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ABSTRACT 

Genetic factors that influence etiologic mechanisms shared across cancers could affect the risk 

of multiple cancer types. We investigated polygenic risk score (PRS)-specific pleiotropy across 

17 cancers in two large population-based cohorts. The study population included European 

ancestry individuals from the Genetic Epidemiology Research on Adult Health and Aging cohort 

(16,012 cases, 50,552 controls) and the UK Biobank (48,969 cases, 359,802 controls). We 

selected known independent risk variants from published GWAS to construct a PRS for each 

cancer type. Within cohorts, each PRS was evaluated in multivariable logistic regression models 

with respect to the cancer for which it was developed and each other cancer type. Results were 

then meta-analyzed across cohorts. In the UK Biobank, each PRS was additionally evaluated 

relative to 20 cancer risk factors or biomarkers. All PRS replicated associations with their 

corresponding cancers (p<0.05). Eleven cross-cancer associations – ten positive and one 

inverse – were found after correction for multiple testing (p<0.05/17=0.0029). Two cancer pairs 

showed bidirectional associations; the melanoma PRS was positively associated with oral 

cavity/pharyngeal cancer and vice versa, whereas the lung cancer PRS was positively 

associated with oral cavity/pharyngeal cancer, and the oral cavity/pharyngeal cancer PRS was 

inversely associated with lung cancer. We identified 65 associations between a cancer PRS and 

non-cancer phenotype. In this study examining cross-cancer PRS associations in two cohorts 

unselected for phenotype, we validated known and uncovered novel patterns of pleiotropy. Our 

results have the potential to inform investigations of risk prediction, shared etiology, and 

precision cancer prevention strategies. 
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STATEMENT OF SIGNIFICANCE 

By examining cross-cancer polygenic risk score associations, we validated known and 

uncovered novel patterns of pleiotropy. Our results may inform investigations of risk prediction, 

shared etiology, and precision prevention strategies. 
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INTRODUCTION 

Neoplasms are remarkably diverse in their clinical presentation, but they share biological 

hallmarks acquired during the transformation of normal cells into neoplastic ones (1). Inherited 

genetic factors underpinning shared hallmarks could alter cancer risk in a pleiotropic manner. 

Indeed, genome-wide association studies (GWAS) of individual cancer types have identified loci 

associated with other cancer types, including 5p15 (TERT-CLPTM1L) (2), 6p21 (HLA complex) 

(3,4), and 8q24 (5). Non-GWAS approaches have yielded further pleiotropic cancer risk 

variants, and genetic correlation studies have identified cancer pairs with shared heritability (6-

8). 

Polygenic risk scores (PRS) capture a different aspect of pleiotropy. By combining 

variants into scores that summarize genetic susceptibility, PRS typically explain a larger 

proportion of disease risk than single low-penetrance variants. Relative to genetic correlations, 

PRS offer greater specificity by selecting a refined set of disease-specific risk variants. PRS 

analyses therefore have the potential to inform etiology and identify possible precision 

prevention targets shared across cancers. They are also plausibly valuable for risk prediction; 

there is potential clinical advantage in knowing that an individual with a high PRS for one cancer 

is at risk for another. While PRS have been extensively investigated for individual cancers, 

cross-cancer portability of PRS has not been well studied. 

To comprehensively investigate pleiotropy across cancers, we leveraged results from 

273 published GWAS to systematically construct PRS specific to 17 cancer types. We then 

evaluated associations between each PRS and the risk of each cancer type in European 

ancestry individuals from two large independent cohorts with genome-wide array data – the 

Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and the UK Biobank. 

We also assessed associations between each genetic variant contributing to a PRS and the risk 

of each cancer type and characterized pleiotropy between each PRS and 20 cancer risk factors 

or biomarkers. 
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MATERIALS AND METHODS 

Study Populations 

GERA is a prospective cohort of 102,979 adults drawn from >400,000 Kaiser 

Permanente Northern California (KPNC) health plan members who participated in the Research 

Program on Genes, Environment and Health. Participants answered a baseline survey 

regarding lifestyle and medical history, provided a saliva specimen between 2008 and 2011, 

and were successfully genotyped (9,10). Following quality control (QC; described below), the 

GERA analytic population included 16,012 cases and 50,552 controls. 

