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ABSTRACT

The spatial processing of color is important for visual perception. Double-opponent (DO) 
cells likely contribute to this processing by virtue of their spatially opponent and cone-
opponent receptive fields (RFs). However, the representation of visual features by DO 
cells in the primary visual cortex of primates is unclear because the spatial structure of 
their RFs has not been fully characterized. To fill this gap, we mapped the RFs of DO 
cells in awake macaques with colorful, dynamic white noise patterns. The spatial RF of 
each neuron was fitted with a Gabor function and a Difference of Gaussians (DoG) 
function. The Gabor function provided the more accurate description for most DO cells, 
a result that is incompatible with the traditionally assumed center-surround RF 
organization. A slightly modified (non-concentric) DoG function, in which the RFs have a 
circular center and a crescent-shaped surround, performed nearly as well as the Gabor 
model. For comparison, we also measured the RFs of simple cells. We found that the 
superiority of the Gabor fits over DoG fits was slightly more decisive for simple cells 
than for DO cells. The implications of these results on biological image processing and 
visual perception are discussed.
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INTRODUCTION

The spatial layout of chromatic signals influences color perception (Brown 1997; 
Monnier 2003; Singer 1994; Wachtler et al. 2001; Wandell 1993). A fundamental goal of 
visual neuroscience is to understand how the spatial processing of chromaticity by 
neurons mediate these effects. Double-opponent (DO) cells in primate primary visual 
cortex (V1) serve as a prime substrate for such an investigation because they encode 
colored edges (Conway 2001; Hubel and Wiesel 1968; Johnson et al. 2008; Livingstone 
and Hubel 1984). Neurons are defined as DO if they are cone-opponent (that is, if they 
receive antagonistic input from at least two types of cone photoreceptor in individual 
regions of their receptive fields (RFs)) and if they have opposite chromatic preferences 
in different parts of their RFs (Dow and Gouras 1973; Hubel and Wiesel 1968; 
Livingstone and Hubel 1984; Michael 1978; 1985; Poggio 1975; Thorell et al. 1984). 
These defining characteristics are undisputed, but the spatial structure of DO RFs is 
controversial .

DO cells were originally reported to have a center-surround RF organization (Hubel and 
Wiesel 1968; Livingstone and Hubel 1984; Michael 1978; 1985; Poggio 1975). More 
recent experiments have shown, however, that most DO cells are orientation-tuned, 
inconsistent with a center-surround RF organization (Johnson et al. 2008; 2001) but see 
(Conway 2001; Conway and Livingstone 2006). The differences in results between 
these studies are largely attributable to two factors. The first is the fact that different 
choices of visual stimuli can affect estimates of RF structure. Studies that reported 
center-surround RFs used uniform disks whereas those that reported orientation tuning 
used oriented gratings. A second factor is the difficulty inherent in inferring a 2-
dimensional RF map from 1-dimensional data (e.g. disk size or grating orientation). At 
least some V1 cells have been shown to encode complex spatial patterns that cannot 
be predicted from orientation tuning measurements alone (Hegdé 2007; Tang 2018). 

Knowing the complete 2-D spatial structure of DO cell RFs is important for three 
reasons. First, it is necessary for the construction of image-computable models, which 
can generalize to any image as input (Yamins and DiCarlo 2016). Second, it facilitates 
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comparison with normative theories of image encoding (Caywood 2004; Hoyer 2000; 
Kellner 2013; Tailor 2000). Third, it elucidates the link between neurophysiology and 
perception. For example, center-surround DO RFs could contribute to differences in 
form perception defined by chromatic or luminance contrast (Gregory 1977; Livingstone 
1987; Mullen 2002). Gabor-like RFs could contribute, additionally, to shape-from-
shading—the ability to estimate the 3-D shapes of objects from shading cues (Kingdom 
2003; Kunsberg 2018). 

We stimulated V1 neurons with a white noise stimulus that varied independently in two 
spatial dimensions, as well as in color and time. We analyzed the data by spike-
triggered averaging to identify DO cells and to measure their spatial RFs. We fit each 
spatial RF with two models that have been advanced previously to describe DO RFs: a 
difference of Gaussians (DoG) (Balasuriya 2003; Gao 2015; Lau 2008a; Lau 2008b; 
Spitzer 2005) and a Gabor function (Johnson et al. 2008; Yang 2013; Zhang 2012). We 
compared model fits between DO cells and simple cells—a benchmark cell type whose 
RF is well known to be better fit by a Gabor than a DoG function (Hubel and Wiesel 
1968; Jones 1987; Moore IV 2012; Ringach 2002a; b). 

The Gabor model outperformed the DoG model for most DO cells we studied. The 
goodness-of-fit of the Gabor model was similar for simple and DO cells. Some DO RFs 
consisted of a circular center and a crescent-shaped surround. A slight modification of 
the DoG model captured such RFs, performing nearly as well as the Gabor model for 
DO cells but poorly for simple cells. Together, these results show that simple and DO 
RFs are both well-described by the Gabor model, they are poorly described by the DoG 
model, and a center-crescent surround model is a reasonable description for many DO 
cells. 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METHODS

General 

All protocols conformed to the guidelines provided by the US National Institutes of 
Health and the University of Washington Animal Care and Use Committee. Data were 
collected from two male and two female rhesus macaques (Macaca mulatta) weighing 
7–13 kg. Each monkey was surgically implanted with a titanium headpost and a 
recording chamber (Crist Instruments) over area V1. Eye position was continuously 
monitored using either an implanted monocular scleral search coil or an optical eye-
tracking system (SMI iView X Hi-Speed Primate, SensoMotoric Instruments). 

Monitor calibration

Stimuli were presented on a cathode-ray tube (CRT) monitor (Dell Trinitron Ultrascan 
P991) with a refresh rate of 75 Hz against a uniform gray background y (x = 0.3, y = 0.3, 
Y = 43–83 cd/m2). Monitor calibration routines were adapted from those included in the 
Matlab Psychophysics Toolbox (Brainard 1997). Emission spectra and voltage-intensity 
relationships of each monitor phosphor were characterized using a spectroradiometer 
(PR650, PhotoResearch, Inc.). The color resolution of each channel was increased from 
8 to 14 bits using a Bits++ video signal processor (Cambridge Research Systems, Ltd.) 
at the expense of spatial resolution; each pixel was twice as wide as it was tall. 

Task

Monkeys sat in a primate chair 0.7–1.0 m from a CRT monitor in a dark room during the 
experiments. The monkeys were trained to fixate a centrally located dot measuring 0.2 x 
0.2° and to maintain their gaze within a square 1.0–2.0° fixation window. Successful 
fixation was rewarded, and fixation breaks aborted trials.
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Electrophysiological recordings

We recorded spike waveforms from well-isolated V1 neurons using extracellular 
tungsten microelectrodes (Frederick Haer, Inc.) that were lowered through dura mater 
by a hydraulic microdrive (Narishige, Inc. or Stoelting Co.). Electrical signals were 
amplified and digitized at 40 kHz online (Plexon, Inc.) and stored in a PC. 

