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Abstract 
Fibrolamellar carcinoma (FLC) is a rare, therapeutically intractable liver cancer that disproportionately affects youth. Although 
FLC tumors exhibit a distinct gene expression profile, the causative transcriptional mechanisms remain unclear. Here we used 
chromatin run-on sequencing to discover approximately 7,000 enhancers and 141 enhancer hotspots activated in FLC relative to 
non-malignant liver. Detailed bioinformatic analyses revealed aberrant ERK/MEK signaling and candidate master transcriptional 
regulators. We also defined the genes most strongly associated with aberrant FLC enhancer activity, including CA12 and 
SLC16A14. Treatment of FLC cell models with inhibitors of CA12 or SLC16A14 independently reduced cell viability and/or 
significantly enhanced the effect of MEK inhibitor cobimetinib. These findings highlight new molecular targets for drug 
development as well as novel drug combination approaches. 
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Introduction 
Fibrolamellar carcinoma (FLC) is a rare type of liver cancer that 
predominantly affects adolescents and young adults with no prior history 
of liver disease (Craig et al., 1980; Torbenson, 2012). Currently, surgical 
resection is the only effective treatment for FLC, however most patients 
have metastatic disease at the time of diagnosis, making surgical cures 
difficult (Stipa et al., 2006). While some patients have been successfully 
treated with chemotherapy and molecular therapies, there is no standard 
treatment regimen for FLC patients (Torbenson, 2012). Furthermore, 
FLC is often drug resistant and frequently recurs following initial 
treatment (Maniaci et al., 2009), underscoring the need to develop 
effective therapies for this cancer. 
 FLC is genetically characterized by a ~400 kb heterozygous 
deletion on chromosome 19 that leads to the formation of the DNAJB1-
PRKACA fusion (Honeyman et al., 2014). This fusion occurs in at least 
80% of patients (Cornella et al., 2014; Honeyman et al., 2014), is specific 
to FLC (Dinh et al., 2017; Graham et al., 2015; Kastenhuber et al., 2017), 
and is sufficient to drive liver tumor formation in mice (Engelholm et al., 
2017; Kastenhuber et al., 2017). Multiple groups have performed 
genome-scale analyses to identify dysregulated genes (Cornella et al., 
2014; Dinh et al., 2017; Griffith et al., 2016; Malouf et al., 2014; Simon 
et al., 2015; Sorenson et al., 2017; Xu et al., 2014), long non-coding 
RNAs (Dinh et al., 2017), and microRNAs (Dinh et al., 2019; Farber et 
al., 2018) in FLC. Yet, little is known about the causative transcriptional 
regulatory mechanisms that lead to aberrant gene expression and FLC 
tumor formation. 

Precise spatial and temporal regulation of gene expression is 
essential to many biological processes. One class of cis-regulatory 
elements that plays a major role in transcriptional regulation of gene 
expression is enhancers. Enhancers are classically defined as stretches of 

non-coding DNA that promote transcription of target gene(s) irrespective 
of genomic context, orientation, and, to a substantial extent, distance as 
well (Blackwood and Kadonaga, 1998). Enhancers are often cell-type 
specific, allowing precise spatiotemporal control of gene transcription in 
different cell types within an organism (Heintzman et al., 2009; Nord et 
al., 2013). Recent work suggests that there are at least tens of thousands 
of active enhancers in any given cell type (Dunham et al., 2012). Active 
enhancers serve as binding sites for transcription factors, transcriptional 
coactivators, and RNA polymerase and are thought to interact with their 
cognate promoters through three-dimensional looping, explaining their 
ability to act over long distances (Long et al., 2016). 

Recent studies have shown that active enhancers are 
transcribed to produce enhancer RNAs (eRNAs; Kim et al., 2010; De 
Santa et al., 2010). Genome-wide identification of enhancers by detection 
of eRNAs has recently become possible by coupling nascent transcription 
(run-on) assays with high throughput sequencing (e.g., global run-on 
[GRO-seq] and precision run-on sequencing [PRO-seq]). GRO-seq (Core 
et al., 2008) and PRO-seq (Kwak et al., 2013) require isolation of cellular 
nuclei making the application of these methods to primary tissue 
extraordinarily difficult. To overcome this limitation, chromatin run-on 
sequencing (ChRO-seq), was developed to extend the technique and 
permit analysis of primary fresh or frozen tissue (Chu et al., 2018). 
Additionally, the advent of a sister technique called length extension 
ChRO-seq (leChRO-seq) permits investigation of samples with degraded 
RNA (Chu et al., 2018). These technical advances finally enable the study 
of nascent transcription at enhancer, promoter, and gene loci in fresh or 
archived primary human tumor tissues. ChRO-seq was recently 
successfully used to identify distinct transcriptional programs in different 
subtypes of glioblastoma multiforme (Chu et al., 2018). 

Here, we perform ChRO-seq in primary FLC and matched non-
malignant liver (NML) samples. As FLC is a rare adolescent cancer, we 
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worked closely with the Fibrolamellar Cancer Foundation (FCF; 
https://fibrofoundation.org) over multiple years to accumulate the 
samples for this study. In order to bolster the number of NML samples, 
we also leverage publicly available enhancer and super enhancer data 
generated for an additional 14 human liver-derived samples from the 
super enhancer database SEdb (Jiang et al., 2019). By integrating our 
ChRO-seq analyses with RNA-seq data, we identified 16 genes strongly 
associated with aberrant enhancer activity in FLC. Overall, our study 
defines for the first time the unique enhancer activity profile and master 
transcription factors in FLC, identifies high-confidence candidate targets 
of the perturbed transcriptional regulatory programs, and indicates that 
MAPK inhibition, as well as SLC16A14 or CA12 inhibition alone or in 
combination, represent molecular therapeutic strategies to study further 
in FLC. 

Results 

Mapping nascent transcription and transcriptional regulatory 
elements in FLC 
To identify transcriptional regulatory elements (TREs) in FLC, we 
performed (le)ChRO-seq on 14 FLC samples and 3 matched NMLs (Fig. 
1A, Tables S1,S2). All FLC tumor samples expressed the DNAJB1-
PRKACA fusion (Table S2). The bioinformatic pipeline for sequencing 
data processing and genome mapping is provided in Materials and 
Methods. After removing adapters and PCR duplicates, we obtained an 
average of ~17.9 million mapped reads per sample (Table S2). We 
observed a buildup of transcriptional signal at transcription start sites 
(TSS) and the start of exons (Fig. S1A), consistent with previous reports 
(Core et al., 2008; Kwak et al., 2013). A total of 153,478 unique TREs 
across all samples were detected using dREG, a previously published 
algorithm that identifies transcriptional regulatory elements from run-on 
sequencing experiments (Danko et al., 2015; Wang et al., 2019). The 
majority of TREs are embedded in intronic (43.98%) and intergenic 
(31.49%) regions with 17.63% of TREs located close to TSSs (Fig. 1B). 
As expected, TREs close to TSSs are responsible for the majority of the 
ChRO-seq signal across all TREs (Fig. S1B,C). On average, the TREs 
are 413 bp in length (Fig. 1C), consistent with the 50-1500 bp length 
previously proposed for enhancers (Blackwood and Kadonaga, 1998; 
Parker et al., 2013). We did not observe major differences in TRE length 
based on genomic context or overlap with CpG islands (Fig. S1D,E). 
Hierarchical clustering and principal component analysis demonstrate 
that transcription at TREs stratifies FLC from NML samples (Fig. 1D,E). 
Interestingly, clustering based on transcription at distal TREs maintains 
the stratification between FLC and NML, whereas clustering with 
proximal TREs does not (Fig. 1D,E). Distal TREs (hereafter, referred to 
as enhancers) stratify FLC and NML better than gene body transcription, 
mRNA expression profiles, and microRNA expression profiles (Fig. 
1D,E; Fig. S1F), indicating that enhancer activity is more cell-type and 
condition-specific than these other data types. 

Identification of FLC-specific TREs 
In order to identify TREs that are more actively transcribed in FLC 
relative to NML, we quantified ChRO-seq reads within each TRE across 
all samples and used the DESeq2 algorithm (Love et al., 2014) to perform 
differential transcription analysis (Fig. 2A). This approach led to the 
identification of 6824 TREs that are significantly more actively 
transcribed in FLC (Fig. 2B,C; FDR < 0.05, log2(fold change) > 0). We 
refer to these as FLC-specific TREs. We also identified 1317 NML-
specific TREs. Most FLC- and NML-specific TREs are located in 
intronic, intergenic, and TSS regions and do not show major differences 
in TRE length (Fig S2A,B). 

