
Connecting secretome to hematopoietic stem cell phenotype shifts in 
an engineered bone marrow niche 

 
 
 

Authors:  Aidan E. Gilchrist1, Brendan A.C. Harley2,3* 

Affiliations: 
1Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign 
Urbana, IL 61801 
2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-
Champaign 
Urbana, IL 61801 
3Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 
Urbana, IL 61801 

 
*To whom correspondence should be addressed:  
B.A.C. Harley 
Department of Chemical and Biomolecular Engineering 
Carl R. Woese Institute for Genomic Biology 
University of Illinois at Urbana-Champaign 
110 Roger Adams Laboratory 
600 S. Mathews Ave. 
Urbana, IL 61801 
Phone: (217) 244-7112 
Fax: (217) 333-5052. 
Email: bharley@illinois.edu 
 
 
 
 
 
 
 
 
 
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.01.19.911800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.19.911800


2 
 

Keywords 

hematopoietic stem cell, biomaterial niche, cellular crosstalk, secretome 

 

Abstract  

Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive 

external cues from their local microenvironment. The complex milieu of biophysical cues, 

cellular components, and cell-secreted factors regulates the process by which HSC produce the 

blood and immune system. We previously showed direct co-culture of primary murine 

hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal 

stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) 

hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which 

MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of 

proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors 

produced by combined mesenchymal and hematopoietic progeny. Partial Least Squares 

Regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP, and 

TROY as positively correlated with HSC maintenance. Experimentally, we then observe 

exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined 

cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day 

culture 7.52 ± 3.65 fold compared to non-stimulated monocultures. Findings suggest a cocktail 

of the downselected cytokines amplify hematopoietic maintenance potential of HSCs beyond 

that of MSPC-secreted factors alone. This work integrates empirical and computation methods to 

identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, 

suggesting a route towards identifying feeder-free culture platforms for HSC expansion. 
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Insight 

Hematopoietic stem cells within an artificial niche receive maintenance cues in the form of 

soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression 

analysis, we identify a reduced set of soluble factors correlated to maintenance of a 

hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We 

identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a 

gelatin-based culture, regardless of the presence of mesenchymal feeder-cells. By combining 

empirical and computational methods, we report an experimentally feasible number of factors 

from a large dataset, enabling exogenous integration of soluble factors into an engineered 

hematopoietic stem cell for enhance maintenance potential of a quiescent stem cell population.  
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1. Introduction 

Hematopoietic stem cells (HSCs) maintain the body’s system of blood and immune cells 

via hematopoiesis, whereby a small population of cells (<0.007% of murine bone marrow) 

produce half a trillion cells daily (1). This process is highly regulated by the local 

microenvironment, termed niche, which provides a diverse mixture of biophysical, cellular, and 

soluble factor cues (2-11). The complex milieu of the bone marrow, the primary location of adult 

HSCs, presents orders of magnitude of moduli from 0.25 – 25 kPa (12), cellular components 

from stromal, hematopoietic, and nervous systems (13-15), as well as gradients in biomolecular 

and metabolic factors (16, 17). Together, these factors establish distinct hierarchically organized 

niches that maintain a homeostasis of HSC proliferation and lineage specification versus self-

renewal and quiescence. 

 

Destruction or removal of HSCs from the context of their native bone marrow niche can 

lead to hindered hematopoiesis and erratic differentiation (18, 19). This is of immediate concern 

for HSC transplants which are commonly used to treat disorders of the blood and immune 

system and chemo-radiation therapy (20). As such, the microenvironment of the HSC population 

is of both clinical and engineering relevance, demonstrating the need to engineer a culture 

platform that can maintain, condition, or expand HSCs prior to transplantation (21-23). Inspired 

by distinct niche compartments within the bone marrow that govern distinct hematopoietic 

activity of quiescence or activation, culture platforms that leverage the diverse range and 

tunability of biomaterials have been developed to engineer stem cell fate in an artificial niche 

(24-27). Both elasticity and stress relaxation time-scales of the biomaterial substrate have been 

shown to bias stem cell fate (28, 29), and decoration of covalently-bound factors simulates 
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presentation of ECM proteins which lead to either maintenance or proliferation of a stem cell 

population (30-33). Additionally, the coupling of biomaterials and niche-associated cells 

synergistically moderate cell-cell interactions through direct cell-cell contact or soluble factors 

(34-36). Recent work in non-adherent liquid culture has demonstrated expansion of HSCs when 

presented with a cocktail of soluble factors, however this has not been translated to a biomaterial 

culture system where cell signaling is modulated by the matrix environment (21). Within a 

biomaterial, biotransport of cell-secreted factors can be externally controlled via perfusion and 

flow (36, 37), while electrostatic hindrance and ECM-binding motifs can be modulated for 

intrinsic control of soluble factor biotransport (38-42).  