Visual stimuli and experimental protocol

Each neuron was stimulated binocularly with white noise chromatic checkerboards 
(Horwitz et al. 2005; 2007) . Each stimulus frame was a grid of 10 x 10 stimulus 
elements (stixels), and each stixel subtended 0.2 x 0.2°. The stimulus changed on every 
screen refresh. The intensity of each phosphor was modulated independently according 
to a Gaussian distribution with a standard deviation of 5–15% of the physically 
achievable range. The space-time averaged intensity of each phosphor was equal to its 
contribution to the background. Neuronal responses to the white noise stimuli were 
analyzed using spike triggered averaging (Figure 1A). Neurons that did not have clear 
spike-triggered averages (STAs) were passed over for data collection. 

FIGURE 1 HERE

Cone weights and spatial RF

For each cell, we identified the frame from the STA that differed most from the 
background, based on the sum of squared red, green, and blue stixel intensities 
(negative intensities were defined as those below the contribution to the background). 
We then took the weighted average of the peak and the two flanking frames to create a 
10 stixels x 10 stixels x 3 color channels tensor. The weight of each frame was 
proportional to the square root of sum of squared red, green and blue stixel intensities. 
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We reshaped the tensor into a 100 x 3 matrix, and used a singular value decomposition 
(SVD) to separate this weighted STA into a color weighting function and a spatial 
weighting function, defined as the first row and column singular vectors, respectively 
(Figure 1B) (Horwitz and Albright 2005). The color weighting function and the spatial 
weighting function captured most of the variance in the weighted STAs (Figure 1C–D).

The color weighting function, which quantifies neuronal sensitivity to modulations of the 
red, green, and blue phosphors of the display, was converted to cone weights that are 
assumed to act on cone contrast signals (Weller 2018). Cone weights were normalized 
such that the sum of their absolute values was 1 (Derrington et al. 1984; Horwitz and 
Albright 2005; Johnson et al. 2004). We analyzed only cells that were spatially opponent 
(see Cell Screening). As a result, each cell had cone weights with different signs in 
different RF subregions.

Cell screening

We recorded from 393 V1 neurons and omitted 189 from the analyses on the basis of 
four criteria. Every neuron was required to have an STA with (1) high signal-to-noise 
ratio (SNR), (2) interpretable structure, (3) spatial opponency, and (4) cone weights that 
were either clearly opponent or clearly non-opponent. Below, we explain the rationale 
for each criterion and how it was implemented.

We excluded cells with low SNR because noisy STAs could lead to inaccurate estimates 
of color and spatial weighting functions. SNR was computed by comparing the peak 
STA frame to first STA frame and was defined as:

 SNR =
1
N

N

∑
i=1

( Ii

σ )
2
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where  is the total number of elements within a frame: 10 stixels x 10 stixels x 3 color 
channels = 300 elements,  is the intensity of each element in the peak STA frame 
relative to the background, and  is the standard deviation of the 300 elements that 
compose the first STA frame. The intensity of each element was divided by this standard 
deviation so that each element had (approximately) a standard normal distribution under 
the null hypothesis of no signal. We squared and summed these normalized intensity 
values and omitted from analysis the 60 cells for which this sum failed to reach a 

statistical threshold (p < 0.0001,  test, df=300).

We excluded cells that combine cone inputs non-linearly because their STAs do not 
reflect their stimulus tuning accurately (Horwitz et al. 2005). We identified nonlinear 
neurons using a non-linearity index (NLI) (Horwitz et al. 2007). The NLI uses the STA 
and the spike-triggered covariance to find the maximally informative stimulus dimension 
under a multivariate Gaussian assumption (Pillow 2006). For each cell, we projected the 
stimuli shown in the experiment onto the maximally informative dimension and binned 
the projections, excluding the upper and lower 5% to avoid the influence of outliers. We 
calculated the average firing rate across the stimuli within each bin. The relationship 
between firing rate and stimulus projection was fit with three regression equations. 

 

The goodness-of-fit of each regression was quantified with an  statistic. The NLI is 
defined as

 

The NLI attains its theoretical maximal value of 1 when the inclusion of a linear term 
does not improve the regression fit. This would be the case, for example, for a V1 

N
I

σ

χ2

ylinear = b0 + b1x
yquadratic = b0 + b1x2

yfull = b0 + b1x + b2x2

R2

NLI =
R2

quadratic − R2
linear

R2
full

	 8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.01.20.913111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913111


complex cell whose response is invariant to contrast polarity. NLI attains its theoretical 
minimum value of −1 when the inclusion of a quadratic term does not improve the 
regression fit as would be the case for a purely linear cell. Twenty-six cells were 
excluded on the basis that their NLI was > 0.

We excluded cells that were spatially non-opponent because these cells can be neither 
DO nor simple. We identified spatially non-opponent cells by analyzing the power 
spectrum of their spatial weighting functions. Spatially non-opponent cells, by definition, 
had maximal power in the lowest spatial frequency bin, which included power from 0 to 
approximately 0.7 cycles/°. This criterion excluded 54 cells. Other, stricter criteria 
excluded more cells but did not affect the main results.

We segregated simple cells from DO cells on the basis of cone weights, and we 
excluded neurons outside of these categories. Cells were classified as simple if their L- 
and M-cone weights had the same sign, accounted for 80% of the total cone weight, 
and individually accounted for at least 10%. Cells were classified as DO if they had 
large magnitude cone weights of opposite sign. DOLM-opponent cells were defined as those 
that had L- and M-cone weights of opposite sign that together accounted for 80% and 
individually accounted for at least 20% of the total cone weight. DOS-cone sensitive cells 
were cone-opponent and had an S-cone weight that accounted for at least 20% of the 
total. Forty-nine cells that were not categorized as simple, DOLM-opponent, or DOS-cone 

sensitive were omitted from the analyses.

A total of 204 neurons contributed to the final pool (monkey 1: 42 simple, 57 DOLM-

opponent, 37 DOS-cone sensitive ; monkey 2: 11 simple, 11 DOLM-opponent, 1 DOS-cone sensitive; 
monkey 3: 18 simple, 14 DOLM-opponent, 6 DOS-cone sensitive; monkey 4: 1 simple, 4 DOLM-

opponent, 2 DOS-cone sensitive ).