The UK Biobank is a population-based prospective cohort of 502,611 individuals from 

the United Kingdom, ages 40 to 69 at recruitment between 2006 and 2010 (11). Participants 

were evaluated at baseline visits during which assessment center staff introduced a touch-

screen questionnaire, conducted a brief interview, gathered physical measurements, and 

collected biological samples. Following QC, the UK Biobank analytic population included 48,969 

cases and 359,802 controls. 

This study was approved by the KPNC and University of California Institutional Review 

Boards and the UK Biobank data access committee. 

 

Phenotyping 

GERA cancer cases were identified using the KPNC Cancer Registry. Following 

Surveillance, Epidemiology, and End Results Program (SEER) standards, the KPNC Cancer 

Registry contains data on all primary cancers (i.e., diagnoses that are not secondary 

metastases of other cancer sites; excluding non-melanoma skin cancer) diagnosed or treated at 

any KPNC facility since 1988. In this study, we captured all diagnoses recorded through June 

2016. Cancer cases in the UK Biobank were identified via linkage to various national cancer 

registries (11). Data in the registries are compiled from hospitals, nursing homes, general 

practices, and death certificates, among other sources. Diagnoses go as far back as the early 
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1970s, and the latest cancer diagnosis in our data from the UK Biobank occurred in August 

2015.  

In both cohorts, individuals with at least one recorded prevalent or incident diagnosis of 

a borderline, in situ, or malignant primary cancer were defined as cases. To align with GERA, 

we converted all UK Biobank diagnoses described by International Classification of Diseases 

(ICD)-9 or ICD-10 codes into ICD-O-3 codes. We then classified cancers in both cohorts by 

organ site according to the SEER site recode paradigm. Because second and subsequent 

cancers could have been miscoded metastases of a first cancer or a direct result of prior cancer 

treatment, we evaluated only the first primary cancer diagnosed for each individual. The 

analyses did, however, include 23 GERA participants and 64 UK Biobank participants who had 

two primary cancers diagnosed on the same date. To ensure sufficient statistical power, we 

grouped all oral cavity and pharyngeal cancers and, separately, all esophageal and stomach 

cancers into single site codes. Overall, our analyses included 17 of the most common site codes 

(excluding non-melanoma skin cancer). Data on testicular cancer cases were obtained from the 

UK Biobank only due to the small number of cases in GERA. 

Controls were restricted to individuals who had no record of cancer in any of the relevant 

registries, who did not self-report a prior history of cancer (other than non-melanoma skin 

cancer) by survey, and, if deceased, who did not have cancer listed as a cause of death. For 

analyses of sex-specific cancer outcomes (breast, cervix, endometrium, ovary, prostate, and 

testis), controls were restricted to individuals of the relevant sex. 

In the UK Biobank, we examined PRS associations with anthropometric traits, physical 

measures, self-reported health-related behaviors, and serum biomarkers. Physical assessments 

yielded measures of height (Field ID: 50.0), body mass index (BMI; Field ID: 21001.0), waist to 

hip ratio (Field ID: 48.0 divided by Field ID: 49.0), diastolic blood pressure (Field ID: 4079.0), 

and systolic blood pressure (Field ID: 4080.0). Body fat percentage (Field ID: 23104.0) was 

quantified with whole-body bio-impedance measures using the Tanita BC418MA body 
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composition analyzer. Self-reported data on cigarette smoking and alcohol consumption were 

used to derive variables for smoking status (ever/never), cigarettes per day, and weekly alcohol 

intake (grams). We additionally evaluated eight serum biomarkers, as measured according to 

protocols that have been previously described (12) – C-reactive protein (CRP; mg/L), high-

density lipoproteins (HDL; mmol/L), low-density lipoproteins (LDL; mmol/L), glycated 

hemoglobin (HbA1c; mmol/mol), insulin-like growth factor-1 (IGF-1; nmol/L), sex hormone 

binding globulin (nmol/L), testosterone (nmol/L) in men, and testosterone (nmol/L) in women. All 

biomarker analyses were restricted to samples from the first aliquot, as these samples were 

least affected by unintended sample dilution issues (12). We excluded values outside the 

bioanalyzer reportable range, as well as measures that required additional analytic correction 

due to sample handling or processing issues. CRP, HbA1c, and IGF-1 were log-transformed to 

achieve a normal distribution. 

