, the correlations be-
tween PSTHs of the various cell types in the network
were determined. When considering the autocorrelation
function of the pyramidal cell activity, it became clear
that a larger stimulated field attenuated the extrema in
the correlogram that corresponded to a gamma period
while the peaks appearing with a beta-like time interval
remained relatively unaffected (Figure 5F). The same
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Figure 5: The transition from gamma to beta oscillations for increasing stimulated field size is mediated by the transformation of the
gamma oscillation structure by the somatostatin expressing (SOM) interneurons.

(A-B) Examples of spike time rastergrams for two stimulated field sizes: D,;s = 0.0 (A) and D,;s = 1.0 (B). Green, red and blue dots
represent action potentials from pyramidal, parvalbumin expressing (PV) and somatostatin expressing (SOM) cells, respectively.

(C-E) Normalized spike-LFP pair-wise phase consistencies (PPCs) of the pyramidal (C), PV (D) and SOM (E) cells with respect to the
beta (15 — 25 Hz) and gamma (40 — 60 Hz) frequency ranges as a function of the stimulus size. Red and blue correspond to the beta and
gamma frequency band, respectively. Solid lines and error bars depict the mean + standard deviation across repeats of the simulation
with different random seeds. PPCs were determined on basis of the mean potentials of the pyramidal cells (PCs).

(F-H) Correlograms of the pyramidal cell peristimulus histogram with itself (F) and with those of the PV (G) and the SOM (H) cells for
various stimulated field sizes. Common color legend is included in the inset of panel F. Asterisks mark peaks that correspond to beta and
gamma rhythms, while downward arrows mark maxima that are only associated with gamma.

(I-J) Mean beta (15 — 25 Hz, I) and gamma (40 — 60 Hz, J) power in the different types of correlograms as a function of the stimulated
field size. Green, red and blue correspond to the type of correlogram shown in F, G and H, respectively (pyramidal with pyramidal, PV
with pyramidal and SOM with pyramidal, respectively). Solid lines and error bars depict the mean + standard deviation across repeats
of the simulation with different random seeds.

Abbreviations: coef. = coefficient, corr. = correlation, pyr. = pyramidal, rel. = relative, stim. = stimulus.

was observed in the correlogram between the PV cell These results indicate that the SOM cells transform the
and pyramidal cell activity, though here the attenua- gamma oscillations that emerge through the interplay
tion appeared to be weaker (Figure 5G). The correlation between pyramidal and PV cells, so that beta rhythms
function between the SOM and pyramidal cell activity, are amplified at the expense of gamma periodic network
on the contrary, seemed to only contain weak gamma activity.

periodic peaks, if these were present at all; the corre-

sponding correlogram almost exclusively contained beta As a final check, we wanted to confirm that our
rhythms, especially if the stimulated field covered the model could also reproduce the frequency switching phe-
whole area (Figure 5H). To quantify the presence of both nomenon dynamically, i.e. beta and gamma power could
types of oscillations in these correlograms, their power be enhanced and reduced, respectively, through activa-
spectra were determined using a FFT. Subsequently, the tion of the network within the same simulation time
mean beta (15 — 25 Hz) and gamma (40 — 60 Hz) power series. In order to do so, we set the activated area to
were calculated from these spectra for each setting of cover the entire simulated cortical patch (Dy;s = 1) and
the stimulated field. The outcome demonstrated that altered the visually induced current (Iy;s,0) within a 5 s
all three correlation functions became more dominated epoch: this parameter was set to 0 pA in the first two
by the beta rhythm as the stimulated field grew, al- seconds and the last second and was set to varying val-
though the PV and pyramidal cell correlogram (Figure ues in the intermediate two seconds. Inspection of the
51, red line) was less susceptible to this change (Figure spectrograms constructed on the basis of the mean po-
5I). A complementary decrease in the gamma power was tentials of the PCs revealed that beta and gamma power
observed for the correlation functions of the PC activity were indeed in- and decreased, respectively, when the vi-
with itself and with the PV cell activity; in contrast, the sual current was higher than zero (Figure 6A-E). The
correlogram of the SOM with the pyramidal cell activ- variation of the magnitude of the current associated with
ities contained virtually no gamma oscillations for any the visual stimulation, furthermore, demonstrated that
size of the stimulated field, as was expected (Figure 5J). higher values for this parameter yielded larger power

differences following visual stimulation (Figure 6A-E).
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Figure 6: The frequency switching behavior can be induced dynamically in the proposed spiking neuron network model.