Model fitting of the spatial weighting function
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We fit the spatial weighting function of each neuron with three models. Fitting was 
performed using the inbuilt MATLAB fmincon function to minimize the sum of squared 
errors between the spatial weighting function and the model fit. We describe each of the 
models below.

Gabor model

The Gabor model was defined as:

                           

where ( , ) is obtained by translating the original coordinate frame to the RF center, 
( , ), and rotating it by an angle .

 is the spatial period of the cosine component in °/cycle, and  is the spatial phase. A 
spatial phase of  = 0° produces an even-symmetric RF whereas spatial phase of  = 
90° produces an odd-symmetric RF. The two axes of the Gaussian envelope align with 
the  and the  axes. The parameter  is the amplitude,  is the aspect ratio, and  is 
the standard deviation of the Gaussian envelope along the  axis. 

Difference of Gaussians (DoG) model

The Difference of Gaussians (DoG) model can be written as:

x′ y′ 
xc yc θ

λ ϕ
ϕ ϕ

x′ y′ A γ σ
x′ 
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 ′x = (x − xc ) cos(θ ) + ( y − yc ) sin(θ )

 ′y = − (x − xc ) sin(θ ) + ( y − yc ) cos(θ )

f (x, y) = Ac
2πσ c

2
exp(−((x − xc )

2 + (y − yc )
2 ) /σ c

2 ) − As
2πσ s

2
exp(−((x − xc )

2 + (y − yc )
2 )) /σ s

2 )

f ( ′x , ′y ) = Ae
−

′x 2+γ 2 ′y 2( )
2σ 2 cos 2π ′y / λ( )−φ( )
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where  and  are the amplitudes of the center and surround.  and  are the 

standard deviations of the center and surround.

Non-concentric DoG model

The non-concentric DoG model is identical to the DoG model but has two additional 
parameters ( , ) that allow the surround to be offset from the center (Dawis et al., 

1984).

Evaluating goodness of model fit: 

We evaluated the quality of model fits by calculating Pearson’s correlation coefficient 
( ) between the data and the model predictions. We used 5-fold cross validation, fitting 
the model with 80% of the data and testing the model on the remaining 20%. This 
procedure avoids overfitting, but it augments the natural bias of  towards zero 
because the training set is smaller than the actual data set. We report the averaged  
across the 5 folds.

Evaluating goodness of model fit: Fraction of variance unexplained

We evaluated the fraction of the variance unexplained from model fits. The fraction of 
unexplained variance was defined as the ratio of the residual sum of squared errors and 
the total sum of errors. For this calculation, we fit the models to the entire dataset for 
each neuron.

Evaluating goodness of model fit: Bayesian information criterion

Ac As σc σs

xs ys

R

R

R
R
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2
exp(−((x − xc )

2 + (y − yc )
2 ) /σ c

2 ) − As
2πσ s

2
exp(−((x − xs )

2 + (y − ys )
2 )) /σ s

2 )
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Model fits were further quantified using the Bayesian information criterion ( ). 
Assuming that the model errors are independent and identically distributed according to 
a normal distribution, the  can be written as:

 

where  is the number of data points (  = 100),  is the residual sum of squared 
errors and  is the number of model parameters.

Evaluating goodness of model fit: sum of squared errors

Model fits were further compared by calculating the sum of squared errors between the 
data and the fitted model. We used 5-fold cross-validation and report the averaged sum 
of squared errors across the 5 folds.

Evaluating goodness of model fit: Prediction of spike-triggering stimuli

Model fits were further compared by calculating the ability of the models to predict 
spiking responses to white noise stimuli. Using 5-fold cross validation, the model was fit 
to 80% of the data and tested on the remaining 20%. Within the testing data, some 
segments of the white noise movie evoked a spike and most did not. We assessed the 
ability of the fitted model to classify movie segments that evoked a spike versus those 
that did not by projecting stimulus frames onto the 10 x 10 stixels (space) x 15 frames 
(time) spatial-temporal RF. The spatial-temporal RF was derived by combining the fitted 
spatial RF with the empirical time course of the STA. To compute classification 
performance, we constructed a receiver operating characteristic (ROC) from the spike 
and non-spike distributions of projections (Green and Swets 1966). We report the 
averaged area under the ROC across the 5 folds.

Spatial opponency index

BIC

BIC

BIC = n log
RSS

n
+ k log(n)

n n RSS
k
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We defined a spatial opponency index ( ) that quantifies the degree of antagonism 
across the RF as: 

 was defined as the sum of positive values in the spatial weighting function.  was 
defined similarly but was the sum of negative values. If the sum of positive and negative 
values were matched, then  and  would be equal, and  would be equal to 1. On 
the contrary, if the RF consisted of a single subregion, then either  or  would equal 0, 
and so would the . 

SOI

SOI = 1 −
P − N
P + N

P N

P N SOI
P N

SOI
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RESULTS

We analyzed the responses of 204 V1 neurons from 4 macaque monkeys that met our 
inclusion criteria (see Methods). RFs of neurons ranged in eccentricity from 1.7° to 8.4° 
(median = 4.7°).

FIGURE 2 HERE

Cone weights

We classified neurons that met our inclusion criteria as simple cells or DO cells on the 
basis of spatial opponency and cone weights (Figure 2). Simple cells had large 
magnitude, L- and M-cone weights of the same sign that, together, accounted for 80% 
of the total cone weight (n=72). Neurons that were cone-opponent and spatially 
opponent were classified as DO cells. DO cells were further classified as LM-opponent 
(n=86) or S-cone sensitive (n=46) based on cone weight magnitudes and signs. Of the 
46 DOS-cone sensitive neurons recorded, 16 were S-(L+M), 26 were (S+M)-L, and 4 were 
(S+L)-M.

FIGURE 3 HERE

Model comparison: Gabor vs. DoG

STAs of six example neurons illustrate patterns that we observed in the data (Figure 3, 
1st row). Statistical tests performed on individual phosphor channels, which are 
independent (2nd–4th rows), reveal the color- and spatial-opponency of the four DO 
cells (C–F). Sensitivity to the three phosphors was converted to cone weights (Figure 3, 
5th row). Simple cell RFs consisted of adjacent ON and OFF regions (Figure 3A & 3B). 
Most simple cell RFs were elongated and clearly oriented (Figure 3A), but others were 
less so (Figure 3B). RFs of DO cells displayed similar features: some were clearly 
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oriented (Figures 3C & 3E) whereas others had nearly circular RF centers and diffuse 
surrounds (Figures 3D & 3F). 

To compare the spatial RF organization of simple and DO cells quantitatively, we 
converted the STAs to grayscale spatial weighting functions (see Methods; Figure 3, 
6th row) and fit them with a Gabor model (Figure 3, 7th row) and a DoG model (Figure 
3, 8th row). Goodness-of-fit was quantified with cross-validated  between the data and 
the model predictions, a measure that allows fair comparison between models with 
different numbers of parameters (the Gabor has 8 parameters; the DoG has 6 
parameters) but is biased towards zero for finite samples.
     