 

Genotyping and Imputation 

For GERA, genotyping was performed using one of four Affymetrix Axiom arrays 

(Affymetrix, Santa Clara, CA, USA) optimized for individuals of European, African, East Asian, 

and Latino race/ethnicity. Details about the array design, estimated genome-wide coverage, and 

QC procedures have been published previously (10,12-14). Variants that were not directly 

genotyped (or excluded by QC procedures) were imputed to generate genotypic probability 

estimates. After pre-phasing genotypes with SHAPE-IT v2.5 (15), IMPUTE2 v2.3.1 was used to 

impute variants relative to the cosmopolitan reference panel from the 1000 Genomes Project 

(phase I integrated release; http://1000genomes.org/) (16). Ancestry principal components 

(PCs) were computed using Eigenstrat v4.2, as previously described (9,17). 

For the UK Biobank, genotyping was conducted for 436,839 individuals with the UK 

Biobank Axiom array and for 49,747 individuals with the UK BiLEVE array (11). The former is an 

updated version of the latter, such that the two arrays share over 95% of their marker content. 
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UK Biobank investigators undertook a rigorous QC protocol (11). Imputation was performed 

primarily based on the Haplotype Reference Consortium reference panel, and the merged 

UK10K and 1000 Genomes Project (phase 3) reference panels were used for secondary data 

(11). Ancestry PCs were computed using fastPCA (18) based on a set of 407,219 unrelated 

samples and 147,604 genetic markers (11). 

 

Quality Control 

Additional QC procedures included restricting to self-reported European ancestry 

individuals with matching self-reported and genetic sex. To further minimize population 

stratification, we excluded individuals for whom either of the first two ancestry PCs fell >5 

standard deviations outside of the mean. We also removed samples with call rates <97%, 

heterozygosity >5 standard deviations from the mean, and/or first-degree relatives in the 

datasets. 

 

Variant Selection for PRS 

PRS were constructed based on variants associated with each cancer type in existing 

published GWAS. To identify relevant GWAS, we began by searching the National Human 

Genome Research Institute-European Bioinformatics Institute Catalog of published GWAS (19). 

For every GWAS of a cancer of interest (or one of its sub-phenotypes; e.g., poorly differentiated 

prostate cancer) that discovered at least one genome-wide significant (p≤5x10-8) risk variant, we 

reviewed both the original primary manuscript and supplementary materials. We then identified 

additional relevant GWAS by 1) reviewing the reference section of each article, and 2) 

searching PubMed to find other studies in which each article had been cited (Supplementary 

Table 1). Only one out of 273 studies identified included data that overlapped with ours; UK 

Biobank data accounted for 21% of the Huyghe, et al. study population and was only used in the 

second stage of their GWAS (20). 
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After abstracting genome-wide significant variants from all studies published by June 30, 

2018, we reduced the file to include one log-additive association per combination of variant 

identifier, phenotype / sub-phenotype, and ancestry group (Supplementary Figure 1). For 

associations reported in more than one study of the same ancestry, we selected the one with a 

known risk allele and effect estimate with the smallest p-value. 

We retained only autosomal variants identified in populations of at least 70% European 

ancestry. We then excluded 2,979 associations for which the source literature did not report an 

effect estimate and/or for which an effect allele could not be determined. For the remaining 

13,827 associations, we assessed variant availability in both the GERA and UK Biobank 

genotypic data. For lead variants that could not be identified by variant identifier or position, we 

used LDlink (21) and HaploReg (22) to identify proxy variants with r2≥0.8. From original or proxy 

variants available in GERA and UK Biobank, we excluded any not in a 1000 Genomes 

reference population or with minor allele frequencies (MAF) that differed by >0.10, and we 

further restricted to biallelic risk variants with MAF ≥0.01. In a last step prior to linkage 

disequilibrium (LD) pruning, we excluded A/T and C/G variants with MAF ≥0.45 – due to strand 

flips, the appropriate effect alleles in our data could not be determined. 