(A-E) Spectrograms of the mean potentials of the PCs (top row) and the concurrent change in the visual current (I,is,0) throughout an
epoch (bottom row). The latter plots show that this parameter was 0 pA in the first two and the final second of the epoch and could have a
variety of values in the third and fourth second, namely 20 pA (A), 60 pA (B), 100 pA (C), 140 pA (D) or 180 pA (E). In the spectrograms,
black and white colors correspond to a low and high power, respectively. The same color scale has been used for all spectrograms in this

figure.

These results, which were also observed for the spec-
trograms acquired from the PSTHs of the PCs (Figure
S4), thus demonstrated that our model could indeed re-
produce the frequency switching phenomenon in a dy-
namical manner and additionally indicated that, in our
model, the extent to which the beta and gamma power
are amplified and attenuated, respectively, not only de-
pends on the stimulus size parameter, but also on the
magnitude of the network activation current (Iy;s0)-

In order to amplify beta and attenuate gamma
oscillations by means of visual stimulation, the
PV and SOM cells must be allowed to compete
for oscillatory control of the PCs

We wanted to find out how generic the network motif
was that allowed beta oscillations to outcompete gamma
upon visual stimulation. We, therefore, studied the con-
ditions under which the dominant beta and gamma os-
cillatory activity via the enlargement or shrinkage of the
spatial extent of the visual stimulation occurred by vary-
ing the projection strengths of the PV (S¥V) and the
SOM (S99M) cells while either none of the neurons re-
ceived input through visually induced activity (the rest
state network) or the stimulated field size covered the
entire square patch. At first, we looked at the mean
spike rates of the individual cell types. In addition to
the pyramidal and PV cells being suppressed by stronger
PV and SOM cell projections, their firing rates also ex-
hibited a local minimum (Figure 7A-B). The SOM cells,
on the other hand, show a very different pattern: higher
levels of SOM cell inhibition increased their firing rate
while stronger PV cell projections reduced it (Figure
7C). The beta power follows the same pattern as the
SOM cell firing rate (Figure 7C-D), while the trend of
the gamma power has more in common with those of the
pyramidal and PV cells (Figure 7TA-B,E). These spec-
tral densities were determined for the rest state network
on the basis of the mean potentials of the PCs. Also the
power that corresponded to a stimulated field that cov-
ered the entire square patch was determined using that
same measure as the LFP estimate and, subsequently,
the difference between the power associated with the
visually activated and resting state network was calcu-
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lated. We observed that there is only a small subset of
settings for the PV and SOM cell projection strengths
that gives rise to higher beta and lower gamma power
in the activated state (Figure 7F—G). Similar findings
were obtained when the PSTHs of the PCs were used
as the LFP estimate (Figure S5). We determined which
settings brought about each kind of behavior. The re-
sults of this assessment demonstrated that there is only
a limited region with regard to the PV and SOM cell
projection strengths that gives rise to enhanced beta and
decreased gamma oscillations via activation of the net-
work (Figure 7TH). Gamma and beta rhythms dominated
the network’s oscillatory activity when the strength of
the PV and SOM cell efferents, respectively, were too
strong (Figure 7D,E,F,G H).

These findings indicated that the system requires
some sort of competition between PV and SOM cells
over the oscillatory control of the PCs in order for it to
alter between synchronization in the beta and gamma
frequency bands via activation of the network. To sup-
port this hypothesis, we performed additional analyses.
First, the spike time rastergrams were examined. These
showed that when the gamma oscillations were persis-
tent, the number of SOM cell action potentials was very
low, and as a consequence, the PCs spiked periodically
with a typical gamma period, regardless of the amount
of activation (Figure 8A-B). However, the PV cells still
spiked when persistent beta oscillations were observed,
but in that case PCs nevertheless produced action po-
tentials synchronized to a beta rhythm (Figure 8C-D).
When network activation can induce enhanced beta and
decreased gamma rhythms, the additional input to the
PCs apparently leads to sufficient collateral depolariza-
tion of the SOM cells and, consequently, the PCs’ pe-
riodic spiking is altered (Figure 8E-F). We quantified
the different types of PC periodic firing by means of the
spike-LFP PPCs calculated using the mean potentials
of the PCs, which revealed the behavior inferred from
the spike time rastergrams: beta and gamma rhythm
associated PPCs were in- and decreased, respectively,
following network activation, especially when the pa-
rameter settings were considered that gave rise to the
shifts in main network oscillation frequency upon an in-
creased spatial extent of the visual stimulation (Figure
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Figure 7: Visual stimulation can induce an enhancement of beta and a reduction of gamma power for a restricted range of parvalbumin
expressing (PV) and somatostatin expressing (SOM) interneuron projection strengths.