Transcription factor motif enrichment analysis of condition-
specific TREs using HOMER (Heinz et al., 2010) revealed significant 
enrichment in FLC-specific TREs for motifs of FOSL2/JUN (AP-1) and 
CREB (Fig. 2D), both of which are activated by MAPK signaling. 
Similar analysis of NML-specific TREs showed enrichment for HNF4A 
motifs (Table S3). Additionally, analysis of the promoters of genes 
nearest to FLC-specific TREs using the Genomic Regions Enrichment of 
Annotations Tool (GREAT, McLean et al., 2010) revealed the most 
significant enrichment for motifs of CREB family members ATF2, 
CREB1, and ATF3, as well as JUN (Fig. 2E). Separate examination of 
FLC-specific promoters (proximal TREs) and enhancers (distal TREs) 
revealed promoter enrichment of E2F6, MYB, and FOSL1 (Fig. 2F, 
Table S3) and enhancer enrichment of FOSL2/JUN and CREB (Fig. 2G). 
We found that 2129 (38.2%) FLC-specific enhancers contain 
FOSL2/JUN motifs and 1090 (19.6%) contain CREB motifs. FLC-

Fig. 1. ChRO-seq reveals TREs that stratify FLC from NML. (A) Diagram of 
ChRO-seq workflow. (B) Bargraph showing the distribution of genomic locations 
of TREs identified by ChRO-seq. Genomic locations are defined by HOMER 
using GENCODE v25 annotations. (C) Length distribution of TREs identified by 
ChRO-seq. (D) Heatmap of pairwise correlations from TRE transcription. 
Hierarchical clustering was performed using Euclidean distance and Ward’s 
minimum variance method. Color bar shows Spearman’s correlation coefficient. 
TREs were classified based on GENCODE v25 basic annotations. (E) Principal 
components analysis of TRE transcription. Analyses were performed using the 
1000 most variable TREs following variance stabilizing transformation 
(DESeq2). The axes display the first two principle components and the variance 
explained by each component. PC, principal component; TSS, transcription start 
site; TTS, transcription termination site; UTR, untranslated region. 
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specific TREs that did not contain FOSL2/JUN or CREB motifs were 
enriched in HES2 and SOX1 motifs (Table S3). Our results suggest that 
FLC is characterized by an aberrant map of regulatory elements that is 
strongly associated with transcription factors from the CREB, AP-1 
families, E2F, and MYB families. 

Identification of genes associated with the highest FLC-specific 
enhancer density 
In order to determine which genes are regulated by FLC-specific TREs, 
we first defined a genomic window around each TSS. As most promoter-
enhancer interactions occur within a few hundred kilobases (Javierre et 
al., 2016), we defined a 100 kb window upstream and downstream of 
each gene’s TSS. Next, we quantified the number of FLC-specific 
enhancers within each window (Fig. 3A). As anticipated, we observed 
that genes with more FLC-specific enhancers in their windows are more 
highly transcribed in FLC than NML compared to genes with fewer FLC-
specific enhancers in their windows (Fig. 3B). However, it is important 
to note that only some of the enhancers within a gene’s window are likely 
to regulate that gene. We address this point more quantitatively later in 
the manuscript. 

We next ranked genes actively transcribed in FLC (ChRO-seq: 
TPM ³ 25) according to the number of FLC-specific enhancers in their 
windows. The top ranked gene from this analysis is SLC16A14 (Fig. 3C, 
Table S4). We also observed that CA12 and LINC00473, two genes that 
are overexpressed in FLC (Dinh et al., 2017), have very high densities of 
FLC-specific enhancers. Since we had discovered that motifs of both 
FOSL2/JUN and CREB are enriched in FLC-specific TREs (Fig. 2D), we 
next focused on target genes of these transcription factors in FLC. 
Specifically, we ranked genes by the density of FLC-specific enhancers 
that contain one or more FOSL2/JUN or CREB motifs. On the basis of 
these criteria, SLC16A14 has the highest density of FLC-specific 
enhancers containing FOSL2/JUN motifs (Fig. 3D). CA12 is also highly 
ranked in this version of the analysis. TNRC6C and LINC00473 have the 
highest and second highest density of FLC-specific enhancers containing 
CREB motifs, respectively (Fig. 3E). 

Next, we found that genes with at least one nearby FLC-
specific enhancer containing either a FOSL2/JUN or CREB motif are 
over-represented in the MAPK signaling pathway (KEGG 2016, 
p=0.032, Fisher’s exact test) and significantly enriched for MAPK1 
(ERK2) targets and interacting proteins (PPI Hub Proteins, p=5.4 ´ 10-6, 
Fisher’s exact test). We then ranked genes according to the density of 
FLC-specific enhancers containing both FOSL2/JUN and CREB motifs 

Fig. 2. FLC-specific TREs are enriched for FOS/JUN and CREB motifs. (A) 
Diagram of ChRO-seq workflow to identify FLC-specific TREs and enriched 
transcription factor motifs. (B) Volcano plot displaying differentially transcribed 
TREs in FLC compared to NML. Dashed lines represent FDR = 0.05 (horizontal) 
and log2(fold change) = 0 (vertical). (C) Venn diagram showing the total number 
of TREs and TREs that are FLC- or NML-specific. (D,F,G) Tables showing 
results of transcription factor motif enrichment in FLC-specific TREs compared 
to non-FLC-specific TREs (D), FLC-specific promoters compared to non-FLC-
specific promoters (F), and FLC-specific enhancers compared to non-FLC-
specific enhancers (G). Full results are shown in Table S3. (E) GREAT analysis 
of predicted promoter motifs in genes associated with FLC-specific TREs. 
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Fig. 3. Identification of clusters of FLC-specific enhancers and candidate 
target genes. (A) Schematic of the approach used to link FLC-specific enhancers 
to candidate genes. Gene windows were defined as 100 kb upstream and 100 kb 
downstream of each TSS. (B) Cumulative distribution function and boxplots 
(inset) showing the relationship between the number of FLC-specific enhancers 
within each gene window and the transcriptional fold change in FLC compared 
to NML. Genes were binned based on the number of FLC-specific enhancers 
within their gene window and included in the analysis if they were transcribed 
with a threshold of TPM > 1 in either FLC or NML. (C,D,E,F) Genes ranked 
based on the density of FLC-specific enhancers (C), FLC-specific enhancers with 
FOSL2/JUN motifs (D), FLC-specific enhancers with CREB motifs (E), or FLC-
specific enhancers with both FOSL2/JUN and CREB motifs (F) within their gene 
windows. Genes were included in the analysis if they were highly expressed 
(TPM ³ 25). (G) Protein-protein interaction (PPI) hub enrichment of genes with 
at least one FLC-specific enhancer containing both FOSL2/JUN and CREB 
motifs within 100 kb of the TSS. 
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(Fig. 3F), and observed that genes with at least one nearby FLC-specific 
enhancer containing both FOSL2/JUN and CREB motifs are enriched for 
MAPK1 and MAPK3 (ERK1) targets and interacting proteins (Fig. 3G). 
Taken together, these results suggest that the regulation of genes such as 
CA12, SLC16A14, and LINC00473 by FLC-specific enhancers may be 
mediated through FOSL2/JUN and CREB and that these transcription 
factors may contribute to and/or result from dysregulated MAPK 
signaling. 

Identification of FLC-specific enhancer target genes 
Our gene window analyses (Fig. 3) identified genes that may be regulated 
by FLC-specific enhancers. However, nearby genes may have the same 
TREs within their windows. In order to more confidently link individual 
FLC-specific enhancers with putative gene targets, we correlated 
enhancer activity to gene transcription levels across all FLC tumors, as 
described previously (Corces et al., 2018). ChRO-seq allows us to 
quantify both enhancer activity and gene transcription from a single 
experimental dataset, thereby avoiding confounding variables that can 
arise when using multiple different assays. Correlations between 
transcriptional activity of enhancers and genes within 100 kb of each 
other were compared to a null distribution of inter-chromosomal 
enhancer-gene pairs to calculate p-values (Fig. 4A,B). Windows larger 
and smaller than 100 kb had reduced power to detect statistically 
significant gene-enhancer correlations (Fig. S3A). Using an FDR < 0.1, 
we linked 1697 FLC-specific enhancers to putative target genes (Fig. 
4B,C). As expected, we observed that the frequency of predicted gene-
enhancer links decreases with increasing distance between them (Fig. 
4D). We found that most enhancers are linked to only one or two genes 

(mean = 1.33, Fig. 4E) and most genes are linked to only one or two 
enhancers (mean = 1.78, Fig. 4F). The top 5% of genes (in terms of 
enhancer connectivity) are each linked to at least 4 enhancers (Fig. 4G, 
Table S5). The top 5% includes FAM19A5, LINC00473, VCAN, 
SLC16A14 (Fig. 4H) and CA12 (Fig. 4I), which are putatively linked to 
20, 9, 9, 9, and 6 FLC-specific enhancers, respectively (Fig. 4G-I; Fig. 
S4; Table S6). Interestingly, while CA12 is not highly transcribed in 
NML, there is a substantial amount of ChRO-seq signal at the promoter 
(Fig. 4I), indicative of polymerase pausing. This is unlike what we 
observe at the SLC16A14 locus (Fig. 4H), where there is no ChRO-seq 
signal in NML even at the TSS. This observation suggests that 
transcriptional pausing may be another mechanism that regulates CA12 
expression. Therefore, CA12 may be poised for expression, whereas the 
SLC16A14 locus is completely inactive in NML and dramatically rewired 
for activation in FLC. 

Defining FLC-specific enhancer hotspots 
Super enhancers are non-coding regions exhibiting unusually high 
transcriptional activity (Hnisz et al., 2013; Lovén et al., 2013; Pott and 
Lieb, 2015; Whyte et al., 2013) and are important regulators of cell 
identity (Hnisz et al., 2013; Whyte et al., 2013) and key cancer genes 
(Hnisz et al., 2013; Lovén et al., 2013). We used an algorithm analogous 
to ones previously used to define super enhancers from chromatin 
immunoprecipitation and sequencing (ChIP-seq) data (Lovén et al., 2013; 
Whyte et al., 2013) to identify clusters of enhancers that have remarkably 
high transcriptional activity in FLC, but not in NML (Fig. 5A, see 
Materials and Methods). Using FLC-specific enhancers as input, we 
identified 141 dense clusters with especially high FLC-specific 
transcriptional activity (Fig. 5B). Because these loci consist of only FLC-
specific enhancers instead of all enhancers present in FLC, we refer to 
them as “FLC-specific enhancer hotspots” rather than FLC super 
enhancers. 