We used PriorityPruner (23) and LDlink (21) to select a set of independent risk variants 

with LD <0.3 for each cancer type. The process preferentially selected variants with the smallest 

p-values and highest imputation scores associated with the broadest phenotype (e.g., overall 

prostate cancer over poorly differentiated prostate cancer). 

 

Statistical Analysis 

For each cancer type, we calculated the PRS based on additive dosages of the 

individual risk variants: ∑(# risk alleles*log(odds ratios [OR]) from the literature) for i = 1 to n risk 

alleles. Each PRS was then standardized based on its mean and standard deviation, and 

evaluated in multivariable logistic regression models with respect to the cancer for which it was 
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developed and each of the other cancer types. ORs were estimated per standard deviation 

increase in the PRS. Models were adjusted for age at specimen collection, first 10 ancestry 

PCs, sex (except models for sex-specific cancers), reagent kit used for genotyping (Axiom v1 or 

v2; GERA only), and genotyping array (UK Biobank only). After conducting analyses by cohort, 

we combined results across cohorts using fixed effects meta-analyses. Heterogeneity was 

assessed based on I2 and Cochran’s Q. 

 For variants contributing to any of the 17 PRS, we estimated the associated risk for each 

cancer type using logistic regression adjusted for the aforementioned covariables. Variants were 

modeled individually on a log-additive scale. Results from both cohorts were meta-analyzed. We 

then visualized the genomic regions that were overrepresented among pleiotropic variants 

relative to all PRS variants. 

In secondary analyses, we used the UK Biobank to explore associations between each 

PRS and 20 cancer risk factors or serum biomarkers. Logistic (smoking status) or linear 

(remaining phenotypes) regression models were restricted to cancer-free controls and adjusted 

for the covariables noted above, as well as cigarette pack-years (forced expiratory volume in 1 

second [FEV1]/forced vital capacity [FVC]), assay date (serum biomarkers), and use of 

medications to lower cholesterol (HDL and LDL), control blood pressure (systolic and diastolic 

blood pressure), and regulate insulin (HbA1c). 

All statistical analyses were performed using R 3.2.2 or 3.3.3 (http://www.r-project.org/). 
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RESULTS 

We abstracted 17,868 genome-wide significant associations from 273 published GWAS 

(Supplementary Table 1). Of the selected set of 880 risk variants independent within the 17 

cancer types, 808 variants were independent across all cancer types (Supplementary Tables 

2a-2q). Endometrial cancer had the fewest independent risk variants (n = 9), and breast cancer 

had the most (n = 187) (Figure 1).  

Participants were more commonly female than male (Supplementary Table 3). GERA 

participants were older than UK Biobank participants (mean age: cases, 69 versus 60; controls, 

62 versus 57). Case counts ranged from 665 for pancreatic cancer to 17,901 for breast cancer 

(Figure 1). Meta-analyses of non-sex-specific cancers included 410,354 controls. Female-

specific meta-analyses included 219,648 controls. Meta-analyses of prostate cancer included 

190,706 male controls. For testicular cancer, analyses included 169,967 male controls (UK 

Biobank only). 

Each PRS replicated at a nominal significance level (p<0.05; dark gray cells in Figure 1) 

for its corresponding cancer outcome. The largest effect sizes per standard deviation increase 

in the PRS were observed for testicular (OR=2.29; p=6.82x10-105) and thyroid cancers 

(OR=1.55; p=6.38x10-33). The smallest were observed for esophageal/stomach (OR=1.07; 

p=0.039) and oral cavity/pharyngeal cancers (OR=1.08; p=0.007). None of these replicative 

associations demonstrated significant heterogeneity across cohorts (pCochran’s-Q<0.05). 

Supplementary Tables 4a, 4b, and 4c include summary statistics from the meta-analyses, 

GERA, and UK Biobank, respectively. 