(A-C) Mean firing rates of pyramidal (A), PV (B) and SOM (C) cells in the center region as a function of the projection strengths of the
two interneuron types. Orange arrows point to local minima. No neurons received additional input through visually induced activity for
these panels.

(D-E) Beta (D) and gamma (E) power as a function of the PV and SOM cell projection strengths. For these plots, none of the neurons
received additional input through visually induced activity. The frequency spectra were obtained from the mean potentials of the PCs.
(F-G) Difference in beta (F) and gamma (G) power between the situation wherein the stimulated field covered the entire square patch
and the one without any additional visual input. A positive difference means that the power is larger for visual stimulation. Powers were
derived from the frequency spectra obtained from the mean potentials of the PCs.

(H) Schematic depiction of the projection strength settings that resulted in the different types of network synchronization, i.e. network
synchronization behavior as a function of the PV and SOM cell projection strengths. Red and blue colors correspond to the network
persistently oscillating in the gamma and beta frequency band, respectively, while yellow represents a system being able to switch between
these two types of rhythms via activation of the network.

Abbreviations: diff. = difference, proj. = projection.
8G-J). Similar findings were observed when the spike- ration similar to the blue region in Figure 7H: the LFP
LFP PPCs were calculated on the basis of the PSTHs of the juvenile mouse V1 also mostly contains beta oscil-
of the PCs (Figure S6). lations in both the resting as well as the activated state.
Finally, we examined the correlograms of the PC to The V1 of adult mice, on the other hand, has network
PC connections, since it was shown earlier that network dynamics resembling the yellow area in Figure 7H, be-
activation attenuated the gamma rhythm associated sec- cause the mature spontaneous LFP primarily contains
ondary peaks in these graphs. If gamma or beta oscil- gamma oscillations while beta oscillations are predom-
lations dominated the response, i.e. if these rhythms inantly found in its visually evoked counterpart. Our
were persistent across network activation conditions, no results therefore imply that the influence of PV cells
substantial differences could be observed in the auto- within the network increases across the critical period
correlations of the PCs (Figure 8K-L). On the other of mouse V1. Given this observation, we wanted to ob-
hand, when a main oscillation frequency shift was in- tain a more detailed overview of how the PV cell pro-
ducable, the correlogram should be drastically trans- jection strength influences the network dynamics when
formed; gamma rhythm associated peaks were almost the SOM cell projection strength was fixed.
completely repressed when the network was activated, For this investigation, we set the SOM cell projec-
while the extrema corresponding to a beta oscillation tion strength to S°YM = 0.5. The PV cell projection
were amplified by such an event (Figure 8M). strength was varied from 0.300 to 0.700 in steps of 0.001
When considering Figure 7 and Figure 8 in the con- (ST € {0.300,0.301, ...,0.700}). However, we changed
text of the emergence of the spontaneous gamma oscil- the parameter during one simulation time series. More
lations during the CP, it must be recognized that the specifically, it was initially set to 0.300 and was increased
juvenile mouse V1 is represented by a network configu- with the mentioned step size after every 5 s of simulation
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Figure 8: Higher beta and lower gamma power induced via net-
work activation requires a balance between the inhibitory con-
tributions of parvalbumin expressing (PV) and somatostatin ex-
pressing (SOM) cells and their associated oscillatory control over
the pyramidal cells (PCs).

(A-F) Spike time rastergrams for the rest state (left column) and
the activated network (right column). Green, red and blue dots
represent action potentials of pyramidal, PV and SOM cells, re-
spectively. For these plots, the PV and SOM cell projection
strength were set to 0.9 and 0.3 (A-B), 0.3 and 0.9 (C-D) and
0.6 and 1.2 (E-F).