FIGURE 4 HERE

The Gabor model outperformed the DoG model for most of the cells tested (139/204, 
 > ). The superiority of the Gabor model was consistent within each 

subgroup of cells: simple (p<0.001; Wilcoxon signed rank test; Figure 4A), DOLM-opponent 
(p=0.07; Figure 4B) and DOS-cone sensitive (p=0.006; Figure 4C). This result shows that 
DO cells, like simple cells, have RFs that are more accurately described by Gabor 
functions than DoG functions. However, the spatial RFs of simple and DO cells were not 
identical. The difference between  and  was larger for simple cells than 

DOLM-opponent or DOS-cone sensitive cells (p<0.001 for each comparison; simple vs. DOLM-

opponent; simple vs. DOS-cone sensitive cells; Mann-Whitney U tests). The difference between 
 and  was similar for DOLM-opponent and DOS-cone sensitive cells (p=0.25; Mann-

Whitney U test). Analysis of fraction of variance unexplained by the model fits produced 
a similar result (see Evaluating goodness of model fit: Fraction of variance 
unexplained, Gabor model = 10.25 1.24%, DoG model = 15.63 0.97%).

FIGURE 5 HERE

R

RGabor RDoG

RGabor RDoG

RGabor RDoG

± ±
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We considered the possibility that systematic differences in SNR between DO cell STAs 
and simple cell STAs affected the model fits. For example, a spatial weighting function 
with low SNR would be equally well fit by a Gabor function as a DoG function even if the 
true RF organization was a DoG function. We therefore investigated the relationship 
between  and the SNR of the peak STA frame for each category of neurons (see 
Methods for the definition of SNR). As SNR increased, so did the goodness-of-fit of the 
Gabor model, which was similar across the three cell types (p=0.14, Kruskal-Wallis test; 
Figure 5A). This result shows that much of the error in the model fits is due to noise in 
the STAs, not to systematic errors in the Gabor model fits.

A different result was obtained when SNR was compared to the goodness-of-fit of the 
DoG model.  was lower for simple cells than for DO cells (Figure 5B, median for 

simple cells 0.38 vs. median for DOLM-opponent 0.44 vs. median for DOS-cone sensitive cells 
0.44, p=0.07; Kruskal-Wallis test). This difference is clearest for cells with high SNR 
(p<0.0001, Kruskal-Wallis test on  values for cells with SNRs above the median). A 

linear regression also confirmed that the relationship between (Fisher's Z-transformed) 
 and log10(SNR) differed across cell types (F-test, p < 0.0001)

FIGURE 6 HERE

To dissect the differences between simple cell and DO cell RFs more finely, we asked 
whether simple cell RFs are more frequently odd-symmetric or more elongated than 
those of DO cells. Either of these properties could degrade the quality of the DoG model 
fits relative to Gabor fits because DoG fits are constrained to be radially-symmetric. 
First, we analyzed the spatial phase of the best-fitting Gabor function, which makes the 
RF odd-symmetric, even-symmetric, or intermediate ( , see Methods). Most simple 
cells were odd-symmetric (Figure 6A; mean = 57.2°), as were most DOLM-opponent 
(Figure 6B; mean = 52.0°) and DOS-cone sensitive cells (Figure 6C; mean = 52.0°).

Secondly, we analyzed the aspect ratio, which determines how elongated an RF is ( , 
see Methods). Aspect ratios were larger for simple cells (Figure 6D; median = 1.33) 
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than for DOLM-opponent (Figure 6E; median = 1.09) or DOS-cone sensitive cells (Figure 6F; 
median = 0.93). The difference in aspect ratio was statistically significant when all cells 
were considered (p=0.05, Kruskal-Wallis test). Restricting analysis to cells that were 
better fit by a Gabor model (  > ) agreed qualitatively with the above results 

(Figure 6A–F, black histograms).

FIGURE 7 HERE

The non-concentric DoG model

Gabor and DoG models are classic descriptions of DO RFs, but a third model, a center, 
with a crescent-shaped surround, has also been proposed (Conway 2001; Conway and 
Livingstone 2006). We formalized this idea by modifying the DoG model to allow the 
center and surround Gaussians to be non-concentric (Figure 7A) (Dawis 1984).

We compared the quality of Gabor and non-concentric DoG fits for each cell. Simple cell 
RFs were better fit by the Gabor model (p<0.001; Wilcoxon signed rank test; Figure 7B) 
but DOLM-opponent cells and DOS-cone sensitive cell RFs were fit similarly by both models (p > 
0.5; Wilcoxon signed rank tests; Figure 7C and 7D). The non-concentric DoG model is 
thus a reasonable description of DO cell RFs, but a Gabor model is superior for simple 
cell RFs.

FIGURE 8 HERE

Analysis of spatial opponency 

The antagonistic subfields of simple cell RFs in our data set were more nearly balanced 

than those of the DO cells. Spatial opponency indices ( s) were greater for simple 

cells (Figure 8A; median=0.91) than for DOLM-opponent cells (Figure 8B; median=0.72) or 

DOS-cone sensitive cells (Figure 8C; median=0.78) (p<0.001, Kruskal-Wallis test). As the 
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 increased, so did the difference in goodness-of-fit of the Gabor model and the DoG 

model (r=0.39, p<0.001, Spearman’s correlation between  -  and ; 

Figure 8D). This trend was not due to an increase in SNR (r=-0.08, p=0.25, Spearman’s 

correlation between SNR and ). The difference between  and  was 

larger for simple cells than for DO cells even when analysis was restricted to the subset 
of cells with strong spatial opponency (p<0.001, Kruskal-Wallis test on  -  

values for cells with s above the median). These results suggest that the superiority 

of the Gabor fits to simple cell RFs is not simply a consequence of their greater spatial 

opponency relative to DO cells. 

FIGURE 9 HERE

Effect of eye movements

Eye movements cannot depend on which type of cell is recorded, but they could 
potentially favor one model over the other. To investigate whether this was the case in 
our data, we computed the median eye displacement from the average fixating eye 
position for each neuronal recording, and checked whether eye movements biased the 
model comparison results. The difference between  and  was not 

significantly correlated with the magnitude of the eye displacement for any of the cell 
types (r=-0.08, p=0.49, Simple cells; r=-0.03, p=0.76, DOLM-opponent cells; r=0.12, p=0.41, 
DOS-cone sensitive cells; Spearman’s correlation between  -  and median eye 

displacement; Figure 9A). Analysis of difference between  and 

 qualitatively agreed with the above result. 