Eleven associations between a PRS and cross-cancer outcome were found after 

correction for multiple testing (p<0.05/17=0.0029; Figure 1). Results remained materially 

unchanged correcting for the false discovery rate at q<0.05 (Supplementary Figure 2). Ten 

pairs showed a positive association: bladder cancer PRS with cervical cancer (OR=1.04; 

p=9.04x10-4); endometrial cancer PRS with prostate cancer (OR=1.06; p=5.34x10-9); lung 
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cancer PRS with non-Hodgkin’s lymphoma (NHL; OR=1.11; p=5.57x10-7), colorectal cancer 

(OR=1.04; p=1.22x10-3), and oral cavity/pharyngeal cancer (OR=1.11; p=1.06x10-4); 

lymphocytic leukemia PRS with NHL (OR=1.08; p=1.48x10-4); melanoma PRS with breast 

(OR=1.04; p=6.33x10-7) and oral cavity/pharyngeal cancers (OR=1.10; p=7.84x10-4); and oral 

cavity/pharyngeal cancer PRS with melanoma (OR=1.04; p=2.04x10-3) and NHL (OR=1.10; 

p=2.67x10-6). The oral cavity/pharyngeal cancer PRS was inversely associated with lung cancer 

(OR=0.93; p=6.25x10-4). Only the melanoma PRS-breast cancer association demonstrated 

heterogeneity (I2=0.79; pCochran’s-Q=0.029). Thirty additional associations (24 positive, six inverse) 

were nominally significant (p<0.05). 

Associations between each PRS variant and cancer type are compiled in 

Supplementary Tables 5a-5q. In total, 141 cross-cancer associations were detected at a 

threshold corrected for the number of effective independent tests (p<0.05/808=6.2x10-5; 

Supplementary Table 6; includes 18 duplicate associations in which the same variant 

originated from multiple PRS). They included associations for 55 variants in LD with previously 

identified risk variants for the outcome cancer. Among the remaining 86 associations, 60 were 

novel, in that the variant (or variants with r2>0.3 in the 1000 Genomes EUR superpopulation 

reference panel) had not previously been associated with the outcome cancer at p<1x10-6 

(Figures 2a and 2b; includes five duplicate associations originating from multiple PRS). The 

cancer types with the largest number of novel risk variants were prostate (n = 15), NHL (n = 14; 

includes one variant originating from multiple PRS), and cervical (n = 12).  

Several genomic regions were overrepresented among pleiotropic variants compared to 

all PRS variants (Figure 2c). Across the 141 cross-cancer associations, pleiotropic variants 

were most commonly found in TERT-CLPTM1L (16% versus 3.0%) and HLA (6p21.32: 16% 

versus 3.6%; 6p21.33: 13% versus 3.6%). Additional regions enriched for pleiotropy included 

9q34.2 (2.1% versus 0.23%), 10q24.33 (4.2% versus 0.46%), 12q24.12 (1.1% versus 0.11%), 
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and 17q12 (5.3% versus 0.69%). These regions remained enriched following normalization by 

region size (Supplementary Figure 3). 

 Upon evaluating relationships between each cancer PRS and cancer risk factors or 

biomarkers, we identified 65 statistically significant associations (p<0.05/20=0.0025; Figure 3, 

Supplementary Table 7). The lung cancer PRS was associated with the most (12) phenotypes. 

Positively associated phenotypes included cigarettes per day in smokers (p=6.06x10-32), 

pulmonary obstruction (decreasing FEV1/FVC; p=1.97x10-25), HbA1c (p=1.59x10-22), height 

(p=1.30x10-4), and multiple metrics of adiposity (e.g., BMI: p=7.63x10-9). The lung cancer PRS 

was associated with lower levels of IGF-1 (p=8.58x10-18) and HDL cholesterol (p=3.94x10-17). 

The NHL and oral cavity/pharyngeal cancer PRS were each associated with nine secondary 

phenotypes. Among the associations for the former were increasing levels of LDL (p=1.53x10-

21), IGF-1 (p=2.13x10-9), and CRP (p=5.50x10-7). The latter was associated with increasing 

alcohol intake (p=7.28x10-11) and pulmonary obstruction (p=1.26x10-10). PRS for breast, 

prostate, and ovarian cancers were not clearly associated with any secondary phenotypes. 