(G-J) Spike-LFP pair-wise phase consistencies (PPCs) of the PCs
for the rest state (left column) and the activated network (right
column) with respect to the beta (G-H) and gamma (I-J) fre-
quency bands. PPCs were obtained using the mean potentials of
the PCs as LFP estimate.

(K-M) Correlograms for the PC to PC connections when the PV
and SOM cell projection strength were set to 0.9 and 0.3 (K), 0.3
and 0.9 (L) and 0.6 and 1.2 (M). Red and blue correspond to the
rest state and activated network, respectively.

Abbreviations: coef. = coefficient, corr. = correlation, norm. =
normalized, proj. = projection.

until the upper limit of 0.700 was reached. We deter-
mined the power density spectrum using the mean po-
tentials of the PCs for each of these epochs and plotted
them as a function of the PV cell projection strength.
As expected, the results demonstrated that the power in
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the beta and gamma frequency band were reduced and
enhanced, respectively, for increasing PV cell projec-
tion strengths, both when considering the resting-state
and activated network (Figure 9A-B). However, they
also showed that a distinct range of PV cell projection
strengths existed wherein beta and gamma powers were
in- and decreased following network activation, respec-
tively (Figure 9A-B). To identify this range in more
detail, we calculated the mean beta (15-25 Hz) and
gamma (40-60 Hz) power for each setting of the PV
cell projection strength and, subsequently, determined
the difference between the powers corresponding to the
activated and the resting-state network. The resulting
plot clearly indicated that the beta power was never
lower for the activated situation than for the resting-
state (Figure 9C). The gamma power, on the other hand,
could be lower, though only for a restricted range of PV
cell projection strengths (Figure 9C). One may argue
that, as this parameter increases from 0.300 to 0.700,
the system goes through two ’bifurcations’: one around
0.410 and another around 0.590 (Figure 9C). At the
former, the system’s dynamics transition from a beta
oscillation dominated system to a balanced state with
regard to the inhibitory contributions of both interneu-
ron types wherein the frequency switching phenomenon
can be induced; at the latter, the network dynamics
exit this balanced region and enter a regime in which
gamma oscillations govern both the spontaneous as well
as the activated state. Similar results were found when
the PSTHs of the PCs were used as the LFP estimate
(Figure S7). Finally note that these findings not only
provide a more explicit investigation of the system’s dy-
namical behavior as a function of the PV relative to
the SOM cell projection strength, but also demonstrate
that an increase of the influence of the PV cells in the
network over time may indeed underlie the emergence
of spontaneous gamma oscillations during the CP; af-
ter all, any network synchronization changes induced
via the augmentation of the projection strength of these
interneurons were obtained dynamically as this parame-
ter was incremented within one and the same simulation
time series of the network’s dynamics.

Discussion

In summary, our model, which generates beta and
gamma oscillations via a PING mechanism (Figure 3), is
able to reproduce the empirically-observed switch from
gamma- to beta-dominated synchronization following
visual stimulation (Figure 4). This shift is caused by
the SOM cells transforming the gamma oscillations so
that the network generates beta rhythms instead (Fig-
ure 5). Finally, we have shown that this can only occur
when PV and SOM cells are allowed to compete over
the oscillatory control of the PCs (Figure 7-9). These
results still require an interpretation in the context of
the model that has been introduced in this article and
the available experimental literature. In the following,
we discuss the relevance of this study and any future
prospects that will arise from it.
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Figure 9: A detailed investigation of the network dynamics for
varying parvalbumin expressing (PV) cell projection strengths
provides an overview of the ’'bifurcation’.

(A-B) Power density spectra of the resting-state (Dy;s = 0, A)
and the activated (Dy;s = 1, B) network as a function of the PV
cell projection strength for a fixed somatostatin expressing (SOM)
cell projection strength (S°M = 0.5). The mean potentials of
the PCs were used for the derivation of the spectra.

(C) Power differences between the activated and resting state net-
work activity with respect to the beta (15-25 Hz, green) and
gamma (40-60 Hz, orange) frequency band as a function of the
PV cell projection strength for the same fixed SOM cell projection
strength. A positive and negative difference reflect a higher and
lower power in the activated situation, respectively. Powers were
calculated on the basis of the mean potentials of the PCs.
Abbreviations: diff. = difference, freq. = frequency, proj. =
projection.

