Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms

Marte J. Sætra, View ORCID ProfileGaute T. Einevoll, View ORCID ProfileGeir Halnes
doi: https://doi.org/10.1101/2020.01.20.912378
Marte J. Sætra
1Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
2Department of Physics, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gaute T. Einevoll
1Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
2Department of Physics, University of Oslo, Oslo, Norway
3Faculty of Science and Technolgy, Norwegian University of Life Sciences, Ås, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gaute T. Einevoll
Geir Halnes
1Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
3Faculty of Science and Technolgy, Norwegian University of Life Sciences, Ås, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Geir Halnes
  • For correspondence: geir.halnes@nmbu.no
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Most neuronal models are based on the assumption that ion concentrations remain constant during the simulated period, and do not account for possible effects of concentration variations on ionic reversal potentials, or of ionic diffusion on electrical potentials. Here, we present what is, to our knowledge, the first multicompartmental neuron model that accounts for electrodiffusive ion concentration dynamics in a way that ensures a biophysically consistent relationship between ion concentrations, electrical charge, and electrical potentials in both the intra- and extracellular space. The model, which we refer to as the electrodiffusive Pinsky-Rinzel (edPR) model, is an expanded version of the two-compartment Pinsky-Rinzel (PR) model of a hippocampal CA3 neuron, where we have included homeostatic mechanisms and ion-specific leakage currents. Whereas the main dynamical variable in the original PR model is the transmembrane potential, the edPR model in addition keeps track of all ion concentrations (Na+, K+, Ca2+, and Cl−), electrical potentials, and the electrical conductivities in the intra- as well as extracellular space. The edPR model reproduces the membrane potential dynamics of the PR model for moderate firing activity, when the homeostatic mechanisms succeed in maintaining ion concentrations close to baseline. For higher activity levels, homeostasis becomes incomplete, and the edPR model diverges from the PR model, as it accounts for changes in neuronal firing properties due to deviations from baseline ion concentrations. Whereas the focus of this work is to present and analyze the edPR model, we envision that it will become useful for the field in two main ways. Firstly, as it relaxes a set of commonly made modeling assumptions, the edPR model can be used to test the validity of these assumptions under various firing conditions, as we show here for a few selected cases. Secondly, the edPR model is a supplement to the PR model and should replace it in simulations of scenarios in which ion concentrations vary over time. As it is applicable to conditions with failed homeostasis, the edPR model opens up for simulating a range of pathological conditions, such as spreading depression or epilepsy.

Author summary Neurons generate their electrical signals by letting ions pass through their membranes. Despite this fact, most models of neurons apply the simplifying assumption that ion concentrations remain effectively constant during neural activity. This assumption is often quite good, as neurons contain a set of homeostatic mechanisms that make sure that ion concentrations vary quite little under normal circumstances. However, under some conditions, these mechanisms can fail, and ion concentrations can vary quite dramatically. Standard models are thus not able to simulate such conditions. Here, we present what to our knowledge is the first multicompartmental neuron model that in a biophysically consistent way does account for the effects of ion concentration variations. We here use the model to explore under which activity conditions the ion concentration variations become important for predicting the neurodynamics. We expect the model to be of great use for simulating a range of pathological conditions, such as spreading depression or epilepsy, which are associated with large changes in extracellular ion concentrations.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted January 20, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms
Marte J. Sætra, Gaute T. Einevoll, Geir Halnes
bioRxiv 2020.01.20.912378; doi: https://doi.org/10.1101/2020.01.20.912378
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms
Marte J. Sætra, Gaute T. Einevoll, Geir Halnes
bioRxiv 2020.01.20.912378; doi: https://doi.org/10.1101/2020.01.20.912378

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (5000)
  • Biochemistry (11208)
  • Bioengineering (8327)
  • Bioinformatics (28077)
  • Biophysics (14413)
  • Cancer Biology (11538)
  • Cell Biology (16611)
  • Clinical Trials (138)
  • Developmental Biology (9058)
  • Ecology (13692)
  • Epidemiology (2067)
  • Evolutionary Biology (17739)
  • Genetics (11893)
  • Genomics (16265)
  • Immunology (11368)
  • Microbiology (26902)
  • Molecular Biology (11025)
  • Neuroscience (58398)
  • Paleontology (432)
  • Pathology (1795)
  • Pharmacology and Toxicology (3090)
  • Physiology (4700)
  • Plant Biology (9973)
  • Scientific Communication and Education (1641)
  • Synthetic Biology (2769)
  • Systems Biology (7151)
  • Zoology (1565)