Among the secondary phenotypes, height showed the most cancer PRS associations (n=8; 4 

positive, 4 inverse), followed by HbA1c (n=7; 5 positive, 2 inverse), and BMI (4 positive, 2 

inverse), pulmonary obstruction (4 positive, 2 inverse), and LDL (2 positive, 4 inverse) (n=6 

each).
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DISCUSSION 

In this comprehensive study of PRS-specific cancer pleiotropy, we constructed 17 PRS 

based on systematic review of the cancer GWAS literature. Analyses identified 11 statistically 

significant cross-cancer PRS associations, as well as novel cancer associations with 55 unique 

risk variants in known susceptibility regions. We further identified 65 cancer PRS associations 

with selected non-cancer phenotypes. 

Of all PRS evaluated, the oral cavity/pharyngeal and lung cancer PRS were most 

commonly implicated in associations with cross-cancer and non-cancer phenotypes. These 

results support existing evidence of cancer pleiotropy, given that the PRS for both cancers 

included variants in two well-known pleiotropic cancer regions – TERT-CLPTM1L (2) and HLA 

(3,4). Notwithstanding shared susceptibility regions, the relationship between oral 

cavity/pharyngeal and lung cancers was inconsistent. In one direction, the oral 

cavity/pharyngeal cancer PRS was inversely associated with lung cancer. The negative 

pleiotropy could be partly attributable to two oral cavity/pharyngeal PRS variants (rs467095 and 

rs10462706; Supplementary Tables 8 and 9), both expression quantitative trait loci for TERT 

and CLPTM1L, which were inversely associated with lung cancer risk and in LD (r2=0.96 and 

0.66, respectively) with variants in the lung cancer PRS. The oral cavity/pharyngeal cancer PRS 

was also associated with increasing alcohol intake, an established risk factor for such cancers 

(24). The relationship between alcohol intake and lung cancer remains controversial, with the 

possibility of an inverse or J-shaped relationship (25,26). In the other direction, the lung cancer 

PRS was positively associated with oral cavity/pharyngeal cancer risk. The positive pleiotropy 

may be partially explained by the association between the lung cancer PRS and increasing 

cigarettes per day among smokers. PRS for both cancers were also associated with pulmonary 

obstruction (i.e., decreasing FEV1/FVC), a known lung cancer risk factor (27), as well as higher 

HbA1c and lower IGF-1 levels, both of which indicate insulin resistance. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2020. ; https://doi.org/10.1101/2020.01.18.911578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.18.911578


 17

Oral cavity/pharyngeal cancer also showed a bidirectional, positive relationship with 

melanoma, even though the two PRS share only one pair of variants in LD in TERT-CLPTM1L 

(Supplementary Tables 8 and 9). PRS for both cancer types were inversely associated with 

height, which is somewhat surprising since increasing height has been strongly associated with 

melanoma risk (28). 

The lung cancer PRS was positively associated with colorectal cancer and NHL. The 

former association did not appear to be driven by variants in LD; only two out of 109 lung cancer 

risk variants (rs2853677 and rs1333040) are in high LD (r2=0.62 and 0.49, respectively) with 

colorectal cancer risk variants (rs2735940 and rs1537372, respectively), and neither was 

strongly associated with colorectal cancer risk in our data. Given that the lung cancer PRS was 

associated with increasing BMI, body fat, and cigarettes per day, its association with colorectal 

cancer risk coheres with known risk factors. As five of the lung cancer variants in HLA are in LD 

with NHL risk variants, LD structure likely played a larger role in the latter association. Both the 

lung cancer and NHL PRS were associated with increasing HbA1c levels, implicating insulin 

resistance as a possible shared mechanism. It could be that the NHL PRS was not associated 

with lung cancer risk because it included only 19 SNPs (relative to 109 SNPs in the lung cancer 

PRS). We also identified a novel association between a lung cancer risk variant and NHL; 

rs652888 (6p21.33 in EHMT2) has been linked to several autoimmune and infectious diseases 

(29,30), as well as infection with Epstein-Barr virus (31), a known NHL risk factor (32). 