PING is a plausible mechanism for oscillation
generation and observed frequency shifts in the
V1 of mice

In our model, the SOM cell associated beta and PV cell
associated gamma oscillations are both generated via a
PING mechanism (Figure 3A-D). However, the trans-
lation of this result to the experimental context is not
immediate. Although most of the parameters have been
directly derived from the experimental literature, those
corresponding to the background currents are more dif-
ficult to infer. The background current to a neuron can
be regarded as the summation of the inputs coming from
more distant neurons and overall level of neuromodula-
tors. This mix of factors makes it rather difficult to
assign meaningful values to the parameters governing
this quantity.

Nevertheless, the results have been included here to
show how our model generates oscillations. The resem-
blance that the remainder of the results has with the
experimental data additionally supports the notion that
both types of rhythms indeed are being produced by
a PING mechanism. We have not evaluated whether
ING mechanisms could produce the same synchroniza-
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tion behavior that has been observed in this study and
experimental research. Hence, additional research is re-
quired to unambiguously identify the underlying oscil-
lation mechanism.

The relation between the stimulated field size
and the induced rise in beta and fall in gamma
power

Our model reproduces the experimentally observed en-
hancement of beta and reduction of gamma power in
the LFP of mouse V1 following the presentation of a
visual stimulus to the animal (Figure 4E-F) [5, 6]. Ad-
ditionally, the simulations also reproduce the subtype-
specific size tuning curves described by the literature
(Figure 4A-C) [4]. However, one must be careful in in-
terpreting these findings. In the model, the stimulated
field size is a relative measure that cannot be related
directly to a physical stimulus size. The results pre-
sented in this article, therefore, demonstrate that, when
the magnitude of the visually induced current is fixed
(Figure 6A-E), the activated area of V1 determines to
which extent beta oscillations are induced in the visu-
ally evoked LFP. The model thus imitates electrophysi-
ological properties of mouse V1 through its biologically
plausible connectivity patterns, which have been derived
from the experimental literature.

Additionally, our results show that the enhancement
of the beta rhythms at the expense of the gamma os-
cillations is accomplished via outcompeting the PV-PC
subnetwork by the SOM-PC subnetwork (Figure 5F-1J).
The findings, furthermore, imply that the main beta
peak appears at approximately a third of the gamma
peak frequency (Figure 4D), which is consistent with
experimental data as well [5, 6, 9]. We have also shown
that too strong PV and SOM cell projections result
in persistent gamma and beta oscillations, respectively
(Figure 7H,Figure 9C). Hence, the switch in main syn-
chronization frequency upon visual stimulation requires
a competition between PV and SOM cells and their os-
cillatory control over the PCs (Figure 8A-F). Compe-
tition also reduces the spike rates in the network (Fig-
ure TA—C). When the PV projections are too powerful,
SOM cells are almost completely silenced, whereas the
PV cells still remain active when the SOM cell projec-
tions are too strong. Our results therefore indicate that
the visually evoked emergence of beta oscillations is a
consequence of the PV cells being unable to effectively
suppress the PCs. This enables the PCs to activate the
SOM cells which, in their own turn, impose the network
to oscillate in the beta frequency range.

The function of this switch in main oscillation fre-
quency is not fully understood, but some ideas have been
presented. For instance, it has been argued that beta
oscillations in primates are related to the maintenance
of the current cognitive state [33]. More interestingly, it
has been shown in rodent that, because of their horizon-
tally aligned afferents [4], SOM cells promote synchro-
nization across cortical space [6, 10]. This property of
the SOM cells and the fact that in our model SOM cells
are activated when PV cells are unable to effectively
suppress PC activity together imply that strong visual
stimulation triggers the generation of beta oscillations
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so that also more distant cortical areas become increas-
ingly synchronized with the V1. The latter, in its own
right, would then putatively improve the information
transfer between cortical areas. Though improved in-
formation transmission is typically observed for gamma
oscillations [34], the beta oscillations considered in this
paper may facilitate this as well for their peak frequen-
cies are intermediate between the experimentally deter-
mined beta and gamma frequency bands.