As super enhancers have been shown to regulate key cancer 
drivers (Lovén et al., 2013), we linked each FLC-specific enhancer 
hotspot to the closest gene that is both robustly transcribed (ChRO-seq: 
TPM ³ 25) and significantly increased in transcription (ChRO-seq: FDR 
< 0.05, log2fold change ³ 1) in FLC compared to NML. Several of these 
genes have been consistently linked to FLC, including CA12, SLC16A14, 
LINC00473, OAT, TMEM163, and TNRC6C. Others, such as FAM19A5, 
have not previously been reported as dysregulated in FLC and represent 
novel candidate oncogenes. Enrichment analysis of genes linked to FLC-
specific enhancer hotspots revealed significant over-representation in the 

 
Figure 4. Identification of candidate target genes of individual enhancers. (A) 
Schematic of the approach used to link individual FLC-specific enhancers to 
candidate target genes. (B) Cumulative distribution function of the Pearson 
correlation coefficient from all gene-enhancer pairs within 100 kb and the null 
distribution (interchromosomal gene-enhancer pairs). (C) Plot showing the 
number of total FLC-specific TREs, enhancers, and enhancers linked to genes 
identified. (D,E,F) Histograms of the distance between linked genes and 
enhancers (D), number of gene targets linked to each enhancer (E), and number 
of enhancers linked to each target gene (F). (G) Ranked dot plot showing the 
number of enhancers linked to each target gene. Dots in red indicate the top 5% 
of genes based on number of linked enhancers (³4 linked enhancers). (H,I) 
Genome snapshot of the SLC16A14 (H) and CA12 (I) loci. Computationally 
predicted gene-enhancer links, FLC-specific TREs, CREB motifs within FLC-
specific TREs (blue), and FOSL2/JUN motifs within FLC-specific TREs (green) 
are shown below the gene diagram. FLC-specific TREs containing CREB motifs 
are shown in blue, those containing FOSL2/JUN motifs in green, those containing 
both CREB and FOSL2/JUN motifs in purple, and all others in black. 
Transcriptional signal from the plus and minus strand are shown in red and grey, 
respectively. FLC and NML show similar levels of paused polymerase for CA12 
(peak at TSS), but FLC has significantly more gene body transcription. 
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MAPK signaling pathway (Fig. 5C) and enrichment for MAPK1 targets 
(Fig. 5D). Correlation analysis using the ARCHS4 database (Lachmann 
et al., 2018) demonstrated that these genes are also strongly linked to JUN 
expression (Fig. 5E). This finding is consistent with our previous analysis 
that JUN may be critical for the transcriptional regulation of these genes. 

To determine the uniqueness of the FLC-specific enhancer 
hotspots, we compared them to previously identified super enhancers in 

SEdb (Jiang et al., 2019). This database contains 325,607 super enhancers 
from more than 540 human samples across over 240 cell and tissue types, 
including 14 from normal human liver, primary hepatocytes, and multiple 
cell lines including HepG2 and Huh7. We found that 10 FLC-specific 
enhancer hotspots are not present in any sample in SEdb. Notably, this 
includes those linked to SLC16A14 and FAM19A5 (Fig. 5F,G; Table S5), 
indicating that the mechanisms of transcriptional regulation of these 
genes may be unique in FLC. FLC-specific enhancer hotspots associated 
with LINC00473 and CA12 showed minimal intersection with super 
enhancers in SEdb (Fig. 5G), overlapping 12 and 37 super enhancers, 
respectively. Additionally, 72 FLC-specific enhancer hotspots, including 
those associated with LINC00473 and CA12, did not overlap with super 
enhancers from any of the 14 liver-derived samples, which include 
healthy liver and hepatocellular carcinoma cell lines. 

To further investigate the uniqueness of the 10 FLC-specific 
enhancer hotspots not present in SEdb, we cross-referenced these 
enhancer hotspots to individual enhancers identified by the ENCODE, 
FANTOM5, and NIH Roadmap Epigenomics consortia (see Materials 
and Methods). Only one FLC-specific enhancer hotspot (located near 
MRC1) did not overlap any individual enhancers recorded in the three 
databases mentioned above, suggesting this enhancer hotspot is truly 
unique to FLC (Fig. 5H). We also recalculated the signal for the same 10 
FLC-specific super enhancers including only those individual enhancers 
that do not overlap with any enhancers from the three databases. Only the 
revised stitched enhancers close to MRC1 and SLC16A14 exhibited 
enough transcriptional activity (ChRO-seq signal) to still meet the 
threshold set in our original analysis for an enhancer hotspot. These 
results suggest that there is a substantial amount of enhancer activity that 
is potentially completely unique to FLC at the MRC1 and SLC16A14 loci. 
 

High-confidence candidate oncogenes in FLC  
The genes significantly correlated with FLC-specific enhancers and those 
significantly associated with FLC-specific enhancer hotspots represent 
those genes that likely drive key oncogenic attributes of FLC cells. To 
further refine this list and identify high-confidence candidates, we 
integrated our ChRO-seq results with RNA-seq data from 23 FLC 
samples (Table S1, S6), ten of which also underwent ChRO-seq analysis. 
We first selected genes that were identified as both significantly 
correlated with FLC-specific enhancers (Fig. 4G) and linked to FLC-
specific enhancer hotspots (Fig. 5B). These genes were then filtered to 
identify genes that are both highly transcribed (ChRO-seq: TPM ³ 25, 
fold change ³ 5, FDR < 0.2) and expressed (RNA-seq: normalized counts 
³ 100, fold change ³ 5, FDR < 0.2) in FLC relative to NML. Integration 
of both ChRO-seq and RNA-seq data ensures that the transcriptional 
changes of these genes are maintained at the steady state RNA level. The 
final list harbored 16 genes (Fig. 6A, Table S6). We noticed that over half 
of these genes have been previously implicated in drug resistance (CA12, 
COL4A1, HSPA1B, IRF4, KIF26B, LINC00473, SLC16A14, TESC, and 
VCAN) and 10 of them are connected to elevated MAPK/ERK activity 
(BACE2, CA12, COL4A1, FAM19A5, HSPA1B, IRF4, KIF26B, 
LINC00473, TESC, and VCAN; Table S6). 

We selected eight of these genes (CA12, FAM19A5, HSPA1B, 
LINC00473, OAT, SLC16A14, TESC, and VCAN) for further 
investigation. We chose SLC16A14 and LINC00473 because they have 
high densities of FLC-specific enhancers with FOSL2/JUN (Fig. 3D) and 
CREB motifs (Fig. 3E), respectively; FAM19A5 because it has the 
greatest number of significantly correlated enhancers (Fig. 4G); TESC 
and VCAN because they have previously been strongly implicated in drug 
resistance (Lee et al., 2018; Li et al., 2017; Man et al., 2014), a salient 
feature of FLC (Maniaci et al., 2009; Torbenson, 2012); CA12 and OAT 

Fig. 5. Identification of FLC-specific enhancer hotspots. (A) Schematic of the 
approach used to identify FLC-specific enhancer hotspots. (B) Total 
transcriptional signal from enhancers stitched from FLC-specific enhancers. 
Stitched enhancers are ranked based on transcriptional signal within FLC-specific 
enhancers. Points in red denote FLC-specific enhancer hotspots. (C,D,E) KEGG 
2016 enrichment (C), PPI hub proteins (D), and ARCHS4 co-correlation (E) 
analysis of candidate target genes of FLC-specific enhancer hotspots. (F) Venn 
diagram showing the overlap between FLC-specific enhancer hotspots and all 
super enhancers in SEdb. The overlap displays the number of FLC-specific 
enhancer hotspots overlapping any super enhancer within SEdb rather the 
reciprocal comparison (n=5274). (G) Dot plot showing the number of overlapping 
super enhancers within SEdb for each FLC-specific enhancer. (H) Stacked 
bargraph examining the 10 FLC-specific enhancer hotspots that did not overlap 
with super enhancers in SEdb. Individual enhancers from each enhancer hotspot 
were examined for overlap with any enhancer from ENCODE, FANTOM5, and 
NIH Roadmap Epigenomics databases. The number above each bar indicates the 
total number of individual enhancers that comprise that enhancer hotspot. Bars 
outlined in black designate genes that have sufficient enhancer signal in individual 
unique enhancers to meet the threshold originally determined for FLC-specific 
enhancer hotspots. 
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because we have previously identified them as candidate markers of FLC 
(Dinh et al., 2017) and because CA12 is a prominent mediator of drug 
resistance in other cancer types (Boyd et al., 2017; Doyen et al., 2013; 
Kopecka et al., 2016; Yoo et al., 2010); and HSPA1B because it encodes 
a member of the heat shock protein 70 (HSP70) family, which has been 
shown to interact with the DNAJB1-PRKACA fusion found in FLC 
(Turnham et al., 2019). We also selected one gene that only appears in 
the FLC-specific enhancer hotspot analysis (RPS6KA2) and another from 
the gene-enhancer correlation (FZD10) analysis for further investigation 
(Fig. 6A). 