We also asked whether eye movements affected the spatial opponency we measured. 
We did not find any significant relationship between the  and the magnitude of eye 
movement (r=-0.06, p=0.59, simple cells; r=-0.02, p=0.80, DOLM-opponent cells; r=-0.12, 
p=0.43, DOS-cone sensitive cells; Spearman’s correlation between  and median eye 
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displacement; Figure 9B). We conclude that our results on the spatial RFs of DO and 
simple cells are robust to eye movements.  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DISCUSSION 

We measured the spatial RFs of macaque V1 DO and simple cells under identical 
conditions and compared them with rigorous statistical techniques. We report three new 
results. First, DO RFs, like simple cell RFs, were more accurately described by a Gabor 
model than a DoG model. Second, DO cells tend to have odd-symmetric RFs, similarly 
to simple cells. Third, DO RFs are more weakly spatially opponent than simple cell RFs. 
In summary, our results show that most DO cells lack a center-surround RF 
organization, the spatial RFs of DO and simple cells are broadly similar, and a center-
crescent surround spatial structure describes DO cell RFs nearly as accurately as a 
Gabor function.

Below, we compare our results to those of previous studies and speculate on the neural 
wiring underlying simple and DO cells. We then discuss the robustness of our results to 
the statistics used to compare model fits. Finally, we discuss the potential roles of DO 
cells in image processing and how our findings have constrained these roles.

Comparison with previous studies

Different studies have reached different conclusions about the spatial RF structure of 
DO cells in monkey V1 (Conway 2001; Conway and Livingstone 2006; Hubel and 
Wiesel 1968; Johnson et al. 2004; 2008; 2001; Livingstone and Hubel 1984; Michael 
1978; Poggio 1975). Early investigations, mostly using circular spots of light, reported 
DO cells to have a concentric center-surround RF organization (Hubel and Wiesel 1968; 
Livingstone and Hubel 1984; Michael 1978; Poggio 1975). In some of these 
experiments, extremely large (>10° diameter) stimuli were tested, and these produced 
no response from DO cells. Such stimuli presumably recruit suppressive mechanisms 
from beyond the classical RF, which reconciles the lack of response to large, uniform 
stimuli with our observation that many DO RFs had imbalanced subfields. Later 
investigations using sparse noise stimuli measured 2-D RF structure and found that DO 
cell RFs have circular centers and crescent-shaped surrounds (Conway 2001; Conway 
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and Livingstone 2006). Parallel investigations using drifting and rapidly flashed 
sinusoidal gratings concluded that DO cells have Gabor-like RFs (Johnson et al. 2004; 
2008; 2001). 

The lack of consensus about DO cell RF structure may reflect biases produced by 
different stimulus sets, incomplete RF descriptions, and different definitions of double-
opponency. Sparse noise stimuli have the advantage of stimulating different parts of the 
RF independently and thus make no assumptions about the spatial structure of the RF 
(Conway 2001; Conway and Livingstone 2006). However, if every frame in a sparse 
noise stimulus consists of a pair of spots that are equal and opposite in contrast, then 
STAs, which are sums of these frames, will necessarily consist of equal parts contrast-
increment and contrast-decrement, potentially producing an appearance of spatial 
opponency where none exists (Ben Lankow and Mark Goldman, personal 
communication). 

Orientation tuning is compatible with a Gabor-like RF but does not necessarily make a 
strong case for it. In general, no 1-D measurement of spatial tuning completely 
constrains a 2-D RF profile. Knowing that a neuron is orientation-tuned is insufficient to 
simulate it in an image-computable model without making further assumptions.

Some studies included complex cells in the population of DO cells (Johnson et al. 2004; 
2008; 2001). Complex cells do not abide by the classical definition of double-opponency 
because they do not have opposite color preferences in different parts of their RFs 
(Daw 1968; Dow and Gouras 1973; Hubel and Wiesel 1968; Livingstone and Hubel 
1984; Michael 1978; 1985; Poggio 1975; Thorell et al. 1984). Some V1 neurons encode 
spatial phase and others do not. This distinction has proven to be useful in the 
achromatic domain, (e.g. for understanding the signal transformation between simple 
and complex cells) (Alonso 1998; Hubel 1962). Such a distinction is probably useful in 
the chromatic domain as well (Conway 2006).
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Consistent with previous studies, we found that simple cell RFs are better fit by the 
Gabor model than by the DoG model and are usually odd-symmetric (Ringach 2002a; 
b). A novel contribution of the current study is the extension of this result to DO cells. 
The existence of odd-symmetric, chromatic edge detectors in the primate visual system 
was predicted on the basis of psychophysical experiments (Girard 1995; McIlhagga 
2018).

FIGURE 10 HERE

Are DO cells cone-opponent simple cells?

DO and simple cell RFs differ in detail but are similar in many ways. This similarity 
motivates the hypothesis that the primary difference between these two cell types is the 
sign of input they receive (indirectly) from the three cone photoreceptor classes. Indeed, 
the models proposed to underlie simple cell RFs can also be applied to some DO cells 
with only a minor change in the wiring (Figure 10).

A hallmark of simple cells is spatial linearity, a property mediated in part by push-pull 
excitation and inhibition (D. Ferster, 1988; D. Ferster, & Miller, K. D., 2000; Hirsch, 1998; 
Tolhurst, 1990). Some DO cells exhibit push-pull responses, consistent with the 
proposed similarly between them and simple cells (Conway 2006). However, whether 
the departures from linearity observed in DO cells exceeds expectations provided by the 
benchmark of simple cells is unclear. To answer this question, a useful next step is to 
compare quantitatively the degree of spatial linearity between DO and simple cells.

Accuracy of RF structure and size

We carefully mapped V1 RFs using reverse correlation technique in awake macaque 
monkeys, similar to numerous previous studies (Conway 2001; Conway and Livingstone 
2006; Horwitz and Albright 2005; Horwitz et al. 2005; 2007; Livingstone 1998; 2003; 
1999; Pack 2006; 2003; Tsao 2003). Eye movements made by well trained monkeys 
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during fixation blur measured RF maps, but this blurring would be expected to reduce or 
eliminate spatial structure, not to create it where is does not exist. All of the neurons we 
studied had spatially structured STAs. We analyzed the effects of eye movement on 
model fits and found no evidence that eye movements favored one model over the other 
(Figure 9). The distribution of eye positions was weakly anisotropic, showing more 
variance along the vertical than the horizontal axis, but the distribution of STA 
orientations did not exhibit a similar anisotropy. Additionally, these STA orientation 
preferences matched closely those measured directly with drifting sinusoidal gratings 
(data not shown), consistent with a previous study from our group (Horwitz et al. 2007), 
and inconsistent with the idea that eye movements produced artifactual, oriented STAs.