We and others have demonstrated the coupling of biophysical cues and cellular signals 

from bone-marrow derived cells induces differential hematopoietic lineage and cell-cycle 

patterns (43-45). We have previously reported (46) that a methacrylamide-functionalized gelatin 

(GelMA) hydrogel, in combination with co-cultured mesenchymal stromal and progenitor cells 

(MSPCs), can be used to elucidate external cues that drive a hemopoietic response. Within this 

system, soluble signaling from MSPCs induced a quiescent HSC state in a stiffer environment 

(modulus ~101 kPa) compared to a soft environment (modulus ~100 kPa). The exact factors and 

mechanism that drove HSC response were unidentified, inspiring efforts to understand the 

driving forces within a GelMA culture platform. As soluble signaling dominated cell-cell 

interactions, additional secretome analysis is needed to elucidate the biomolecular factors 

involved in modulating hematopoietic activity. 

The objective of this study is to identify soluble factors that lead to higher HSC 

maintenance in an artificial stem cell culture. We used a statistical framework, Partial Least 

Squares Regression (PLSR), to correlate secretome information to hematopoietic differentiation 
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patterns and downselect to factors with the greatest impact on hematopoietic fate. We 

subsequently examined the response of hematopoietic stem and progenitor cells (HSPCs) to 

exogenous stimulation by a subset of cytokines identified by the model. HSPCs were stimulated 

in single-culture or in the presence of MSPCs to define indirect or direct effects of cytokines that 

were not accounted for in the PLSR model. Taken together, we have demonstrated the use of 

secretome analysis to identify a subset of soluble factors that can be used to increase the 

maintenance potential of an HSPC culture platform without the need for feeder-cell signaling.  

 

2. Materials and Methods 

2.1 Quantitative measurement of soluble factors 

2.1.1 Hematopoietic and mesenchymal cell isolation 

All work involving primary cell extraction was conducted under approved animal welfare 

protocols (Institutional Animal Care and Use Committee, University of Illinois at Urbana-

Champaign). Murine hematopoietic stem and progenitor cells (HSPCs) and mesenchymal 

stromal progenitor cells (MSPCs) were cultured in methacrylamide-functionalized gelatin 

(GelMA) following the isolation and culture protocols outlined previously (46). In brief, HSPCs 

were isolated from the crushed tibia and femur of C57BL/6 female mice, age 4 – 8 weeks (The 

Jackson Laboratory). Initial hematopoietic lineage negative enrichment was performed with 

EasySep™ Mouse Hematopoietic Progenitor Cell Isolation Kit (#19856, Stemcell Technologies, 

CA), followed by collection of the Lin- Sca-1+ c-kit+ (LSK) fraction using a BD FACS Aria II 

flow cytometer. LSK antibodies were supplied by eBioscience (San Diego, CA), and are as 

follows: APC-efluor780-conjugated c-kit (1:160, #47-1172-81), PE-conjugated Sca-1 (0.3:100, 

#12-5981-83), and Lin: FITC-conjugated CD5, B220, CD8a, CD11b (1:100, #11-0051-82, #11-
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0452-82, #11-0081-82, #11-0112-82 ), Gr-1 (1:400, #11-5931-82), and Ter-119 (1:200, #11-

5921-82 ) (1, 47, 48). MSPCs were isolated from the crushed bone following a commercially 

available protocol and cultured for 10 days prior to collection and use (#05513, Stemcell 

Technologies).  

 

2.1.2 Hematopoietic and mesenchymal conditioned media 

HSPCs and MSPCs were cultured at increasing ratios of 1:0, 1:1, 1:10, 0:1, 0:10 

(HSPCs:MSPCs) in 4, 5, 7.5 wt% methacrylamide-functionalized gelatin (GelMA) (49, 50) at 

constant crosslinking conditions (85% functionalization, 0.1% lithium acylphosphinate 

photoinitiator (PI), and 7.14 mW/cm2 UV light for 30 seconds) for a total of 15 conditions 

(Figure 1A) (33, 46, 51). HSPC seeding density was kept constant at 1x105 HSPCs/mL, and cells 

were encapsulated in 5 mm diameter hydrogels (20 µL) and cultured for 7 days in 300 µL SFEM 

media (#09650 Stemcell Technologies) supplemented with 100 ng/mL SCF (#250-03, 

Peprotech) and 0.1% PenStrep, changed every 2-days. Media was collected from each sample at 

day 2, 4, and 6 and stored at -80°C for use in secretome analysis. Hematopoietic differentiation 

patterns in response to hydrogel and seeding condition were previously reported by Gilchrist et 

al. and are publicly available (46). Importantly, the collected media and hematopoietic lineage 

patterns were from the same samples, allowing for direct mapping of sample conditioned media 

to HSC phenotype.  

  

2.1.3 Soluble factor quantification in conditioned media 

Media collected from days 2, 4, and 6 from each sample was pooled (sample A1: day 2, 4, 

6) and used for subsequent proteomic analysis: 15 conditions, in triplicate (Figure 1B). A panel 
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of 200 murine cytokines was quantitatively assessed via a Quantibody cytokine array (#QAM-

CAA-4000-1, RayBiotech, Norcross, GA). The full list of cytokines can be found on the 

manufacturer’s website along with a detailed protocol and, for ease of access, has been provided 

in Supp. Table 1. In brief, each well of the microarray was blocked and washed prior to 

incubation with 100 µL of sample overnight. The wells were then washed, incubated with a 

biotinylated antibody cocktail, and then incubated with a Cy3 equivalent dye-streptavidin. Each 

microarray also included a standard curve dilution for later quantitative analysis. The 

microarrays were sent to RayBiotech for imaging. Quantitative results were extracted from the 

raw data using Q-analyzer software (Analysis Tool for QAM-CAA-4000, RayBiotech) with 

concentration values set within limits of detection.  