We compared the expression of these genes in FLC to other 
cancer types within The Cancer Genome Atlas (TCGA) and found that 
SLC16A14 is more highly expressed in FLC than any other cancer type 
(Fig. S5). FAM19A5, LINC00473, CA12, TESC, and VCAN are also 
highly expressed in FLC, in addition to several other cancer types within 
TCGA (Fig. S5). We also compared SLC16A14 expression in FLC 
compared to normal tissues within the Genotype-Tissue Expression 
(GTEx) database and found substantially higher levels of SLC16A14 in 
FLC than any other normal tissue (Fig. S5H).  
 

SLC16A14, CA12, LINC00473, RPS6KA2, and VCAN are responsive 
to DNAJB1-PRKACA 
While the genes we selected are over-transcribed (Fig. 6B) and over-
expressed (Fig. 6C) in FLC relative to NML, it is unclear whether this 
dysregulation is directly caused by the DNAJB1-PRKACA fusion. To 
determine whether the DNAJB1-PRKACA fusion is sufficient to perturb 
these genes of interest, we took advantage of two murine models of FLC. 
In the first model, a transposon expressing human DNAJB1-PRKACA is 
introduced into the livers of C57BL/6 mice by hydrodynamic tail vein 
injection, forming FLC-like liver tumors (Kastenhuber et al., 2017). We 
examined the expression of our genes of interest in the resulting liver 
tumors compared to livers from mice injected with an empty vector 
control. Car12 (the mouse homolog of human CA12) and Slc16a14 
displayed significantly higher expression of samples expressing 
DNAJB1-PRKACA compared to control (Fig. 6D). The second model is 
the AML12 cell line that has undergone CRISPR/Cas9 gene editing, 
resulting in a heterozygous deletion analogous to the endogenous event 
in humans, leading to the formation of the Dnajb1-Prkaca fusion (Dinh 
et al., 2019; Turnham et al., 2019). When we examined the expression of 
the genes of interest in AML12 cells expressing Dnajb1-Prkaca, we 
found that Car12 and Slc16a14, as well as Rps6ka2 and Vcan, are 
significantly elevated compared to wild-type (WT) controls (Fig. 6E).  

As LINC00473 is a primate-specific lncRNA (Reitmair et al., 
2012), we used an alternative non-murine model to study its regulation. 
Specifically, we stably over-expressed the fusion in the HepG2 human 
hepatoma cell line using a lentiviral system. DNAJB1-PRKACA 
expression dramatically increased LINC00473 expression compared to 
an enhanced green fluorescent protein (EGFP) control (Fig. 6F). WT 
PRKACA also increased LINC00473 expression. However, the 
magnitude of LINC00473 induction was significantly larger with the 
fusion compared to WT PRKACA, indicating that something other than 
canonical PKA activity (possibly the DNAJB1 domain) is relevant for 
robust induction of LINC00473. Importantly, stable expression of a 
kinase-dead mutant of DNAJB1-PRKACA (K128H) did not increase 
LINC00473 expression (Fig. 6F), indicating that the kinase activity of the 
fusion is necessary for induction of expression. To determine if 
LINC00473 might be responsive to PKA fusions in other contexts, we 
examined a cholangiocarcinoma dataset (Nakamura et al., 2015) that 
characterized tumors with fusions involving PRKACA or PRKACB with 
ATPase Na+/K+ transporting subunit beta 1 (ATP1B1). Interestingly, the 
exons of PRKACA retained in the ATP1B1-PRKACA fusion are the same 

as in DNAJB1-PRKACA. Using RNA-seq data generated for this dataset, 
we examined the relationship between PKA fusions and the expression 
of LINC00473. Tumors with PKA fusions demonstrated significantly 
higher expression of LINC00473 than tumors without PKA fusions (Fig. 
6G), indicating that LINC00473 is responsive to PKA activity in 
alternative fusion events. Our results suggest that DNAJB1-PRKACA is 
sufficient to perturb the expression of CA12, SLC16A14, VCAN, 
RPS6KA2, and LINC00473 in the specific disease models we used and 
that this regulation is dependent upon (at least for LINC00473) the kinase 
activity of DNAJB1-PRKACA. 

 

Fig. 6. Candidate FLC oncogenes are transcriptionally dysregulated. (A) 
Venn diagram showing overlap of genes linked to FLC-specific enhancer hotspots 
and genes significantly correlated to FLC-specific enhancers. Genes in bold 
indicate those shown in panels B,C. (B,C) Boxplots showing transcription (B) and 
RNA expression (C) in FLC compared to NML. *p<0.05, **p<0.01, ***p<0.001 
(Wald test, DESeq2). (D) RNA expression in liver tissue and tumors expressing 
empty (pT3-Empty) and fusion-containing (pT3-DNAJB1-PRKACA) 
transposon, respectively. (E) RNA expression in WT AML12 cells and a clone 
expressing DNAJB1-PRKACA. (F) RNA expression of LINC00473 following 
expression of various PRKACA constructs. (G) RNA expression of LINC00473 
in cholangiocarcinoma samples with and without PKA fusions. *p<0.05, 
**p<0.01 (two-sided Welch’s t-test), #p<0.05 (two-sided Mann-Whitney U test). 
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Suppression of SLC16A14 or CA12, either alone or in combination 
with a MAPK inhibitor, reduces viability of FLC cell models 
Our results thus far suggest that MAPK signaling regulates FLC 
pathogenesis (Fig. 3G, 5C,D). To confirm that MAPK signaling is 
overactive in FLC, we measured the levels of phosphorylated MEK and 
ERK in WT and Dnajb1-Prkaca-expressing AML12 cells (Fig. 7A,B). 
As expected, we observed dramatically increased phospho-MEK and 
phospho-ERK in cells expressing the fusion compared to WT cells. 
Treatment of AML12 cells expressing Dnajb1-Prkaca with the MEK 
inhibitor cobimetinib resulted in a dose-responsive decrease in cell 
viability (Fig. 7C-F). Both SLC16A14 and CA12 (Car12), which we 
identified as prominent FLC-enhancer-hotspot associated genes, have 
been implicated in drug resistance in other cancers (Doyen et al., 2013; 
Januchowski et al., 2014; Kopecka et al., 2016), and CA12 has been 
reported previously as a mediator of the effects of the MAPK pathway 
(Hsieh et al., 2010). Knockdown of Slc16a14 by siRNA dramatically 
reduced viability of AML12 cells expressing Dnajb1-Prkaca, and also 
increased the potency of cobimetinib (Fig. 7C,D). Knockdown of Car12 
did not have much of an effect on its own, but in combination with 
cobimetinib did significantly reduce cell viability compared to 
cobimetinib alone (Fig. 7E,F, Fig. S6A). 
 We next tested whether inhibition of MAPK signaling reduces 
viability of human FLC tumor cells. First, we derived a primary human 
FLC cell line from a patient-derived xenograft (PDX) model by 
optimizing previously described protocols (Dinh et al., 2019; Liu et al., 
2017, see Materials and Methods). Treatment with cobimetinib reduced 
ERK phosphorylation as expected (Fig. 7G), and significantly decreased 
FLC cell viability (Fig. 7H), but only at higher doses of the drug. This 
effect was confirmed across three distinct derivations of the FLC cell line 
(Fig. 7H, Fig. S6B), each of which was positive for DNAJB1-PRKACA 
expression. Our results suggest that FLC cells are susceptible to MAPK 
inhibition, however the doses needed for a cytotoxic effect indicate an 
intrinsic level of drug resistance in these cells. 

We hypothesized that inhibition of CA12 in FLC cells may 
mitigate the intrinsic drug resistance because of the results in the AML12 
cells expressing Dnajb1-Prkaca (Fig. 7E) and because an effective CA12 
inhibitor, SLC-0111, is currently in clinical trials as combination therapy 
for metastatic pancreatic cancer. We found that pharmacological 
suppression of CA12 with SLC-0111 in FLC cells significantly enhances 
the potency of cobimetinib at the 500 nM dose (Fig. 7H, Fig. S6B). 
Again, this effect was confirmed across three distinct derivations of the 
FLC cell line. We quantified the interaction between cobimetinib and 
SLC-0111 using the combination index (CI). SLC-0111 and cobimetinib 
combination treatment resulted in a synergistic response (CI = 0.00686 
(0.5 µM cobimetinib + 100 µM SLC-0111) and 0.000791 (0.5 µM 
cobimetinib + 200 µM SLC-0111) in FLC2, where CI < 1 indicates 
synergy). To determine whether CA12 interacts with the MAPK 
signaling pathway, we inhibited either MEK or CA12. Cobimetinib 
treatment resulted in decreased ERK phosphorylation as expected, but 
had no effect on CA12 expression (Fig. 7G). However, treatment with 
SLC-0111 reduced phosphorylated MEK and ERK levels (Fig. 7J), 
suggesting that CA12 may function, at least in part, upstream of the 
MAPK signaling pathway. Taken together, our results suggest that the 
MAPK signaling pathway is dysregulated in FLC and inhibition of this 
pathway in combination with pharmacological suppression of CA12 or 
inhibition of SLC16A14 represent exciting candidate molecular 
therapeutic approaches. 

Discussion 

Fibrolamellar carcinoma is a devastating cancer affecting young adults 
with limited treatment options. Thus, there remains a great need to 

identify potential therapeutic targets. Here we have analyzed primary 
FLC tumors and matched NML samples to map the unique enhancer 
landscape of FLC. One of the goals of this study was to discover master 
regulators of dysregulated gene expression and signaling in FLC. We 
took advantage of the new technique (le)ChRO-seq (Chu et al., 2018), 
which allowed us to perform run-on sequencing on frozen primary 
tumors. A notable advantage of (le)ChRO-seq is that it allows 
quantification of both enhancer activity and gene transcription from a 
single experiment, thereby avoiding possible confounders associated 
with using multiple different assays. 