Among the remaining significant cross-cancer PRS associations, two included cancers 

with PRS variants that were completely independent at the r2=0.3 threshold: the bladder cancer 

PRS with cervical cancer and the oral cavity/pharyngeal cancer PRS with NHL. Cervical cancer 

and NHL were among the cancers with the most novel risk variants. Although none of the 15 

bladder cancer variants are in LD with known genome-wide significant risk variants for cervical 

cancer, one CLPTM1L variant (rs401681-C) was associated with increased cervical cancer risk 

at a genome-wide significance level in our study, confirming a suggestive association signal 
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reported previously (33). Similarly, two oral cavity/pharyngeal cancer variants in HLA 

(rs9271378 and rs3135006), a region that has previously been implicated in NHL (34), were 

strongly associated with NHL risk in our analyses. 

Increasing NHL risk was also associated with the lymphocytic leukemia PRS. Out of 64 

lymphocytic leukemia risk variants, only one (rs4987855) is in LD (r2=0.95) with an NHL risk 

variant (rs17749561). Our results align with those from Sampson, et al., which showed an 

association between a PRS for chronic lymphocytic leukemia (CLL) and the risk of diffuse large 

B-cell lymphoma, the most common NHL subtype (8). Both CLL and NHL arise from B-cells, 

and recent classifications account for their similar origin (35). 

The association between the endometrial cancer PRS and prostate cancer risk also 

validated results from Sampson, et al. (8) The remaining cross-cancer association from our 

study – between the melanoma PRS and breast cancer – was not evaluated. Their study did, 

however, identify two associations that our analyses did not validate: 1) a lung cancer PRS and 

bladder cancer risk, and 2) an endometrial cancer PRS and testicular cancer risk. Given 

differences in study design and the many additional SNPs that have been discovered since 

2015, it is not especially surprising that some results were distinct. 

The genomic regions overrepresented among pleiotropic variants support existing 

knowledge about shared mechanisms of carcinogenesis. In addition to TERT-CLPTM1L and 

HLA, 9q34.2, 10q24.33, 12q24.12, and 17q12 have been implicated in susceptibility for multiple 

cancer types. Variants in the breast (36) and pancreatic cancer (37) susceptibility locus 9q34.2 

influence estrogen receptor signaling and insulin resistance, and were recently associated with 

protein biomarkers affecting carcinogenesis (38). The 10q24.33 region containing OBFC1, a 

known telomere maintenance gene, has been implicated in lymphocytic leukemia, melanoma, 

and kidney, ovarian, and thyroid cancers (39-43). A previous cross-cancer analysis linked 

12q24.12 to both colorectal and endometrial cancer risk (44). This locus includes SH2B3, a 

gene involved in regulating signaling pathways related to hematopoiesis, inflammation, and cell 
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migration. The 17q12 locus includes HNF1B, which has been extensively characterized with 

respect to hormonally driven cancers (45). 

The non-cancer phenotypes that most frequently surfaced in associations with cancer 

PRS offer additional mechanistic insights. For example, the lymphocytic leukemia, NHL, and 

kidney, lung, oral cavity/pharyngeal, and pancreatic cancer PRS were associated with at least 

one anthropometric trait and showed directionally consistent associations with HbA1c and IGF-1 

levels. Obesity-induced chronic inflammation and oxidative stress create a milieu conducive to 

malignant transformation (46). Furthermore, the metabolic reprogramming necessary to meet 

the increased energy requirements of proliferating malignant cells is a known hallmark of cancer 

(1). There is also complex interplay between genetic determinants of adiposity and smoking 

behaviors (47). Taken together, the findings further implicate obesity-related metabolic 

dysregulation in cancer susceptibility for multiple sites. 