 

2.2 Iterative filter method  

2.2.1 Pre-processing  

Partial Least Squares Regression (PLSR) requires a y-variable by which we can correlate 

x-variables, as such, only conditions with hematopoietic lineage data were used for regression 

analysis (Low, Med, High; 1:0, 1:1, 1:10 HSPCs:MSPCs). From these conditions, the y-variable 

was taken as the proportion of HSCs (CD34+/- CD135- LSK) in the hematopoietic population 

(LSK, Common Myeloid Progenitors, and lineage committed), after a 7-day culture, while the 

predictors (x-variables) for the HSC response are the concentrations of the 200 cytokines. As 

there are potential interaction effects from cytokines that impact HSCs response, the predictors 

were Log transformed. As some samples had cytokine concentrations of zero or below the limit 

of detection, care was taken in Log transform to deal with undefined values. Broadly shifting the 

data by a constant factor, ε, can lead to variable results depending upon the value chosen (52, 
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53), therefore, we chose to add a variable shift factor, reflective of the popular commercially 

available SIMCA package (54):  

��� ��� � min
��
2 � ; �� �  min
��

2   
Where � refers to cytokine �, and ��  is equal to half the minimum cytokine concentration; 

if all samples had non-zero values for cytokine � then ��  was equal to zero. The transformed data 

was then centered around zero and scaled to unit variance (55, 56).  

 

2.2.2 Identification of cytokines for HSC response 

Cytokine concentration was correlated to the HSC proportion, via PLSR using the 

mixOmics package in RStudio (57, 58). The independent x-block consisted of 200 columns, with 

27 rows corresponding to 9 culture conditions in triplicate. The dependent block was a single 

variable of HSC proportion with 27 rows. The inner iterative process ran PLSR on an initially 

full dataset (f), and 10-fold cross-validation was performed, with 50 repetitions. The number of 

components in the model was determined by a cross-validated metric of predictive power, Q2, of 

less than 0.05. The variable importance projection (VIP) was then calculated for each cytokine, 

and the lowest scoring cytokine was removed. PLSR was then repeated on this f-1 dataset. This 

iteration was repeated, with storing of model metrics and removal of min(VIP) cytokine, until a 

model could no longer be constructed. The optimal model from the iteration process was then 

defined as the model with a Q2 within 1 standard error of the mean from the maximum occurring 

Q2 across all the models (59). This entire process was then repeated (n=1000), and cytokines 

appearing in more than 98% of the optimized models were compile into a final reduced model. A 

cutoff of 98% was chosen to limit the number of cytokines to a strict significant level, analogous 

to α=0.02. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.01.19.911800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.19.911800


10 
 

 

2.2.3 Identify autocrine or paracrine signaling molecules 

Cytokine concentrations of the reduced model were compared across single cultures of 

HSPCs and MSPCs (HSPC:MSPC; 1:0, 0:1). Significance was determined with Welch’s 

ANOVA with Tukey’s pairwise means comparison. Significance was examined across seeding 

condition (1:0 and 0:1) and the 7.5 wt% GelMA hydrogel (High; 1:0, 0:1). 

 

2.2.4 Data visualization 

Heatmap and principal component analysis (PCA) was performed in Matlab (Natick, 

MA). For visualization of the entire microarray, the dataset was centered and scaled to unit 

variance. Visualization of the full and reduced model for PLSR used the transformed, scaled, and 

centered data. All clustering was performed with average Euclidean distance (60).  

 

2.3 Model validation and stimulation of stem cell culture 

2.3.1 Exogenous stimulation  

Freshly harvested HSPCs and MSPCs were encapsulated in 20 µL of 7.5 wt% GelMA 

hydrogel (DOF=85%, PI=0.1%) as described previously, at a seeding density of 1x105 

HSPCs/mL and ratio of 1:0 or 1:1 HSPCs:MSPCs (46). Each cell-hydrogel construct was placed 

in individual wells (48-well plate) and were cultured for 7 days. Cells were maintained in SFEM 

media supplemented with 100 ng/mL SCF and 0.1% P.S, and 50 ng/mL of the cytokines 

identified by the reduced model. Cytokines were added either individually, a combination of all 

the cytokines, or none of the cytokines: recombinant murine TGFβ-1 (#763104, BioLegend), 

recombinant murine MMP-3 (#552704, BioLegend), recombinant murine c-RP (#50409-M08H, 
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Sino Biological), recombinant murine TROY (#50148-M08H, Sino Biological). MMP-3 was 

activated in 0.1 mM P-Aminophenylmercuric acid (#164610, Milipore Sigma) at 37 °C for 24 

hours. Media changes occurred every two days. 