Our finding that FLC-specific TREs are enriched in motifs of 
FOSL2/JUN and CREB is noteworthy for several reasons. First, CREB 
is a well-validated substrate of wild-type PKA (Shaywitz and Greenberg, 
1999) and has previously been shown to be hyperphosphorylated in FLC 
compared to adjacent liver (Xu et al., 2014). Second, CREB 

Fig. 7. The MAPK and SRC signaling pathways are dysregulated in FLC. 
(A,B) Western blot in WT AML12 cells and AML12 cells expressing the 
DNAJB1-PRKACA fusion demonstrating elevated MEK (A) and ERK (B) 
phosphorylation in cells expressing the fusion. (C,E) Cell viability quantified by 
crystal violet staining in AML12 cells expressing the DNAJB1-PRKACA fusion. 
Cells were treated with a siRNA targeting Slc16a14 (C), Car12 (E), or a control 
siRNA and multiple concentrations of the MEK inhibitor cobimetinib. (D,F) 
Representative wells for cells treated with multiple concentrations of cobimetinib 
and siRNA targeting Slc16a14 (D), Car12 (F), or a control siRNA and stained 
with crystal violet. (G) Western blot in FLC cells treated with 2.5 µM cobimetinib 
and probed with antibodies detecting CA12 or phosphorylated ERK. (H) Cell 
viability quantified by CellTiter-Glo in FLC cells treated with cobimetinib alone 
or the combination of cobimetinib and SLC-0111. All comparisons between 
DMSO and treatment were statistically significant (p<0.01). (J) Western blot in 
FLC cells treated with 200 µM SLC-0111 and probed with antibodies detecting 
CA12, phosphorylated MEK, or phosphorylated ERK. **p<0.01, ***p<0.001 
(two-sided Mann-Whitney U test). 
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transcriptionally activates LINC00473 (Chen et al., 2016, 2018; Reitmair 
et al., 2012) and represses miR-375 (Keller et al., 2012), the latter of 
which is a candidate tumor suppressor in FLC (Dinh et al., 2019). Third, 
CREB and AP-1, a heterodimer consisting of FOS and JUN subunits, 
have been shown to regulate each other (Ma et al., 2014; Sanyal et al., 
2002). Finally, CREB and AP-1 are both activated by the MAPK 
signaling pathway (Ginty et al., 1994; Karin, 1995; Wu et al., 2001; Xing 
et al., 1996), which is dysregulated in FLC (Turnham et al., 2019). 

Our analysis reveals that transcription at distal TREs (i.e. 
enhancers) stratify FLC from NML samples better than transcription at 
proximal TREs or gene bodies, similar to previous reports (Corces et al., 
2016, 2018). These findings are consistent with other studies (Franco et 
al., 2018; Van Groningen et al., 2017; Ooi et al., 2016) that have shown 
enhancer activity is more sensitive than gene expression for sample 
classification (e.g., tumor-normal, tumor subtypes, cell types). Unlike 
other methods to identify enhancers, such as assay for transposase-
accessible chromatin using sequencing (ATAC-seq) or chromatin 
immunoprecipitation and sequencing (ChIP-seq) for enhancer-associated 
histone modifications or proteins, ChRO-seq identifies active regulatory 
elements as well as actively transcribed genes. This advantage allowed 
us to correlate enhancer and gene transcription within the same assay, as 
well as to provide a more direct output of enhancer function 
(transcription) than steady state RNA levels, which reflect cumulative 
effects of transcriptional, co-transcriptional, and post-transcriptional 
regulatory processes. 
 To identify putative targets of FLC-specific enhancers, we 
employed computational approaches based on enhancer density and 
signal correlation. We identified 141 FLC-specific enhancer hotspots, 
defined as dense clusters of enhancers with especially high 
transcriptional activity (similar to the concept of super enhancers). 
Comparing these loci with previously characterized super enhancers in 
SEdb, we found that 10 FLC-specific enhancer hotspots are completely 
unique and do not overlap with any known super enhancer. Furthermore, 
72 of the enhancer hotspots do not overlap with super enhancers from 
any previously assayed liver tissue or liver-derived cells. As super 
enhancers have been shown to regulate cell identity and oncogenes 
(Hnisz et al., 2013; Lovén et al., 2013), our findings suggest that these 
FLC-specific enhancer hotspots may regulate genes important in the 
formation, progression, and/or maintenance of this cancer. Super 
enhancers are regulated by the bromodomain protein BRD4 (Lovén et al., 
2013), and BRD4 inhibitors such as JQ1 (Filippakopoulos et al., 2010) 
have been shown to disrupt super enhancer function (Gryder et al., 2017; 
Lovén et al., 2013; Mack et al., 2018; Peeters et al., 2015). 
Pharmacological disruption of the FLC-specific enhancer hotspots we 
have described here may represent an alternative therapeutic approach 
for FLC. 

We have computationally identified gene-enhancer 
interactions in this study. However, future experiments will be important 
to confirm these interactions experimentally and carefully dissect the 3-
D regulatory interactions in FLC. For example, methods based on 
chromosome conformation capture, such as Hi-C, can identify and 
confirm global chromosomal interactions, while methods based on 
luciferase assays, such as self-transcribing active regulatory region 
sequencing (STARR-seq) or other massively parallel reporter assays, can 
validate the regulatory activity of identified enhancers. More refined 
dissection of individual or subsets of enhancers using CRISPR/Cas9 
genome editing will confirm functional gene-enhancer links and identify 
the specific nucleotides within enhancers that are essential for such 
regulation. Furthermore, our ChRO-seq experiments were conducted 
with primary tumors, which contain a heterogenous mixture of cells. Our 
results therefore represent the aggregate results across all cell types 
present. Going forward, single cell experiments will be necessary to 

dissect the role of transcriptional regulatory networks in tumor, immune, 
parenchymal, and other cell types within primary tumors. 

Integrative analyses of ChRO-seq and RNA-seq data identified 
16 high-confidence candidate oncogenes in FLC. Some of these genes, 
including LINC00473 and CA12 have been characterized in other cancers 
previously. LINC00473 is known to be overexpressed in FLC (Dinh et 
al., 2017) and other cancers (Chen et al., 2016, 2018; Shi et al., 2017), 
and promotes chemotherapeutic resistance in colon cancer (Wang et al., 
2018) and head and neck squamous cell carcinoma (Han et al., 2018). 
CA12 has been linked to drug resistance in multiple cancer types (Boyd 
et al., 2017; Doyen et al., 2013; Kopecka et al., 2016) and we have 
previously demonstrated that it is overexpressed in FLC (Dinh et al., 
2017). Other genes, including SLC16A14 and FAM19A5, are relatively 
understudied and merit deeper investigation. 