The RFs we measured were larger on average than those reported in anesthetized 
macaques at matched eccentricities (Hubel 1974; Van Essen et al. 1984). Eye 
movements surely contribute to this discrepancy as does the low contrast of the white 
noise stimulus and the large stixels in the white noise stimulus. Neurons with very small, 
spatially opponent RFs would be unlikely to respond to the stimulus and therefore would 
not have been studied. RF sizes measured using low contrast stimuli are approximately 
2.3 times larger in area than those measured using high contrast stimuli (Sceniak et al. 
1999). The effective contrast of our stimulus is low, owing to its Gaussian distribution 
and rapid refresh rate.

Effects of cell categorization criteria

We distinguished simple cells from DO cells on the basis of cone weights. We applied a 
stricter criterion to L- and M-cone weights to categorize a cell as simple than as DOLM-

opponent—a fact that is visible from the greater spread of L- and M-cone weights for 
simple cells than DOLM-opponent cells (Figure 2). The rationale for this decision is the 
greater variability in estimated cone weights for non-opponent cells (Horwitz et al. 
2007). Nevertheless, our results are robust to this decision (Figures S1–2).

Alternative metrics for model comparison
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We compared models using cross-validated correlation between data and model fits, 
but our results are robust to this choice. We repeated the model comparisons using the 
Bayesian Information Criterion, cross-validated sum of squared errors and cross-
validated prediction of spike-triggering stimuli. The results from all of these analyses 
agreed; RFs of DO and simple cells were more accurately described by a Gabor model 
than a DoG model (Figure S3), and the non-concentric DoG model provided a 
reasonable description of DO cell RFs but not simple cell RFs (Figure S4). We 
conclude that our conclusions are robust to the metric used to compare model fits.

Role of DO cells in image processing

Our results show that some DO cells carry information about the phase and orientation 
of local chromatic variations. This information is useful for at least two visual 
computations. The first is shape-from-shading. Extraction of chromatic orientation flows 
in 2-D images is critical for accurate perception of 3-D shapes (Kingdom 2003; 
Kunsberg 2018; Zaidi 2006). In some displays, alignment of chromatic and luminance 
edges suppresses the percept of 3-D form whereas misalignment enhances the 3-D 
percept (Kingdom 2003). We speculate that signals from DO cells are integrated with 
those from simple cells to infer 3-D structure from 2-D retinal images. The similarity of 
RF structure between simple cells and DO cells may facilitate downstream integration of 
their responses. Second, DO cells might aid in inferring whether an edge in a visual 
scene is caused by the same material under different lighting conditions or by two 
different materials under the same lighting condition. An edge produced by a shadow 
falling across one half of a uniform material is a nearly pure intensity difference. On the 
contrary, an edge between two different materials under the same illumination is a 
consequence of spatially coincident intensity and spectral variations. A comparison of 
simple cell and DO cell responses could help to disambiguate material edges from 
illumination edges (Cavanagh 1991; Fine 2003; Olmos 2004; Tappen 2003).
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FIGURE LEGENDS

Figure 1. Derivation of cone weights and spatial weighting function. A. Calculation of 
the weighted STA (the weighted sum of the peak STA frame and two flanking frames)
(right) from spike triggered white noise stimuli (left). B. Singular value decomposition 
(SVD) of the weighted STA reveals cone weights and spatial weighting function. C. 
Reconstructing a low-rank approximation of the weighted STA by multiplying cone 
weights and spatial weighting function. Subtracting the weighted STA from the the low-
rank approximation yields the residual, which has little structure. D. Percent explained 
variance plotted against the three sets of singular vectors for the example cell and the 
population (mean ± SD). Cone weights and the spatial weighting function constitute the 

1st singular vectors. Percent explained variance was derived from the singular values 

using SVD over entire 10 stixels x 10 stixels of spatial weighting function (black circles) 
or omitting stixels outside of the RF (black squares).

Figure 2. Normalized cone weights of simple (black), DOLM-opponent (red), DOS-cone sensitive 
(blue) and unclassified (gray) cells. The 49 “unclassified” cells survived all of the  
inclusion criteria except for the requirement of clear cone-opponency or non-opponency. 
M-cone weights were constrained to be positive. Points closer to the origin have larger 
S-cone weights than those far from the origin.

Figure 3. Gabor and Difference of Gaussians (DoG) model fits to spatial weighting 
functions of six example cells. Each spike-triggered average (top row) has been 
decomposed into red, green, and blue channel components. Significant stixels (z-test, p 
< 0.05) have been colored on the basis of their sign (red = positive, blue = negative). 
The quality of each model fit was quantified using cross-validated . A. A simple cell 
with = 0.77 and = 0.45 B. A simple cell with = 0.67 and = 0.59 

C. A DOLM-opponent with = 0.45 and = 0.30 D. A DOLM-opponent cell with 

R
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= 0.90 and = 0.91 E. A DOS-cone sensitive cell with = 0.68 and = 0.44 F. A 

DOS-cone sensitive cell with = 0.78 and = 0.75.

Figure 4. Comparison of Gabor and DoG model fits. Cross-validated  is plotted from 
Gabor fits and from DoG fits for simple (A), DOLM-opponent (B), and DOS-cone sensitive cells 
(C). Five example STAs are shown in each panel to illustrate the diversity of RF 
structures observed and their relationship to .

Figure 5. Analyses of Gabor and DoG model fits. A. Scatterplot of cross-validated  of 
Gabor fits vs. signal-to-noise ratios (SNR) of peak STA frames for simple cells (black), 
DOLM-opponent cells (red) and DOS-cone sensitive cells (blue). B. Identical to A but plotted for 
DoG fits.

Figure 6. Analyses of Gabor model parameters for all cells (white) and cells that are 
better fit by the Gabor model than the DoG model (black). A. Best fitting phase (φ) of 
Gabor fits to simple cell spatial weighting functions. B & C Identical to A but for DOLM-

opponent cells and DOS-cone sensitive cells, respectively. D. Best fitting aspect ratio (γ) of 
Gabor fits to simple cell spatial weighting functions. The median is plotted for all simple 
cell RFs (open triangle) and also for those that were better fit by the Gabor model 
(closed triangle). E & F. Identical to D but for DOLM-opponent cells and DOS-cone sensitive cells, 
respectively.

Figure 7. Comparison of non-concentric DoG and Gabor model fits. A. Non-concentric 
DoG fits to data from the six example cells in Fig 3. = 0.54, 0.66, 

0.41, 0.90, 0.60 and 0.78 from left to right.  from Gabor fits are plotted against  from 
non-concentric DoG fits for simple (B), DOLM-opponent cells (C), and DOS-cone sensitive cells 
(D). 