 

2.3.2 Cell lineage and cycle analysis 

To protect against cell loss during the fixation and wash steps, two individually-cultured 

hydrogels were pooled for each sample. Sample dissociation was performed in 500 µL of PBS + 

25% FBS and 100 Units Collagenase Type IV (#LS004186, Worthington Biochemical). Samples 

were made piecemeal using scissors, and then placed on a rotator (200 rpm) at 37°C for 30 

minutes. Degradation was quenched with 1 mL PBS + 5% FBS and centrifuged at 300 rcf x 10 

minutes. The collected pellet was resuspended in PBS + 5% FBS and stained with surface 

marker antibodies. Following staining, the cells were fixed and permeabilized with 

Foxp3/Transcription Factor Staining Buffer Set (#00-5523-00, ThermoFisher), and then stained 

with the intranuclear Ki-67 stain and DAPI (1mg/mL, 10:300, #D21490, ThermoFisher). Cells 

were resuspended in PBS + 5% FBS and analyzed via Fluorescence-Assisted Cytometry (FACs), 

using a BD LSR Fortessa (BD Biosciences, San Jose, CA). Lysed whole bone marrow was used 

to create fluorescent minus one (FMO) controls for gating. DAPI was used to discriminate cells 

from debris, and analysis was performed with a 5,000 DAPI parameter thresholding. Cells were 

classified as Long-Term repopulating HSCs (LT-HSCs: CD34- CD135- Lin- Sca1+ c-kit+) (61-

63); Short-Term repopulating HSCs (ST-HSCs: CD34+ CD135- LSK) (61-63); HSCs (CD34+/- 

CD135- LSK); or Multipotent Progenitors (MPPs: CD34+ CD135+ LSK) (63, 64). Cell cycle was 

classified as G0 (Ki-67-, DAPI≤2N); G1 (Ki-67+, DAPI≤2N); SGM (DAPI>2N). All antibodies were 

supplied by eBioscience (San Diego, CA), and are as follows: PE-conjugated Ki-67 (0.3:100, 
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#12-5698-82), eFluoro660- conjugated CD34 (5:100, #50-0341-82), PE-CY5-conjugated CD135 

(5:100, #15-1351-82), APC-efluor780-conjugated c-kit (1:160, #47-1172-81), PE-CY7-

conjugated Sca-1 (0.3:100, #25-5981-81), and Lin: FITC-conjugated CD5, B220, CD8a, CD11b 

(1:100, #11-0051-82, #11-0452-82, #11-0081-82, #11-0112-82 ), Gr-1 (1:400, #11-5931-82), 

and Ter-119 (1:200, #11-5921-82 ).  

 

2.4 Statistical Analysis 

Prior to significance testing via ANOVA, normality and equality of variance were tested 

with Shapiro-Wilks and Brown–Forsythe at significance level 0.05 (65, 66). Significance of ½ 

power transformed Progenitor Factor data with unequal variance was examined with Welch’s 

modified 2-way ANOVA and post hoc pairwise means comparisons with Dunnett T3 (67). Cell-

cycle significance was tested with Kruskal-Wallis and post hoc pairwise means comparison with 

Dunn Test and FDR adjusted p-value. Glass’s Δ* effect size for t-test with small control group 

was used to measure influence of cytokines against a non-stimulated, single-culture control 

group (68). All statistical analysis was performed in R.  

 

2.5 Data Sharing Statement  

Original data and R code are available upon request from the corresponding author. All flow 

cytometry files have been uploaded to flowrepository.org (FR-FCM-Z2EP). All microarray data 

has been uploaded to NCBI Gene Expression Omnibus (GSE143987). 

 

3. Results  

3.1 Visualizing the entire secretome dataset  
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We first applied standard techniques for visualization and analysis of differentially 

expressed cytokines, i.e. Principal Component Analysis (PCA) and heatmap with dendrogram 

(Figure 2). However, this did not reveal substantial data-based inference on hematopoietic 

response. Notably, while we observe clustering of the single culture, low stiffness condition (A; 

Low; 4wt% GelMA, 1:0), with an increased concentration of cytokines compared to other 

conditions (Figure 2B), the magnitude of the data does not innately provide insight regarding 

secretome elements most suitable for HSC maintenance. Similarly, while the dimensionality 

reduction of the data (PCA) shows two “nodes” of activity (Figure 2C) there is no readily 

apparent biological significance to the groups as they do not cluster according to condition or 

hematopoietic response. A separate heatmap file has been provided for ease of legibility (Supp. 

Figure 1). 

 

3.2 Model-based reduction of the secretome data  

To downselect from a broad candidate pool of 200 cytokines to a experimentally feasible 

data set, we subsequently applied an iterative PLSR filter method (Figure 3A) that reduced the 

full dataset from 200 cytokines to a 15 cytokine reduced model: CXCL15 (Accession 

#Q3UQ15), Marapsin (#Q14A25), DAN (#Q8C7N6), Fractalkine (#O35188), TGFβ-1 

(#P04202), TROY (#Q80T13), IL-33 (#Q8BVZ5), Clusterin (#Q06890), MBL-2 (#P41317), 

Betacellulin (#Q05928), Chemerin (#Q8CHU8), CCL6 (#P27784), c-RP (#P14847), IL-7Ra 

(#Q9R0C1), MMP-3 (#P28862). While the full and reduced model were both 2-component 

models, the goodness-of-fit and predictive power (R2, Q2) increased in the reduced model 

(R2
reduced=0.607, Q2

reduced=0.555) compared to the full model (R2
full=0.166, Q2

full=0.414) (Figure 

3B). The smaller discrepancy between R2 and Q2 and the increased Q2 also highlight the better 
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predictive performance of the reduced model (69). The use of standard dimensionality reduction, 

PCA, and clustering on the full model dataset with or without preprocessing, does not show any 

biologically relevant clustering. However, analysis of the reduced dataset reveals clustering 

tightly connected to HSPC:MSPC seeding conditions, showing that the reduced model identified 

cytokine combinations that are distinguishable across culture conditions (Figure 4A,B).  