Network configuration alterations may explain
the emergence of gamma oscillations during the
critical period

The motivation for this study was to find the configura-
tions of a spiking neuron network model that are respon-
sible for V1 dynamics in juvenile and adult mice. Specif-
ically, we aimed to find the connectivity changes explain-
ing the establishment of spontaneous, high-frequency
gamma oscillations, which are disrupted at the benefit of
the beta rhythms following visual stimulation, in mouse
V1 during the CP [5]. Since stronger PV cell projec-
tions were found to increase the gamma power (Figure
7E), our results indicate that an overall strengthening
of PV cell projections across this time window may very
well be the reason for the emergence of these rhythms.
At the same time, the outcomes of our simulations and
analyses also demonstrate that the PV and SOM cell as-
sociated influences on the PCs should be balanced at the
end of the CP. It is exactly after this period of enhanced
plasticity that gamma power should be suppressed and
beta power augmented during visual stimulation of the
mouse [5] and our model only exhibits such behaviors
for a restricted range of PV and SOM cell projection
strengths (Figure 7H). Therefore, this study shows that,
during the CP, PV cell inhibitory contributions become
stronger until the network reaches that balanced state.

Plasticity mechanisms are one method to reinforce
these projections and additional experimental evidence
supports the notion that PV cell related plasticity un-
derlies the enhancement of gamma powers during the
CP. For instance, the opening of the CP has been linked
to the maturation of a subset of the GABAergic in-
terneuron population [8; 35] and there is evidence that
that maturing subset comprises the PV cells. When
stem cells derived from the medial ganglionic eminence,
the embryonic brain region that produces PV and SOM
cells during development [36], are transplanted into the
V1 long after the CP, they differentiate to a large extent
towards this interneuron subtype and functionally inte-
grate themselves into the host network [11, 12]. A con-
sequence of this transplantation and subsequent integra-
tion is the putative induction of a time window with en-
hanced plasticity that resembles the CP [11]. Likewise,
the closure of the CP is marked by molecular and cellular
advancements too. The appearance of molecular "brakes
on plasticity’, like myelin sheaths, that have Nogo-A as
an associated protein, and the PNNs, that were men-
tioned in the Introduction, namely coincides with the
end of the CP [13, 37, 38]. Especially the latter type
of consolidators, the PNNs, has recently gained much
interest in multiple studies [7, 15, 13, 39]. It has been
shown that these nets primarily enwrap PV cells and
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that their removal reactivates ocular dominance plastic-
ity in the V1 of mice [13]. Additionally, more recent
studies have demonstrated that PNN removal also in-
creases gamma power right after, but not for longer pe-
riods of, MD [7], that it disrupts the retrieval of remote
fear memory [39] and that in L4 it leads to increased
thalamic PV cell recruitment [15].

Nevertheless, other explanations for the increase of
the gamma oscillations during the CP are possible. In
other brain areas, it is, for example, known that the
decay time constant of the IPSC of PV cells declines
during development [40, 41]. Since one of these stud-
ies investigated the barrel cortex of mice, which shares
many developmental aspects with the V1 [42], this po-
tential mechanism should be assessed. However, a quick,
mathematical evaluation of the effect that such a devel-
opment would elicit, reveals that it only further weakens
the influence that PV cells have on the PCs. Another,
more promising study has found that the SOM cells lose
cholinergic responsiveness during the CP, which would
lower their excitability [43]. As a consequence, these
cells would have weaker control of the PCs and, com-
plementarily, the influence of the PV cells on the ex-
citatory cells would increase. This developmental loss
may therefore evidently contribute to the emergence of
gamma oscillations during the CP.

In summary, the CP thus seems to be marked by high
amounts of PV cell related plasticity and our results pro-
vide a new insight as to how this plasticity may change
the network. Experimental data, for example, suggest
that PV cell projection strengthening already occurs
right before the onset of the CP and a weakening is ob-
served with respect to the SOM cells [44], but what ex-
actly happens with these quantities during the CP could
not be determined. Here we have provided support for
the idea that PV cell projections are strengthened and
that the cells themselves become integrated in the circuit
of the V1 during this time window. Secondly, this study
indicates that the plasticity mechanisms that are at play
during the CP aim to eventually find a network configu-
ration that results in PV and SOM cells competing over
the oscillatory control of the PCs. We even have shown
that in our model this development can be replicated
by increasing the PV cell projection strengths over time
(Figure 9A—C). These findings could be exploited in fu-
ture studies to devise therapies that reverse the effects
of early onset inherited retinal dystrophy.