Figure 8. Analysis of spatial opponency. A. Histogram of spatial opponency indices 
( s) for simple cells. The median  is plotted for all simple cell RFs (open triangle) 
and also of those that were better fit by the Gabor model (filled triangle). B & C. 
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Identical to A but for DOLM-opponent cells and DOS-cone sensitive cells, respectively. D. 

Difference in  between Gabor and DoG fits is plotted against the  for simple 
(black), DOLM-opponent (red) and DOS-cone sensitive (blue) cells. 


Figure 9. Effect of eye movements. A. Difference in  between Gabor and DoG fits is 
plotted against the median eye displacement for simple (black), DOLM-opponent (red) and 

DOS-cone sensitive (blue) cells. B. Spatial opponency index is plotted against the median 
eye displacement for simple (black), DOLM-opponent (red) and DOS-cone sensitive (blue) cells. 

Figure 10. Schematic diagram of the circuitry proposed to underlie simple cell and DO  
cell RFs. A. A simple cell RF constructed from parvocellular LGN afferents. The ON 
subregion (L+M) is excited by L-ON and M-ON LGN cells and is inhibited by L-OFF and 
M-OFF LGN cells. Similarly, the OFF subregion (-L-M) is excited by L-OFF and M-OFF 
LGN cells and is inhibited by L-ON and M-ON LGN cells. B. Construction of a DO cell 
RF using the same set of parvocellular LGN cells that provide input to a simple cell. The 
L-M subregion is excited by L-ON and M-OFF LGN cells and is inhibited by L-OFF and 
M-ON LGN cells whereas the M-L subregion is excited by L-OFF and M-ON LGN cells 
and is inhibited by L-ON and M-OFF LGN cells. 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SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Reclassification of cells with reversed cone weight criteria. Shown are the 
normalized cone weights of simple (black), DOLM-opponent (red), DOS-cone sensitive (blue) and 
unclassified (gray) cells. Under these criteria, cells were classified as simple if the L- 
and M-cone weights had the same sign, that together, accounted for 80% of the total 
cone weight and individually accounted for at least 20%. Cells were labeled as DOLM-

opponent if the L- and M-cone weights had opposite sign, together accounted for 80% and 
individually accounted for at least 10% of the total cone weight. Classification of DOS-

cone sensitive cells was unchanged from the description in the Methods.

Figure S2. Model comparisons and spatial opponency analyses after reclassification of 
cells. A. Cross-validated  is plotted from Gabor fits and from DoG fits for simple cells. 
B. Identical to A but for DOLM-opponent cells. C. Analysis of best fitting phase (φ) of Gabor 

fits to all simple RFs (white) and those that are better fit by the Gabor model than the 
DoG model (black). D. Identical to C but for DOLM-opponent RFs. E. Analyses of best fitting 

aspect ratio (γ) of Gabor fits to all simple RFs (white) and those that are better fit by the 
Gabor model than the DoG model (black). The median γ is plotted for all simple cell RFs  
(open triangle) and also for cells better fit by Gabor model (closed triangle). F. Identical 
to E but for DO RFs. G. Cross-validated  is plotted from Gabor fits and from non-
concentric DoG fits for simple cells. H. Identical to G but for DOLM-opponent cells. I. 

Histogram of spatial opponency indices ( s) for simple cells based on spatial 
weighting functions. J. Identical to I but for DOLM-opponent cells. 

Figure S3. Comparison of Gabor and DoG model fits using three different analyses. A. 
Cross-validated prediction of spike-triggered stimuli using the area under receiver 
operating characteristics (ROC AUC) is plotted from Gabor fits and from DoG fits for 
simple cells. B. Identical to A. but for DOLM-opponent cells. C. Identical to A. but for DOS-
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cone sensitive cells. D. Cross-validated sum of squared errors (SSE) is plotted from Gabor 
fits and from DoG fits for simple cells. E. Identical to D. but for DOLM-opponent cells. F. 
Identical to D. but for DOS-cone sensitive cells. G. Bayesian Information Criterion (BIC) is 
plotted from Gabor fits and from DoG fits for simple cells. A better model fit yields a 
lower BIC. H. Identical to G. but for DOLM-opponent cells. I. Identical to G. but for DOS-cone 

sensitive cells.