 

3.3 Identifying secretome factors that correlate with hematopoietic cell response 

We subsequently extracted transformed, scaled, and centered regression coefficients from 

the reduced cytokine model, plotting them against the variable importance projection (Figure 4C) 

(34). The positive or negative status of the regression coefficient split the reduced model 

cytokines into groups correlated with an increase (positive) or decrease (negative) in the HSC 

proportion. Given our goal to identify culture conditions for ex vivo expansion of hematopoietic 

progenitors, we subsequently concentrated on the family of cytokines correlated with a positive 

increase: TGFβ-1, MMP-3, TROY, and c-RP. However, future work may examine the role of 

cytokines negatively correlated with HSC maintenance as a means to potentially further 

manipulate HSC quiescence. 

 
3.4 Validating secretome factor role via exogenous stimulation experiments 

We subsequently performed new in vitro culture experiments to: 1) validate the effect of 

positively correlated cytokines on hematopoietic maintenance; and 2) to determine if the factors 

were likely acting directly on the HSPC population or indirectly through the MSPCs. To 

accomplish this, we exogenously stimulated both single HSPC cultures (1:0 HSPCs:MSPCs) and 

HSPC:MSPC co-cultures (1:1 HSPCs:MSPCs) encapsulated in 7.5 wt% GelMA hydrogels with 

individual positively correlated cytokines (TGFβ-1, MMP-3, c-RP, TROY) or a combination of 
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all 4 cytokines. Latent MMP-3 and activated MMP-3 were tested separately as the microarray is 

unable to distinguish the two and have disparate functions. We examined the expansion of the 

combined population of long- and short-term hematopoietic stem cells (LSK, CD34-/+, CD135-) 

population. To represent the maintenance ability of the culture systems in response to exogenous 

stimulation, we have defined a metric, Progenitor Factor, as the ratio of early-stage progenitors 

to late-state committed progeny. The Progenitor Factor is the total (short-term plus long-term) 

HSC population normalized by the total population of lineage positive (differentiated) 

hematopoietic population and represents the ability of a culture to maintain a progenitor state 

(large Progenitor Factor) vs a committed state (small Progenitor Factor). The Progenitor Factor 

of each condition was normalized to the single-culture (HSPC-only), non-stimulated control. 

Regardless of the presence or absence of MSPCs, TGFβ-1, TROY, and the combination (TGFβ-

1, MMP-3latent, TROY, and c-RP) increased the Progenitor Factor compared to the single-culture 

(HSPC only), non-stimulated control. The most notable increases in Progenitor Factor were in 

response to TGFβ-1, TROY, or Combination (with MMP-3latent). Single culture TGFβ-1, TROY, 

and the Combination (L) had a fold change of ΔPFTGFβ-1 = 8.73 ± 10.9, ΔPFTROY = 9.33 ± 11.6, 

and ΔPFCombo(L) = 7.52 ± 3.65 compared to the co-culture condition ΔPFTGFβ-1 = 6.07 ± 4.85, 

ΔPFTROY = 0.874 ± 0.384, ΔPFCombo(L) = 8.64 ± 4.31 (Figure 5A,B). The Glass’s Δ* effect size is 

a measure of the impact of a treatment compared to a control, which provides an estimate of the 

effect of each condition in order to identify conditions with the largest increase in hematopoietic 

potential from the non-stimulated, single-culture (Table 1). 

 

3.5 The role of exogenous stimulation HSPC quiescence 

Finally, we examined the influence of model-identified cytokine stimulation on the 
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maintenance of quiescent HSPCs within the hydrogel culture. Quiescent HSCs are essential in 

maintaining the hematopoietic population during homeostasis and injury. The number of 

quiescent (G0) HSCs was dependent upon both the seeding condition and cytokine stimulus and 

is reported as a fold change from the non-stimulated HSPC-only culture (Figure 6). Exogenous 

addition of Combinationlatent (TGFβ-1, latent MMP3, TROY, cRP) led to a significant (p-value < 

0.05) fold increase in the number of quiescent cells (ΔG0Combo(L) 5.59 ± 6.17 for HSPC only, 6.02 

± 1.32 for HSPC:MSPC co-culture) in comparison to the unstimulated controls for both single- 

(HSPC only) and co-cultures (1:1 HSPC:MSPC). This increase is also observed with exogenous 

addition of TGFβ-1 only (ΔG0TGFβ-1: 5.0 ± 7.36 for HSPC-only single cultures; 5.70 ± 4.14 for 

1:1 HSPC:MSPC co-cultures), albeit with greater variability. Notably, the presence of MSPCs is 

important for observed increase in ΔG0 cells, as all exogenous factor conditions experienced a 

higher ΔG0 with the presence of MPSCs (Figure 6). We also see that the presence of MSPCs 

leads to a greater proportion of HSCs that are in the G0 phase (Supp. Figure 2). Taken together, 

this shows that while the overall shift in the hematopoietic population (Progenitor Factor) is 

independent of the presence or absence of MSPCs, the number of quiescent hematopoietic cells 

is increased by co-culture with MSPCs stimulated with exogenous factors (Figure 5,6). 