The precise function of the emergence of gamma
oscillations during the CP remains unknown and
its unraveling requires more study

The question still remains as to what is the function
of the emergence of the gamma oscillations during the
CP. Is their appearance and subsequent fading over the
next 24 hours following MD during the CP or after PNN
removal [7] just an epiphenomenon or do they fulfill a
particular function? A related experimental study at
least provides evidence that this finding is in line with
our outcomes. In juvenile mice, PC activity drops right
after the mouse is monocularly deprived, but returns to
its original level in the 24 hours that follow; this return
is facilitated by a decrease in PV cell activity [14]. The
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link between these two experimental studies and our re-
sults should by now be clear: all three demonstrate that
relatively large PV cell activity enhances gamma power
and that restoration of the PC activity level via PV cell
projection weakening restores the desired balance within
the inhibitory contributions from the different interneu-
rons.

In addition, gamma rhythms have been found to in-
duce plasticity mechanisms [45]. In humans, they are,
for example, associated with working and short-term
memory [46]. Studies of non-human primates have, fur-
thermore, shown that a stimulation pulse train that is
phase-locked to a beta oscillation induces short-term po-
tentiation and depression of the connections if the pulse
train is phase-locked to the depolarization and hyperpo-
larization phase of that rhythm, respectively [47]. The
strengthening or weakening is assumed to be facilitated
by a spike-timing dependent plasticity (STDP) mech-
anism [47], which is a type of Hebbian learning that
considers the relative timings of the spikes of two neu-
rons in order to decide whether their connection should
be stronger or weaker [48, 49, 50]. Oscillations may thus
regulate the timing of spikes so that the synaptic trans-
mission efficiency between two neurons is appropriately
adjusted via STDP.

However, to our knowledge, oscillations have, so far,
not been linked to CP plasticity. The current consen-
sus is that its mechanisms affect the inputs from both
eyes independently during MD [51, 52]. Specifically, the
inputs from the deprived eye are weakened in the first
two days of MD, most likely via long-term depression,
while those corresponding to the open eye are amplified
via homeostatic pathways in the subsequent five days
[53, 54, 55]. More experimental and theoretical assess-
ments are needed to determine whether any of these
distinct plasticity mechanisms critically depend on the
equilibrium between PV and SOM cell inhibitory contri-
butions, which we have shown is required for proper V1
dynamics after the CP. If so, additional research should
be devoted to discover whether the emergence of gamma
oscillations during the CP is simply an epiphenomenon
or whether these rhythms actually play a role in CP
plasticity.

How our model relates to other computational
studies to mouse V1

In the Introduction, some neural mass models of mouse
V1 were already mentioned. These models successfully
reproduced the phenomenon of surround inhibition and
the increased beta and attenuated gamma power upon
visual stimulation [6, 16]. Though firing rate models
may be used to study neural oscillations, it must be
acknowledged that spike timing is a determining fac-
tor in the generation of LFP signals. Moreover, it has
been demonstrated that firing rate and synchrony can
be modulated independently, which makes neural mass
models less fit to study oscillations [56].

By using a spiking neuron model, we have obtained
new insights regarding the beta and gamma rhythms
and the roles that PV and SOM cells play in them;
specifically, our results indicate that the relative PV
and SOM cell inhibitions should satisfy a particular con-
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straint at the end of the CP for a proper functioning
of mouse V1. More generally, we have shown that the
main synchronization frequency of oscillations generated
via a PING mechanism can be altered via network ac-
tivation. It has already been demonstrated that such
an effect cannot be observed when the network hosts a
combination of ING and PING mechanisms: in that sit-
uation, the highest frequency of the two then dominates
the synchronization [57]. Whether ING mechanisms can
facilitate peak frequency shifts upon network activation
is unclear. Here, it must also be mentioned that the
extent to which PCs are involved in the generation of
oscillations in the neocortex should be limited in terms
of the number of spikes per cycle; as a consequence, it
is believed that neural rhythms in the visual system are
produced neither purely by a PING, nor purely by an
ING mechanism [58]. Note that this does not rule out
the applicability of our study to mouse V1: it merely
places it in a more nuanced perspective.