Harnessing well-characterized inhibitors of some of these 
genes may represent a potentially expedient avenue for new FLC 
therapeutics. One notable example is an inhibitor of CA12, SLC-0111, 
currently in clinical trials for metastatic pancreatic cancer (see below). 
Most of the genes we identified here are not currently targeted by drugs 
or inhibitors; nonetheless, alternative strategies exist to target cells 
uniquely expressing these genes. Drugs conjugated to antibodies or 
aptamers that can bind to cell surface proteins that are specific to cells of 
interest, such as SLC16A14 in FLC cells, represent an emerging strategy 
for targeting tumor cells. Examination of SLC16A14 expression in the 
Genotype-Tissue Expression (GTEx) database demonstrated 
substantially higher expression in FLC tumors than any other normal 
tissue, indicating that it may be a useful molecular beacon for such 
approaches. For non-cell surface proteins, this method can be modified 
by engineering T-cells that recognize the major histocompatibility 
complex (MHC) class I presenting specific peptides from the protein of 
interest. Leveraging the knowledge gained in this study to develop new 
targeted therapeutic approaches remains an important goal. 
 Our analyses show that a large proportion of the genes that are 
associated with FLC-specific enhancers function in drug resistance, 
including LINC00473 (Han et al., 2018; Wang et al., 2018), VCAN (Li et 
al., 2017), and CA12 (Boyd et al., 2017; Doyen et al., 2013; Kopecka et 
al., 2016; Yoo et al., 2010). This suggests that high expression of these 
genes may be responsible for the strong drug resistance phenotype 
observed in FLC. Thus, a viable therapeutic strategy to combat drug 
resistance may be to combine inhibitors of drug resistance genes with 
presently available therapeutics. For example, ongoing clinical trials for 
metastatic pancreatic cancer are focused on combining SLC-0111, a 
CA12 inhibitor, with the standard therapeutic gemcitabine 
(ClinicalTrials.gov Identifier: NCT03450018). 
 In addition, we have demonstrated that CA12, SLC16A14, 
VCAN, and RPSK6A2 are responsive to DNAJB1-PRKACA in at least 
one of two different genetically engineered murine models of FLC. 
However, we did not notice a significant induction of expression for 
several of the other FLC enhancer-hotspot associated genes that we 
tested, even though they are over-expressed in primary FLC tumors. 
There are several possible explanations for this observation. First, the 
murine models we used might have species-specific differences in gene 
regulation compared to human. Second, these genes might not be directly 
downstream of DNAJB1-PRKACA, but induced due to another process 
during tumor initiation or progression. For example, certain genes may 
be induced during or in response to the development of tumor fibrosis 
within FLC tumors. Although this is a distinctive feature of primary 
human FLCs, current mouse models lack this characteristic, providing a 
possible explanation for the observed differences. While this is indicative 
of a critical need for better model systems, our results using two murine 
models suggest that at least CA12, SLC16A14, VCAN, and RPS6KA2 are 
responsive to DNAJB1-PRKACA. Alternative models may be necessary 
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to study the remaining genes. For example, since LINC00473 is a 
primate-specific lncRNA, we used the HepG2 cell line stably expressing 
DNAJB1-PRKACA to demonstrate LINC00473 is responsive to the 
fusion. 
 Finally, we demonstrated that the MAPK signaling pathway is 
dysregulated in FLC. While the cell line we have derived and used here 
is, to our knowledge, the only published FLC cell line, it is not without 
its limitations. As the FLC cells are derived from a PDX model and can 
be co-cultured with irradiated mouse fibroblasts, we observe a murine 
component in each derived cell line (see Materials and Methods). 
However, experiments across multiple cell line derivations with varying 
degrees of murine component produced similar results (Fig. 7H,I, Fig. 
S6B,C). These observations underscore the need for additional models of 
FLC, including new cell lines. The cell lines described here are all 
derived from the only published FLC PDX model (Oikawa et al., 2015), 
therefore derivations from additional PDX models will be important as 
they become available. In each cell line derivation, inhibition of the 
MAPK pathway significantly reduced cell viability, but most effectively 
in the micromolar range, suggesting these cells exhibit intrinsic drug 
resistance similar to what has been reported in patients. Combination 
treatment of MEK inhibitor with the CA12 inhibitor SLC-0111 resulted 
in enhanced potency compared to MEK inhibitor alone indicating that 
CA12 inhibition in combination with additional therapeutics might be a 
viable treatment strategy for FLC. Importantly, inhibitors targeting 
multiple members of the MAPK cascade are in clinical use for the 
treatment of other cancers and SLC-0111 is currently in clinical trials for 
metastatic pancreatic cancer. Repurposing these therapeutics for FLC 
patients may provide more effective treatments than the limited options 
currently available. Although we have demonstrated that inhibition of 
CA12 enhances the potency of MEK inhibitors, inhibition of other FLC 
enhancer hotspot-associated genes that are potentially involved in drug 
resistance, such as SLC16A14, TESC, or VCAN, may provide additional 
therapeutic benefit. Indeed, knockdown of Slc16a14 in AML12 cells 
expressing Dnajb1-Prkaca both enhances the potency of cobimetinib and 
demonstrates substantial cytotoxic activity alone. 
 In sum, we have used ChRO-seq to map the transcriptional and 
enhancer landscape of FLC. The genome-scale information provided by 
ChRO-seq allowed us to identify candidate master transcriptional 
regulators of FLC and novel candidate FLC oncogenes, demonstrating 
the power of such genomic approaches. Follow-up functional studies in 
AML12 cells expressing Dnajb1-Prkaca and a newly derived human 
FLC cell culture revealed new candidate therapeutic strategies for FLC. 
 
Materials and Methods 

Lead Contact and Materials Availability 
Further information and requests for resources and reagents should be directed to 
and will be fulfilled by the Lead Contact, Praveen Sethupathy (pr46@cornell.edu). 

Experimental Model and Subject Details 
Human liver samples 
Informed consent was obtained from all human subjects. Samples were collected 
according to Institutional Review Board protocols 1802007780, 1811008421 
(Cornell University) and/or 33970/1 (Fibrolamellar Cancer Foundation) and 
provided by the Fibrolamellar Cancer Foundation. Importantly, some samples 
come from the same patient (Table S2). 
 
Animals 
Samples from C57BL/6N mice were obtained for a previous study (Dinh et al., 
2019) and remaining samples were used for this study. Briefly, female 6-10 week 
old C57BL/6N mice were subjected to hydrodynamic tail-vein injection with 
sterile 0.9% NaCl and 20 µg transposon and CMB-SB13 transposase (1:5 molar 
ratio). The transposon plasmid expressed human DNAJB1-PRKACA or an empty 

control. 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC, 0.1%) diet was 
administered after tail-vein injection. 
 
Cell lines 
HepG2 expressing DNAJB1-PRKACA and EGFP have been previously described 
(Dinh et al., 2019). HepG2 cells were grown in Dulbecco’s Modified Eagle Media 
(DMEM) containing 1 g/L glucose (Thermo Fisher Scientific) supplemented with 
10% fetal bovine serum (Thermo Fisher Scientific), 1% GlutaMAX (Thermo 
Fisher Scientific), 110 mg/L sodium pyruvate, and 1% penicillin-streptomycin 
(Thermo Fisher Scientific). The DNAJB1-PRKACA K128H kinase-dead mutant 
was cloned using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 
Technologies) using the following primers (5’-
CCTTCTGTTTGTCGAGGATATGCATGGCATAGTGGTTCCCG-3’ and 5’-
CGGGAACCACTATGCCATGCATATCCTCGACAAACAGAAGG-3’). PCR 
products were cloned into the pCR-Blunt II-TOPO vector (Thermo Fisher 
Scientific) and subcloned into the pLV-EF1a-IRES-Puro vector (Addgene plasmid 
#85132, gift from Tobias Meyer). For lentivirus production, HEK293/T17 cells 
were transfected with DNAJB1-PRKACA K128H plasmid along with psPAX2 
(Addgene plasmid #12260, gift from Didier Trono) and pMD2.G (Addgene 
plasmid #12259, gift from Didier Trono) to produce lentiviral particles, which 
were concentrated using Lentiviral-X Concentration (Takara Bio USA, Mountain 
View, CA) per manufacturer’s protocol. HepG2 cells were transduced with 
varying concentrations of lentivirus for 24 hours and selected with 2 µg/mL 
puromycin (Thermo Fisher Scientific) for 4 days. Selectable cells treated with the 
lowest concentration of virus were used for further passaging and experiments to 
obtain a majority of cells with 1 viral integration. 

WT AML12 cells and AML12 cells expressing the DNAJB1-
PRKACA fusion have been previously described (Dinh et al., 2019; Turnham et 
al., 2019). They were cultured in DMEM/F12 supplemented with 10% FBS, 0.04 
µg/mL dexamethasone, 0.1% gentamicin, 1 µg/mL recombinant human insulin, 
0.55 µg/mL human transferrin, and 0.5 ng/mL sodium selenite. 

FLC cells were previously described (Dinh et al., 2019). Lines 3 and 
18 were grown in complete F medium according to a previously published 
protocol (Liu et al., 2017). Line 2 was grown similarly to lines 3 and 18 with three 
minor modifications. First, F media was conditioned by irradiated mouse 
embryonic fibroblasts for 3 days prior to use. FLC cells were cultured in 
conditioned F media without irradiated fibroblasts. Second, R-spondin 
conditioned media was added to complete F media to 10% volume. R-spondin 
conditioned media was produced by culturing HEK293T cells expressing murine 
Rspo1 (gift from Alexander Nikitin lab) in conditioning media (DMEM 
supplemented with 1% GlutaMAX, 1% HEPES, and 1% penicillin-streptomycin) 
for 10 days. The supernatant was collected and filtered through a 0.22 µm filter 
prior to use. Third, the ROCK inhibitor Y-27632 was used a final concentration of 
20 µM, increased from the original concentration of 10 µM (Liu et al., 2017). We 
detected the presence of murine cells in all three derived cell lines by RT-qPCR. 
All cell lines were cultured in 5% CO2 at 37°C. 

Method Details 
Chromatin run-on sequencing 
ChRO-seq was performed as previously described (Chu et al., 2018; Mahat et al., 
2016) with minor modifications. Length extension ChRO-seq (leChRO-seq) was 
performed identically to ChRO-seq except where indicated. Chromatin was 
isolated from pulverized frozen tissue in 1 mL 1X NUN buffer (20 mM HEPES, 
7.5 mM MgCl2, 0.2 mM EDTA, 0.3 M NaCl, 1M urea, 1% NP-40, 1 mM DTT, 
50 units/mL SUPERase In RNase Inhibitor (Thermo Fisher Scientific, Waltham, 
MA, AM2694), 1X Protease Inhibitor Cocktail (Roche, 11873580001)). For 
leChRO-seq, 50 units/mL RNase Cocktail Enzyme Mix (Thermo Fisher Scientific, 
AM2286) was substituted for SUPERase In RNase Inhibitor. Samples were 
vortexed for 1 minute, an additional 500 µL of 1x NUN buffer was added to each 
sample, and the samples were vortexed for an additional minute. Samples were 
incubated in an Eppendorf Thermomixer (Eppendorf, Hamburg, Germany) at 
12°C and shaking at 2000 rpm for 30 minutes before centrifugation at 12,500 x g 
for 30 minutes at 4°C. Each sample was washed with 1 mL 50 mM Tris-HCl (pH 
7.5) supplemented with 40 units/mL SUPERase In RNase Inhibitor (80 units/mL 
for leChRO-seq) and centrifuged at 10,000 x g for 5 minutes at 4°C. This wash 
step was repeated twice and samples were stored in 50 µL of chromatin storage 
buffer (50 mM Tris-HCl pH 8.0, 25% glycerol, 5 mM magnesium acetate, 0.1 mM 
EDTA, 5 mM DTT, and 40 units/mL SUPERase In RNase Inhibitor). Samples 
were loaded into a Bioruptor (Diagenode, Denville, NJ) and sonicated on the high 
power setting for a cycle time of 10 minutes, consisting of 10 cycles of 30 seconds 
on and 30 seconds off. Sonication was repeated as necessary to solubilize the 
chromatin and samples were stored at -80°C. 