 

4. Discussion  

The hematopoietic stem cell microenvironment in the bone marrow has inspired the 

concept of the stem cell niche (70) as well as experimental efforts to identify the role of 

biophysical and biomolecular elements in the niche. One major axis of investigation regarding 

signals within the HSC niche are the multitude of signaling biomolecules originating from the 

many cell lineages that exist within the marrow, including cells of the hematopoietic and 
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mesenchymal progeny (13, 14). While the exact source of soluble factors in the native bone 

marrow environment can be troublesome to elucidate, the cell-secreted factors are implicated in 

in vivo and ex vivo maintenance of hematopoietic activity (71). Co-transplantation of HSC and 

mesenchymal stromal cells (MSCs) improves hematopoietic engraftment and feeder-layers of 

mesenchymal progeny leads to ex vivo maintenance. However, the native complexity and 

imaging challenges of these studies hinders in vivo elucidation of influential HSC-MSC 

interactions. Previously, our lab has shown that the presence of MSPCs in GelMA hydrogels 

increases hematopoietic maintenance of HSPCs compared to single-cultures. The presence of 

MSPCs led to long-range cell-cell communication via secretion of biomolecules related to cell 

signaling (cytokines) and non-uniform remodeling of the local and non-local matrix (matrix 

metalloproteases). To quantify the influence of cell-secreted factors on HSC maintenance, we 

examined the secretome of media conditioned by HSPCs and MSPCs in single or co-cultures via 

a quantitative cytokine microarray. While conditioned media does not allow for quantification of 

soluble factors that have been sequestered within the GelMA hydrogel, it does offer an 

accessible avenue for probing the secretome.  

 

Analysis of the secretome yielded a large and complex dataset that necessitated reduction 

and visualization techniques to parse out relevant trends within the data. While traditional 

dimensional analysis techniques (heatmap, PCA) can reveal clustering and differential 

concentrations (Figure 2), they lack the ability to correlate measured observations with a 

biological process. These methods are also sensitive to noise within the data and can lead to 

results that do not have a biological significance. As such, another analysis technique was 

required to shift through the large dataset to identify cytokines that are relevant to maintaining 
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HSCs within an engineered niche. For this, we used a modeling technique that has been 

employed in analysis of signaling pathways and metabolomics: Partial Least Squares Regression 

(PLSR) (72-74). Similar to PCA, PLSR reduces the dimensionality of complex data; however, 

PLSR has the advantage of correlating observational data (secretome) to a biological process 

(HSC maintenance) and is better able to distinguish signal from noise (56, 59, 75-77). But while 

PLSR is able to correlate concentration of soluble factors to hematopoietic phenotype, an 

additional variable selection step is required to minimize the number of cytokines implicated in 

HSC maintenance. We used an iterative filter method, where the cytokine with the lowest 

variable importance projection (VIP; a measure of the importance of the cytokine to the model) 

was removed from the model. VIP was selected as the filter criteria as it is considered a stable 

filter method and produces consistent results (78). The repeated use (n=1,000) of this iterative 

PLSR filter method for variable selection resulted in a reduced candidate pool of 15 cytokines 

that were correlated with HSC maintenance. PLSR has previously been applied to stem cell 

systems, including exploration of soluble factor signaling, with excellent work by Müller et al. 

applying PLSR to a hematopoietic system to implicate autocrine, paracrine, and juxtacrine 

signals in HSPC proliferation (34, 79, 80). While Müller et al. used a cutoff of VIP>0.8 in their 

final model to create an optimized, reduced model, it is not apparent that variable selection 

methods, beyond final cutoff values, have been used to identify minimum cocktails of cytokines 

that impact stem cell response. Although variable selection methods have been employed in 

chemometric analysis to produce models with better overall predictive ability (R2 and Q2) (81, 

82), our effort represents an important alignment of PLSR methods with stem cell culture 

platforms to identify essential cell-cell interactions that underlie stem cell performance. 
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Our approach also highlights the synergy between bioinformatics and experimental 

approaches, in which we subsequently examined the individual and combined effects of 

cytokines positively correlated to improved HSPC response (TGFβ-1, MMP-3, c-RP, TROY) in 

mixed HSPC-MSPC cultures. One of the challenges associated with experimental design of 

exogenous stimulation of stem cells is identifying cytokine dosages that trigger a biological 

response. While the measured concentration of cytokines ranges from 1 to 15 ng/mL, we used a 

consistent concentration of 50 ng/mL for all factors in order to identify biological effects. The 

higher dose does not mitigate inherent variability in in vitro culture and biological response, and 

future studies may explore dose dependent responses amongst these factors. However, this 

approach does demonstrate the utility of a robust protocol to identify statistically significant stem 

cell response. As PLSR is unable to distinguish the source of the identified cytokines, it was not 

known whether the cytokines act directly on the hematopoietic population or indirectly via 