Among the limitations of our study was the inclusion of exclusively European ancestry 

individuals; results may not be generalizable to diverse populations. We were also limited by 

modest numbers for some cancers. We favored their inclusion in an effort to evaluate more 

cancer types than previous investigations. We furthermore combined esophageal and stomach 

cancers and, separately, oral cavity and pharyngeal cancers into composite phenotypes. While 

there is precedent for doing so (48-50), we acknowledge the potential resulting phenotypic 

heterogeneity. We note that our analyses included prevalent and incident cases. However, 

results from a posteriori cross-cancer PRS analyses restricted to incident cases mirrored those 

from the primary analyses (Supplementary Table 10). Our findings are thus unlikely to be 

driven by associations with survival rather than risk. We also note that our PRS were comprised 

of exclusively genome-wide significant variants. While a less stringent threshold for inclusion 

might have yielded more signal, it would not have been based on convincing a priori evidence. 

Finally, while all PRS replicated for their target cancers, some individual risk variants did not. 
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Nevertheless, 92% had effect estimates with consistent directionality relative to the published 

literature. 

Among the strengths of our study was use of two large cohorts with abundant individual-

level genetic and phenotypic data, independent of those from which risk variants were identified 

in prior cancer GWAS (except limited use of UK Biobank data in Huyghe, et al.; see Materials 

and Methods) (20). We also comprehensively reviewed the contemporary literature to identify 

genome-wide significant risk variants for 17 cancer types. Evaluating risk variants identified for 

one cancer with respect to risk for others enabled discovery of novel susceptibility loci that 

would not otherwise meet the strict criteria for genome-wide significance. By additionally 

evaluating associations with cancer risk factors, we generated insights into pathways that may 

be influenced by genetic variants implicated in cancer. 

Our work expands the repertoire of genetic susceptibility variants for multiple cancers, 

which should prompt future investigations of their biological and clinical relevance. Although the 

precise biological mechanisms underpinning the associations remain ambiguous, our findings 

may still be leveraged toward a more integrated model of cancer risk prediction that considers 

cross-phenotype effects in addition to cancer-specific risk factors. An approach that 

incorporates genetic susceptibility profiles may have the greatest potential to aid in risk 

prediction for cancers with few modifiable risk factors. Combined with future research that 

investigates pleiotropy in cancer subgroups (e.g., by smoking status or histology) and clinical 

applications of PRS, our results may inform new strategies toward reducing the burden of 

cancer.  
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FIGURES 

Figure 1. Odds ratios for at least nominally significant associations between cancer-specific polygenic risk scores (PRS) and cancer 

outcomes, based on meta-analyses of European ancestry participants from the Genetic Epidemiology Research on Adult Health and 

Aging (GERA) cohort and UK Biobank. Cancers are ordered based on hierarchical clustering of the odds ratios for each PRS across 

cancer outcomes. 
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Figure 2. Pleiotropic risk variants from the 17 cancer-specific polygenic risk scores (PRS). (a) Circos plot describing each positive 

association between a known risk variant for one cancer type and a novel cancer phenotype. (b) Circos plot describing each inverse 

association between a known risk variant for one cancer type and a novel cancer phenotype. Each line in (a) and (b) represents a 

significant association, corrected for the number of effective independent tests (p<0.05/808=6.2x10-5), between a risk variant for the 

cancer from which the line originates (denoted by line color) and the cancer type to which the line connects. Cancers are organized 

by organ site. (c) Region enrichment for 141 significant novel and known associations compared to all PRS variants. 
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Figure 3. Associations between each cancer-specific polygenic risk score (PRS) and 20 cancer risk factors and related serum 

biomarkers. All associations were estimated in cancer-free controls in the UK Biobank. Circles denote positive associations between 

the PRS and the secondary phenotype; crosses denote an inverse direction of association. The dashed line indicates the 

significance threshold corrected for multiple testing (p<0.05/20 = 0.0025). 

 
Abbreviations: BMI – Body Mass Index; CRP – C-Reactive Protein; DBP – Diastolic Blood Pressure; FEV1 – Forced Expiration Volume in the First Second; FVC – 
Forced Vital Capacity; HbA1c – Hemoglobin A1c; HDL – High-Density Lipoprotein; IGF-1 – Insulin Like Growth Factor-1; LDL – Low-Density Lipoprotein; SBP – 
Systolic Blood Pressure; SHBG – Sex Hormone Binding Globulin 
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