Following chromatin isolation, 50 µL of chromatin was mixed with 50 
uL 2X run-on reaction mix (10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 1 mM DTT, 
300 mM KCl, 400 µM ATP, 0.8 µM CTP, 400 µM GTP, 400 µM UTP, 40 µM 
Biotin-11-CTP (Perkin Elmer, Waltham, MA, NEL542001EA), 100 ng yeast 
tRNA (VWR, Radnor, PA, 80054-306), 0.8 units/µL SUPERase In RNase 
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Inhibitor, 1% sarkosyl). The run-on reaction was performed at 37°C for 5 minutes 
at 700 rpm and stopped by adding 500 µL Trizol LS (Thermo Fisher Scientific, 
10296-010) to the reaction. RNA samples were precipitated and resuspended in 
diethylpyrocarbonate (DEPC) treated water, heat treated at 65°C for 40 seconds, 
and digested on ice with 0.2N NaOH for 4 minutes. Base hydrolysis by NaOH was 
excluded from leChRO-seq protocols. Nascent RNA was purified with 
streptavidin beads (New England Biolabs (NEB), Ipswich, MA, S1421S) as 
previously described (Chu et al., 2018; Mahat et al., 2016). RNA was purified from 
beads using Trizol (Thermo Fisher Scientific, 15596-026) and 3’ adaptor ligation 
was performed with T4 RNA Ligase 1 (NEB, M0204S). Streptavidin bead binding 
was performed again following by 5’ decapping with RNA 5’ 
pyrophosphohydrolase (RppH, NEB M0356S). The 5’ end of the RNA molecule 
was phosphorylated with T4 polynucleotide kinase (PNK, NEB M0201S) and 5’ 
adaptor ligation was performed with T4 RNA Ligase 1. The 5’ adaptor contained 
a 6-nucleotide unique molecular identifier (UMI) to allow for bioinformatic 
detection and elimination of PCR duplicates. Streptavidin bead binding was 
performed again followed by reverse transcription using SuperScript IV Reverse 
Transcriptase (Thermo Fisher Scientific, 18090010). cDNA was amplified by PCR 
using the Q5 High-Fidelity DNA Polymerase (NEB, M0491S) to generate 
(le)ChRO-seq libraries. Libraries were sequenced (5’ single end) at the 
Biotechnology Research Center at Cornell University on the NextSeq500 
(Illumina, San Diego, CA). Primer sequences used for (le)ChRO-seq library 
preparation are provided in Table S8. 
 
RNA-sequencing 
Total RNA was isolated using the Total RNA Purification Kit (Norgen Biotek) per 
manufacturer’s instructions. RNA purity was quantified with the Nanodrop 2000 
(Thermo Fisher Scientific, Waltham, MA) or Nanodrop One and RNA integrity 
was quantified with the Agilent 4200 Tapestation (Agilent Technologies, Santa 
Clara, CA) or Agilent BioAnalyzer. Libraries were prepared using the TruSeq 
Stranded mRNA Library Prep Kit (Illumina), the KAPA Stranded mRNA-Seq Kit 
(KAPA Biosystems, Wilmington, MA), or the NEBNext Ultra II Directional 
Library Prep Kit (New England Biolabs, Ipswich, MA). Sequencing was 
performed at the Biotechnology Research Center at Cornell University on the 
NextSeq500 (Illumina) or at the High-Throughput Sequencing Facility at the 
University of North Carolina at Chapel Hill on the HiSeq2500 (Illumina). 
 
Small RNA-sequencing 
Small RNA sequencing was performed as previously described (Dinh et al., 
2019). Briefly, reads were trimmed using Cutadapt and mapped to the genome 
using Bowtie (Langmead et al., 2009). Perfectly aligned reads represented miRNA 
loci and then imperfectly mapped reads (derived from isomiRs) were re-aligned to 
these loci using SHRiMP (Rumble et al., 2009). Aligned reads were quantified and 
normalized using reads per million mapped to miRNAs. Data are available from 
the Gene Expression Omnibus (GEO): accession number GSE114974. 
 
ChRO-seq read mapping 
Read quality was assessed using FastQC. Adapters were trimmed from the 3’ ends 
of reads using cutadapt 1.16 (Martin, 2013) with a maximum 10% error rate, 
minimum 2 bp overlap, and minimum 20 quality score. Each read contained a 6 
bp UMI enabling PCR deduplication by collapsing UMIs followed by UMI 
trimming using PRINSEQ lite 0.20.2 (Schmieder and Edwards, 2011). Processed 
reads with a minimum length of 15 bp were mapped to the hg38 genome modified 
with the addition of a single copy of the human Pol I ribosomal RNA complete 
repeating unit (GenBank U13369.1) with BWA 0.7.13 (Li and Durbin, 2010) using 
the BWA-backtrack algorithm. Each read was represented by a single base at the 
5’ end of the read, corresponding to the 5’ end of the nascent RNA. Data was 
converted to bigwig format using bedtools 2.27.1 (Quinlan and Hall, 2010) and 
UCSC bedGraphToBigWig v4 (Kent et al., 2010) for visualization and 
identification of TREs. Bigwig files from identical conditions were merged and 
normalized to a total signal of 1x106 prior to visualization. 
 

TRE identification 
To identify TREs across all samples, bigwig files of the same strand from all 
samples (FLC and NML) were merged. This merged dataset was used to call 
TREs. TREs from all samples were identified with dREG (Danko et al., 2015; 
Wang et al., 2019) using the peak calling algorithm. Read counts were quantified 
within each TRE locus using the R package bigwig 
(https://github.com/andrelmartins/bigWig). Total read counts on the sense and 
antisense strands within each TRE across all samples were then imported into 
DESeq2 1.22.2 (Love et al., 2014). Analysis of TRE counts from ChRO-seq 
revealed they followed a negative binomial distribution similar to RNA-seq 
counts. Therefore, differential transcription analysis of TREs was performed with 
DESeq2 to identify TREs that were significantly differentially transcribed in FLC 
or NML. 
 

Differential gene transcription analysis 
Gene definitions were obtained from GENCODE v25 annotations. To avoid 
counting reads from the paused polymerase peak, ChRO-seq signal was quantified 
on the sense strand from 500 bp downstream of the gene start until the annotated 
end of the gene. Genes were eliminated from the analysis if they were shorter than 
1000 bp and if they were not protein coding, pseudogene, lincRNA, antisense, or 
miRNA genes. Like TRE counts, gene body counts from ChRO-seq followed a 
negative binomial distribution. Therefore, differential transcription analysis of 
genes was performed using DESeq2. 
 
TRE analyses 
TRE annotation was performed using the annotatePeaks.pl function from HOMER 
(Heinz et al., 2010) based on GENCODE v25 annotations. Transcription factor 
motif enrichment analysis was performed using the findMotifsGenome.pl function 
from HOMER using “given” as the size parameter. The input (and background) 
peaks run were FLC-specific TREs (all TREs that were not identified as FLC-
specific as background), NML-specific TREs (all TREs not identified as NML-
specific), FLC-specific TREs without FOSL2/JUN or CREB motifs (all TREs not 
identified as FLC-specific), FLC-specific promoters (all promoters not identified 
as FLC-specific), and FLC-specific enhancers (all enhancers not identified as 
FLC-specific). CpG island annotations were downloaded from the UCSC Table 
Browser. 

Hierarchical clustering was performed following DESeq2 
normalization of read counts quantified from each TRE or gene body as described 
above. Clustering was performed in a pairwise manner using a correlation-based 
distance metric (1 - Spearman’s rho) using Ward’s minimum variance method. 
Proximal (-1000 to +100 bp from TSS) and distal TREs (the remaining TREs) 
were classified based on GENCODE v25 transcript annotations. Principal 
components analysis was performed following Variance Stabilizing 
Transformation from DESeq2. 

TRE functional enrichment analysis was performed using GREAT 
(McLean et al., 2010). Briefly, TREs were converted from hg38 into hg19 
coordinates using the UCSC liftOver tool. GREAT was run using default 
parameters (whole genome background, basal plus extension association rule). 
Gene ontology analyses, including KEGG 2016, ARCHS4, and PPI hub 
enrichment, were performed using Enrichr (Chen et al., 2013). Windows for 
enhancer density and gene-enhancer correlations were defined using gene 
coordinates based on GENCODE v25 annotations. 
 
FLC-specific enhancer hotspots 
FLC-specific enhancer hotspots were identified using a method analogous to those 
previously described for super enhancers (Lovén et al., 2013; Whyte et al., 2013). 
First, distal TREs (TREs not overlapping -1000 to +100 bp from any TSS based 
on GENCODE v25 transcript annotations) were stitched together using a stitching 
distance of 12.5 kb. Read counts normalized by DESeq2 within each distal TRE 
were quantified in all samples, averaged for each TRE, and summed for each 
stitched enhancer. Stitched enhancers were ranked based on cumulative signal and 
a threshold for super enhancer identification was determined by drawing a line 
tangent to the signal curve. Stitched enhancers with more signal than the point 
identified by the tangent line were classified as FLC-specific enhancer hotspots. 