MSPC activation. We performed cytokine stimulation experiments on both single (HSPC) and 

HSPC-MSPC co-cultures, finding that improvements in HSPC Progenitor Factor was 

independent of the MSPC seeding condition, i.e. conditions have similar calculated Progenitor 

Factors regardless of the presence of MSPCs (Figure 5). This suggests that the exogenously 

added cytokines are likely acting directly upon the HSCs. The highest Progenitor Factor was 

observed with the combination of all 4 factors (latent MMP-3), with a large effect size (>30) 

compared to the non-stimulated control, suggesting a possible interaction effect among the 

cytokines (Figure 5B, Table 1). This is supported by STRING protein-protein association 

analysis which shows a complex network of co-expression and known interactions (83), and 

opens the door to subsequent use of our HSPC culture platform to more explicitly probe such 

interactions (Supp. Figure 3). 
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 While the Progenitor Factor appears independent of the presence of MSPCs, the HSC 

quiescent state is sensitive to both exogenous stimulation and seeding condition. Exogenous 

stimulation with TGFβ-1 (alone or in combination) led to a 5-fold increase in the number of 

quiescent HSCs in HSPC-only (single) and 1:1 HSPC-MSPC (co-culture) cultures (Figure 6). 

Excitingly, this in vitro response is reminiscent of proposed features of the in vivo niche, where 

quiescent HSCs are often found near megakaryocytes, a major producer of TGFβ-1 (14). Further, 

the presence of MSPCs led to a higher number of G0 cells in all conditions, compared to single-

cultures. Taken together, this suggests that lineage patterns are independent of seeding density 

when stimulated with a combination of exogenous cytokines, yet HSC cell-cycle state appears to 

be dominated by MSPC-mediated interactions. This highlights both the complexity of a synthetic 

HSC niche, and also the potential for experimental-modeling approaches to identify and 

manipulate heterotypic cell interactions in order to regulate a desired stem cell response. Our 

approach provides critical information about the potential for HSPC-MSPC interactions to 

achieve expansion of an HSPC population without exhaustion (e.g., maintenance of a quiescent 

cell fraction).  

 

We have noted that TGFβ-1 response in vitro can be linked to an in vivo megakaryocyte 

niche, and this is mirrored by c-RP which has been suggested to stimulate the production of 

megakaryocytes (megakaryocytopoiesis) (84). The exact functionality of c-RP in vivo and in 

vitro remains elusive (85), however, it has been reported as a key regulator of systemic 

inflammation and is a prognosis biomarker for HSC transplant success (86, 87). Similarly, 

TROY (tumor necrosis factor receptor super family 19) has not been fully explored in the 
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context of hematopoiesis, although other members of the TNFR family have been related to the 

emergence of hematopoietic stem cells and immunomodulatory roles (88). Interestingly, it has 

been shown to regulate MSC differentiation (89), indicating a route by which TROY can 

indirectly impact HSC maintenance. However, our approach is unique in that it took an 

experimental co-culture, a broad secretome screen, then an adaptation of conventional PLSR 

approached to identify select factors involved in HSPC expansion and quiescence in a synthetic 

HSC niche. It is exciting that many of these factors identified via this approach have known 

hematopoietic or bone marrow origin, suggesting this approach may have broad value for 

refining an ex vivo platform for HSC culture and expansion. 

 

Importantly, while soluble factors can act directly upon cultured HSPCs and MSPCs, 

secretome analysis also enables examination of the effect of dynamic changes to the matrix by 

MSPCs. MSPCs can participate in matrix remodeling via the secretion of degradative enzymes 

(MMPs) and their inhibitors (TIMPs). In the reduced model, MMP-3 is positively correlated and 

is primarily a paracrine signaling molecule (Figure 4C), with significantly higher concentrations 

in the MSPC single cultures compared to the HSPC single cultures. MMP-3 degrades a wide 

variety of ECM components including collagen type II, IV, V, IX (90) and serves as an activator 

for other MMPs, setting off a remodeling cascade (91-94). While this model has not explored the 

activity of MMP-3 or its inhibitors, it does suggest that there is a need for deeper examination of 

MMPs and TIMPs and their associated role in matrix remodeling.  

 

This work has validated the influence of soluble factors in maintaining a progenitor 

population in an in vitro niche. With PLSR, we have shown that a complex secretome dataset can 
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be correlated to a biological response for hematopoietic stem cell engineering. A minimum 

cocktail of cytokines identified by the model was shown to increase the progenitor potential of 

the culture system, acting directly upon the hematopoietic population to maintain a higher 

Progenitor Factor. As this work was performed at cytokine concentrations of 50 ng/mL, there is 

the possibility that the high concentration of each cytokine hid any indirect effects arising from 

MSPC-secreted factors. However, reducing the pool of candidate cytokines from 200 to 4 now 

enables future dose-dependent and temporal secretion studies of HSC lineage patterns. 