To our knowledge, this is the first study of oscilla-
tions in V1 during the critical period that involves the
explicit modeling of three distinct neuron types. Spik-
ing neuron models that were inspired by this cortical
region investigated other properties. One of these, for
example, proposed a possible mechanism as to how ori-
entation selectivity can be established in cortices that
lack an organized map with regard to this feature [19].
This model merely comprised two neuron classes: ex-
citatory and inhibitory neurons. Another example in-
vestigated how stimulus detection performance can be
enhanced in noisy spiking neural networks; this model
consisted of the same neuron types as have been in-
cluded in this study [59]. Still, we are not the first to
investigate the coexistence of oscillations through a spik-
ing neuron network model comprising three distinct cell
types: one model that was based on the hippocampus
already demonstrated that coexistence of § and gamma
oscillations requires a balance in the effective strengths
of the different inhibitory neurons in the network [60].
Our work shows that the same principle is applicable to
the beta and gamma rhythms in mouse V1 and addi-
tionally demonstrates that network activation can alter
the synchronization of the neural ensemble too.

There are multiple types of interneurons, of which the
ones classified as parvalbumin positive (PV), somato-
statin positive (SOM) and vasoactive intestinal peptide
positive (VIP) have received most attention [1] (note
that there are alternative labels in use for each of these
types). Optogenetic approaches to transgenic animals in
which specific cells are either labeled by GFP or express
Cre have elucidated the functional role of each type and
identified structural motifs in different cortical layers,
see for a perspective [61], [62] or [63]. These motifs need
to be developmentally established, and this may hap-
pen both within critical periods as well as outside. The
vagueness of this description derives from the fact that
the development of these motifs has not been studied
extensively. Here we interpret our simulation results in
terms of motifs and the ocular dominance critical period
experiments that have been reported in the literature.

Even though there are many types of interneurons,
we focus on two groups: the PV and the SOM cells.
The literature on CP plasticity identify PV neurons
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as prime actors [8], and electrophysiological literature
identify SOM cells as prime actors in visually induced
beta oscillations and horizontal projections mediating
surround inhibition [6, 9]. This means we omit from
the model VIP interneurons, which do, however, play
an important role in the effects of locomotion on visual
responses [64] and have a specific neuromodulator sensi-
tivity [65] while defects in their function influence other
types of cortical plasticity relevant for cognitive func-
tion [65]. We will defer a computational investigation
of their role in the context of modulating oscillations to
a future study. Here, the model in [66] may serve as
inspiration.

Conclusion

In this article, the differential roles of PV and SOM cells
in the generation of oscillations have been investigated.
From our results, three main conclusions can be drawn.
First of all, the emergence of gamma oscillations during
the CP [5] is most likely caused by an overall increase in
the influence that PV cells have on the PCs in the net-
work. Given the currently available knowledge of the
CP, plasticity presumably underlies this development,
which would concretely imply a general strengthening
of PV cell projections across this time window. Sec-
ondly, this increase in influence has a limit: persistent
gamma oscillations emerge if PV cells become relatively
too powerful. This would prevent visually stimulating
the animal from inducing the SOM cell associated beta
rhythms in the V1, which, as the available literature
demonstrates, should actually be possible [5, 6]. Hence,
the inhibitory contributions of PV and SOM cells must
be balanced at the end of the CP in order for sponta-
neous gamma and visually evoked beta oscillations to
coexist in the V1. Finally, we have presented evidence
for a mechanism by which these visually evoked beta os-
cillations are realized. The results of this study namely
indicate that SOM cells transform the dynamic circuit
motif laid out by pyramidal and PV cells for the pro-
duction of gamma oscillations so that it then produces
beta oscillations instead. In addition, it has been ar-
gued that this implies that beta rhythms emerge when
the PV cells are unable to effectively suppress the PCs
before they collaterally activate the SOM cells.

In conclusion, our study links many experimental
studies together into one comprehensive model that has
biologically plausible connectivity patterns. It also pro-
vides new insights into how specific members of neu-
ral ensembles in the brain can be mobilized to produce
different types of oscillations. Furthermore, it demon-
strates that experimental observations in electrophysio-
logical studies may be explained by mechanisms that are
sensitive to a precise parameter setting and presumably
require careful fine-tuning of the network configuration
in order to emerge and be maintained.
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