Coordinates of known super enhancers were downloaded from SEdb 
(Jiang et al., 2019; http://www.licpathway.net/sedb/). ENCODE enhancer 
coordinates were downloaded from Search Candidate cis-Regulatory Elements by 
ENCODE (SCREEN, https://screen.wenglab.org/). FANTOM5 enhancer 
coordinates were downloaded from FANTOM5 (http://fantom.gsc.riken.jp/5/). 
NIH Roadmap Epigenomics enhancer coordinates were downloaded from 
Reg2Map: HoneyBadger 
(https://personal.broadinstitute.org/meuleman/reg2map/HoneyBadger_release/). 
FANTOM5 data was downloaded in hg38 coordinates. SEdb, ENCODE, and NIH 
Roadmap data were available and downloaded in hg19 coordinates and converted 
to hg38 coordinates using the UCSC liftOver tool. 
 
Gene-enhancer correlations 
Transcriptional signal was quantified from enhancers and gene bodies as described 
above. Gene body and enhancer counts were normalized separately using DESeq2 
and the Pearson correlation coefficients between the log2(normalized counts + 1) 
for genes and enhancers were calculated. To determine the statistical significance 
of the calculated correlation coefficients, we constructed a null distribution that 
consisted of correlation coefficients from genes and enhancers on different 
chromosomes. For gene-enhancer pairs within 100 kb of each other, we calculated 
the empirical p-value based on the null distribution and adjusted for multiple 
testing using the Benjamini-Hochberg (FDR) procedure (Benjamini and 
Hochberg, 1995). 
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Visualization of RNA polymerase signal 
Heatmaps and line graphs visualizing RNA polymerase signal were generated 
using deepTools 3.0.2 (Ramírez et al., 2016). Genomic loci snapshots were 
generated using Gviz 1.26.5 (Hahne and Ivanek, 2016). 
 
RNA-seq analysis 
Read quality was assessed using FastQC. Reads were mapped to the hg38 genome 
with STAR 2.4.2a (Dobin et al., 2012). Transcripts were quantified with Salmon 
0.8.2 (Patro et al., 2017) using GENCODE v25 transcript annotations. 
Normalization was performed using DESeq2. TCGA RNA-seq data were 
downloaded using TCGA-assembler 2 (Wei et al., 2018) as normalized counts. 
TCGA RNA-seq data for lncRNAs was downloaded from TANRIC (Li et al., 
2015) as normalized counts. Cholangiocarcinoma RNA-seq data (Nakamura et al., 
2015) was downloaded from the European Genome-Phenome Archive (accession 
number EGAS00001000950). GTEx Release V7 data was downloaded from the 
GTEx Portal as gene read counts and normalized with RNA-seq data from primary 
FLCs using DESeq2. Principal components analysis was performed using the most 
variable 1000 genes following variance stabilizing transformation (DESeq2). 
 
smRNA-seq analysis 
Read quality was assessed using FastQC. Reads were trimmed, mapped, and 
quantified to the hg19 genome using miRquant 2.0, our previously described 
smRNA-seq analysis pipeline (Kanke et al., 2016). Briefly, reads were trimmed 
using Cutadapt and reads were mapped to the genome using Bowtie (Langmead et 
al., 2009). Perfectly aligned reads represented miRNA loci and imperfectly 
mapped reads (from isomiRs) were re-aligned to these loci using SHRiMP 
(Rumble et al., 2009). Aligned reads were quantified and normalized using reads 
per million mapped to miRNAs (RPMMM). 
 
Quantitative PCR 
Total RNA was isolated using the Total RNA Purification Kit (Norgen Biotek) per 
manufacturer’s instructions.  Reverse transcription was performed using the High 
Capacity RNA-to-cDNA Kit (Thermo Fisher Scientific). Gene expression was 
quantified with TaqMan Gene Expression Assays (Thermo Fisher Scientific) on a 
CFX96 Touch Real-Time System (Bio-Rad). RNA expression levels were 
normalized to RPS9. The TaqMan assays used are provided in Table S8. 
 
Western blotting 
Protein lysates were prepared using RIPA buffer (Sigma, St. Louis, MO) 
supplemented with protease inhibitor cocktail (Sigma), phosphatase inhibitor 
cocktails 1 and 2 (Sigma), 1 mmol/L phenylmethylsulfonyl fluoride, 0.1% β-
mercaptoethanol, and 1 mmol/L dithiothreitol. Protein concentration was 
measured using the Pierce BCA Protein Assay (Thermo Fisher Scientific) 
according to the manufacturer’s protocol. Lysates were subjected to sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using 25 µg of 
lysate per lane under denaturing conditions in NuPAGE 10% Bis-Tris (Thermo 
Fisher Scientific) or homemade 12% Bis-Tris gels and transferred to PVDF 
membranes using a standard wet transfer protocol. Membranes were blocked with 
5% dry nonfat milk in TBST and were probed with antibodies. Enhanced 
chemiluminescence reagent (GE Healthcare, Chicago, IL) was used for detection. 
 
siRNA transfection 
AML12 cells were reverse transfected using Lipofectamine RNAiMAX (Thermo 
Fisher Scientific) per manufacturer’s instructions. Briefly, transfection mixes were 
assembled in wells by adding 1 pmol of the appropriate siRNA and 0.3 µL 
RNAiMAX (96-well plates) or 5 pmol siRNA and 1.5 µL RNAiMAX (6-well 
plates) according to manufacturer’s protocols. OptiMEM was added to each well 
and the plates were incubated for 15 minutes at room temperature. 1,500 cells (96-
well plates) or 5,000 cells (6-well plates) were plated on top of transfection mixes. 
Cells were incubated for 24 hours prior to further treatment. 
 
Drug treatments 
For AML12 cells seeded in 96-well plates, a series of ½-log unit dilutions of 
cobimetinib (10 mM stock in DMSO) were made in DMSO at 1000X final desired 
concentrations. From these stocks, 1:200 dilutions were made in fresh AML12 
media. 30 µl of these starting dilutions was added to appropriate wells using a 
multi-channel pipettor. This results in a further 1:5 dilution and a final 1:1000 
dilution with a final volume of 150 µl per well. Outer plate wells were filled with 
media and a no-cells/no-treatment set of wells was included for background. Cell 
plates were grown for a further 4-5 days. 
FLC cells were seeded in 96-well plates at a density of 3200 cells/well in a volume 
of 100 µl per well for CellTiter-Glo (Promega, Madison, WI) assays. The 

following day, 2X concentrations of drug or DMSO were prepared. 50 µl of media 
was removed from each well and 50 µl of 2X drug or vehicle (final concentration 
1X) was added to each well. Cells were incubated for 48 hours before assessing 
cell viability. 
 
Cell viability 
Cell viability was assessed by CellTiter-Glo or crystal violet staining. For 
CellTiter-Glo, 96-well plates were removed from incubator and placed at room 
temperature for 30 minutes to equilibrate. Room temperature CellTiter-Glo 
reagent was added and cells were shaken for 2 minutes. Plates were then incubated 
for 10 min at room temperature. Luminescence was measured using a POLARStar 
Omega plate reader (BMG LabTech, Ortenberg, Germany; Em Filter – empty; 
Gain = 3600, orbital averaging ON, diameter = 5, cycles = 6) or a Synergy 2 
Microplate Reader (Biotek, Winooski, VT; area scan; integration time = 0.50 
seconds). 
For crystal violet staining, AML12 cells were rinsed in PBS and fixed in 4% 
paraformaldehyde in PBS for 20 minutes. Two water washes were performed and 
cells were stained with 0.25% crystal violet in 10% methanol for 20 minutes. 
Finally, three water washes were performed and plates were allowed to dry at room 
temperature for at least 24 hours. Images were captured with a custom digital 
photography set-up on a Canon 5D, MkI with a Sigma 150-600 mm lens. To 
quantify crystal violet staining, dye was dissolved in 10% acetic acid (300 µl per 
well). An aliquot was removed to a clear 96-well plate and A590 absorbance was 
measured using a POLARStar Omega plate reader (BMG LabTech). Signal was 
kept in the linear range by 1:2 – 1:4 dilution with 10% acetic acid where necessary. 
 
Combination Index 
Relative quantification values (RQVs) were calculated by normalizing the effect 
of drug treatment against DMSO controls following CellTiterGlo cell viability 
experiments. RQVs were generated from 4-12 replicates and were entered as effect 
values at appropriate drug dosages in single and combination drug treatments in 
CompuSyn Software using non-constant ratio design parameters. Individual 
Combination Index values are reported for each dose combination.  
 

Quantification and Statistical Analysis 
Statistics 
Statistical analyses were performed using R (3.5.0). Statistical significance was 
primarily determined by two-sided Welch’s t-tests or Mann-Whitney U tests as 
indicated in the figure legends. All alternative statistical tests that were used are 
noted in the text or figure legends. Statistical comparisons between dose response 
curves were performed using the R package drc (3.0-1) by fitting log-logistic 
models (with the LL.4 function) to the data. Two models were fit to the data (one 
with and one without siRNA) and were compared using a F-test (with the anova 
function) to determine statistical significance. P<0.05 was considered statistically 
significant unless otherwise noted. *p<0.05, **p<0.01, ***p<0.001. 
 
Data and Code Availability 
ChRO-seq and RNA-seq data are currently being deposited into the European 
Genome-Phenome Archive (EGA). An accession number to the dataset will be 
provided as soon as it becomes available. The code used in this study is available 
from the corresponding author upon request. 
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