Additionally, this small subset allows for future inhibition studies that further solidify the role of 

these factors in hematopoietic maintenance or that examine negatively correlated cytokines (e.g. 

Marapsin). In parallel, future work will probe changes in long-range cell-cell communication 

mediated by changes in the local and non-local matrix. Following the method outlined herein, 

remodeling-associated factors within the secretome can be similarly correlated to bulk-material 

mechanical measurements (compression testing) and local matrix remodeling (microrheology 

(95)). The sum total of this work will identify factors implicated in the maintenance of a 

hematopoietic stem cell population and inform design and development of an artificial stem cell 

niche.   
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Tables 
 
Table 1. Glass effect size (Glass *Δ) is shown with 1:0 None as the control group. This is a 
measure of the effect a cytokine has on Progenitor Factor compared to the unstimulated HSPC-
only condition. Sample size for each condition is listed under effect size. L: latent MMP3. A: 
activated MMP3. 
 

HSPC:MSPC 
ratio 

TGFβ-
1 

MMP3 
(L) 

MMP3 
(A) TROY cRP Combo 

(L) 
Combo 

(A) None 

1:0 25.9 
n=10  

16.6 
n=7 

-5.88 
n=6 

27.5 
n=8 

9.55 
n=8 

31.6 
n=10 

3.51 
n=6 

0 
n=16 

1:1 21.6 
n=6 

-3.60 
n=4 

-3.17 
n=6 

2.31 
n=4 

-5.43 
n=4 

35.1 
n=6 

-2.90 
n=6 

-1.28 
n=12 
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Figure 1. Overview of cytokine data collection. A. A library of GelMA hydrogels were 
produced with disparate properties (E: elastic modulus, G: shear modulus, Dw: diffusion of 
water, ξ: mesh size). Within the Low, Med, and High hydrogels, hematopoietic stem and 
progenitor cells (HSPC) and mesenchymal stem progenitor cells (MSPC) were co-cultured at 
seeding ratios of 1:0, 1:1, and 1:10 HSPC:MSPC. B. Media was changed and collected at days 2, 
4, and 6 and pooled together before analysis via a quantitative cytokine microarray analysis.  
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Figure 2. First stage analysis of complete data set. A. Conditions shown in visualization of 
dataset. B. Heatmap of cytokines across all conditions. The data is centered and scaled along the 
columns (cytokines). C. Principal component analysis of all conditions (centered and scaled), 
showing the first two components.  
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Figure 3. Partial Least Squares analysis of a scaled log-transformed dataset. A. The 
workflow of the iterative filter method to identify cytokines. The data is first scaled and log-
transformed. Partial least squares regression (PLSR) is iteratively run on the preprocessed data, 
with the lowest variable importance projection (VIP) cytokine removed each time until all 
cytokines are removed (n=200). From this, the model with a Q2 within one S.E. of the maximum 
Q2 was chosen and the cytokines stored. This loop was then run 1,000 times. The cytokines that 
appear in >98% of the models were then chosen for the reduced model B. Model metrics of the 
full and reduced model are shown. The reduced model has a much smaller discrepancy between 
R2 and Q2.  
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Figure 4. Model reduction and separation of regression coefficients. A. The scores of the first 
two components of principal component analysis (PCA) on the pre-processed data. Clustering is 
based on Euclidean distance and average linkage. The clusters do not capture either seeding or 
hydrogel conditions B. Scores of PCA on the pre-processed reduced data set. Clustering captures 
the seeding conditions with reasonable fidelity: Blue, 1:0, Purple 1:1, Yellow, 1:10 C. The 
scaled, centered, and log-transformed regression coefficients vs the variable importance 
projection. The upper quadrant (green) indicates a positive impact of the cytokines on HSC 
maintenance, while lower quadrant (red) indicates the reverse. MMP-3 data point is highlighted 
in red as it was significantly increased in the MSPC-only culture vs the HSPC-only culture, 
indicating it is a mainly paracrine signaling molecule. 
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Figure 5. Hematopoietic maintenance potential in stimulated culture. Fold change of 
Progenitor Factor data. All conditions are normalized to the 1:0 None condition. # and * 
represent significance to 1:0 None and 1:1 None respectively (p<0.05). Each point represents one 
sample, with sample sizes listed below. (L) and (A) denote latent and activated MMP-3. Sample 
size is listed in Table 1. A. Progenitor Factor of individually stimulated conditions. B. Progenitor 
Factor of combination of cytokines.  
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.01.19.911800doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.19.911800


31 
 

 

 
Figure 6. Quiescent HSCs in stimulated cultured. Fold change of quiescent (G0) HSCs, 
normalized to the 1:0 None condition. # and * represent significance to 1:0 None and 1:1 None 
respectively (p<0.05), ^ represents significance to 1:1 None at p<0.1 (p=0.079). Each point 
represents one sample, with sample sizes listed below. (L) and (A) denote latent and activated 
MMP-3. A. Fold change of quiescent HSCs in individually stimulated conditions. B. Fold 
change of quiescent HSCs exposed to combination of cytokines.  
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