Figure S4. Comparison of Gabor and non-concentric DoG model fits using three 
different analyses. A. Cross-validated prediction of spike-triggered stimuli using the area 
under receiver operating characteristics (ROC AUC) is plotted from Gabor fits and from  
non-concentric DoG fits for simple cells. B. Identical to A. but for DOLM-opponent cells. C. 
Identical to A. but for DOS-cone sensitive cells. D. Cross-validated sum of squared errors 
(SSE) is plotted from Gabor fits and from non-concentric DoG fits for simple cells. E. 
Identical to D. but for DOLM-opponent cells. F. Identical to D. but for DOS-cone sensitive cells. G. 
Bayesian Information Criterion (BIC) is plotted from Gabor fits and from non-concentric 
DoG fits for simple cells. A better model fit yields a lower BIC. H. Identical to G. but for 
DOLM-opponent cells. I. Identical to G. but for DOS-cone sensitive cells. 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Figure 1. Derivation of cone weights and spatial weighting function A. Calculation of the weighted STA (the 
weighted sum of the peak STA frame and two flanking frames)(right) from spike triggered white noise stimuli 
(left). B. Singular value decomposition (SVD) of the weighted STA reveals cone weights and spatial weighting 
function. C. Reconstructing a low-rank approximation of the weighted STA by multiplying cone weights and 
spatial weighting function. Subtracting the weighted STA from the the low-rank approximation yields the 
residual, which has little structure. D. Percent explained variance plotted against the three sets of singular 
vectors for the example cell and the population (mean ± SD). Cone weights and the spatial weighting function 
constitute the 1st singular vectors. Percent explained variance was derived from the singular values using SVD 
over entire 10 stixels x 10 stixels of spatial weighting function (filled black circles) or omitting stixels outside of 
the RF (filled black squares).
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Figure 2. Normalized cone weights of simple (black), DOLM-opponent (red), DOS-cone sensitive (blue) and unclassi!ed (gray) cells. 
The 49 “unclassi!ed” cells survived all of the inclusion criteria except for the requirement of clear cone-opponency or 
non-opponency. M-cone weights were constrained to be positive. Points closer to the origin have larger S-cone 
weights than those far from the origin.
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Figure 3. Gabor and Difference of Gaussians (DoG) model fits to spatial weighting functions of six example cells. 
Each spike-triggered average (top row) has been decomposed into red, green, and blue channel components. 
Significant stixels (z-test, p < 0.05) have been colored on the basis of their sign (red = positive, blue = negative). 
The quality of each model fit was quantified using cross-validated R. A. A simple cell with RGabor= 0.77 and RDoG= 
0.45 B. A simple cell with RGabor= 0.67 and RDoG= 0.59 C. A DOLM-opponent cell with RGabor= 0.45 and RDoG= 0.30 D. A 
DOLM-opponent cell with RGabor= 0.90 and RDoG= 0.91 E. A DOS-cone sensitive cell with RGabor= 0.68 and RDoG= 0.44 F. A 
DOS-cone sensitive cell with RGabor= 0.78 and RDoG= 0.75.
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Figure 4. Comparison of Gabor and DoG model !ts. Cross-validated R is plotted from Gabor !ts and from DoG !ts for 
simple (A), DOLM-opponent (B), and DOS-cone sensitive cells (C). Five example STAs are shown in each panel to illustrate the 
diversity of RF structures observed and their relationship to R.
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Figure 5
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Figure 5. Analyses of Gabor and DoG model fits A. Scatterplot of cross-validated R of Gabor fits vs. 
signal-to-noise ratios (SNR) of peak STA frames for simple cells (black), DOLM-opponent cells (red) and DOS-cone sensitive 
cells (blue). B. Identical to A but plotted for DoG fits.
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Figure 6. Analyses of Gabor model parameters for all cells (white) and cells that are better !t by the Gabor model than 
the DoG model (black). A. Best !tting phase (φ) of Gabor !ts to simple cell spatial weighting functions. B & C Identical 
to A but for DOLM- opponent cells and DOS-cone sensitive cells, respectively. D. Best !tting aspect ratio (γ) of Gabor !ts to simple 
cell spatial weighting functions. The median is plotted for all simple cell RFs (open triangle) and also for those that were 
better !t by the Gabor model (closed triangle). E & F. Identical to D but for DOLM-opponent cells and DOS-cone sensitive cells, 
respectively.
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example cells in Fig 3. Rnon-concentric DoG = 0.54, 0.66, 0.41, 0.90, 0.60 and 0.78 from left to right. R from Gabor !ts are 
plotted against R from non-concentric DoG !ts for simple (B), DOLM-opponent cells (C), and DOS-cone sensitive cells (D). 
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Figure 8. Analysis of spatial opponency. A. Histogram of spatial opponency indices (SOI) for simple cells. The median 
SOI is plotted for all simple cell RFs (open triangle) and also of those that were better !t by the Gabor model (!lled 
triangle). B & C. Identical to A but for DOLM-opponent cells and DOS-cone sensitive cells, respectively. D. Di"erence in R between 
Gabor and DoG !ts is plotted against the SOI for simple (black), DOLM-opponent (red) and DOS-cone sensitive (blue) cells.
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Figure 9. E"ect of eye movements. A. Di"erence in R between Gabor and DoG !ts is plotted against the median eye 
amplitude for simple (black), DOLM-opponent (red) and DOS-cone sensitive (blue) cells. D. Spatial opponency index is plotted 
against the median eye displacement for simple (black), DOLM-opponent (red) and DOS-cone sensitive (blue) cells.
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Figure 10. Schematic diagram of the circuitry proposed to underlie simple cell and DO cell RFs. A. A simple cell RF 
constructed from parvocellular LGN a!erents. The ON subregion (L+M) is excited by L-ON and M-ON LGN cells and 
is inhibited by L-OFF and M-OFF LGN cells. Similarly, the OFF subregion (-L-M) is excited by L-OFF and M-OFF LGN 
cells and is inhibited by L-ON and M-ON LGN cells. B. Construction of a DO cell RF using the same set of 
parvocellular LGN cells that provide input to a simple cell. The L-M subregion is excited by L-ON and M-OFF LGN cells 
and is inhibited by L-OFF and M-ON LGN cells whereas the M-L subregion is excited by L-OFF and M-ON LGN cells 
and is inhibited by L-ON and M-OFF LGN cells.
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Figure S1
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Figure S1. Reclassification of cells with reversed cone weight criteria. Shown are the normalized cone weights 
of simple (black), DOLM-opponent (red), DOS-cone sensitive (blue) and unclassified (gray) cells. Under these criteria, cells 
were classified as simple if the L- and M-cone weights had the same sign, that together, accounted for 80% of 
the total cone weight and individually accounted for at least 20%. Cells were labeled as DOLM- opponent if the L- 
and M-cone weights had opposite sign, together accounted for 80% and individually accounted for at least 10% 
of the total cone weight. Classification of DOS- cone sensitive cells was unchanged from the description in the 
Methods. 
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Figure S2. Model comparisons and spatial opponency analyses after reclassification of cells. A. 
Cross-validated R is plotted from Gabor fits and from DoG fits for simple cells. B. Identical to A but for 
DOLM-opponent cells. C. $QDO\VHV�RI�EHVW�ILWWLQJ�SKDVH��Ѯ��RI�*DERU�ILWV�WR�DOO�VLPSOH�5)V��ZKLWH��DQG�WKRVH�WKDW�
DUH�EHWWHU�ILW�E\�WKH�*DERU�PRGHO�WKDQ�WKH�'R*�PRGHO��EODFN���D. Identical to C but for DOLM-opponent�5)V��E. 
$QDO\VLV�RI�EHVW�ILWWLQJ�DVSHFW�UDWLR��ќ��RI�*DERU�ILWV�WR�DOO�VLPSOH�5)V��ZKLWH��DQG�WKRVH�WKDW�DUH�EHWWHU�ILW�E\�
WKH�*DERU�PRGHO�WKDQ�WKH�'R*�PRGHO��EODFN���7KH�PHGLDQ�ќ�LV�SORWWHG�IRU�DOO�VLPSOH�FHOO�5)V��RSHQ�WULDQJOH��
DQG� DOVR� IRU� FHOOV� EHWWHU� ILW� E\� *DERU� PRGHO� �FORVHG� WULDQJOH��� F. Identical to E EXW� IRU� '2� 5)V�� G. 
Cross-validated R is plotted from Gabor fits and from non-concentric DoG fits for simple cells. H. Identical to 
G but for DOLM-opponent cells. I. +LVWRJUDP�RI�VSDWLDO�RSSRQHQF\�LQGLFHV��62,V��IRU�VLPSOH�FHOOV�EDVHG�RQ�VSDWLDO�
ZHLJKWLQJ�IXQFWLRQV��J. Identical to I but for DOLM-opponent cells.
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Figure S3
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Figure S3. Comparison of Gabor and DoG model fits using three different analyses. A. Cross-validated 
prediction of spike-triggered stimuli using the area under receiver operating characteristics (ROC AUC) is plotted 
from Gabor fits and from DoG fits for simple cells. B. Identical to A. but for DOLM-opponent cells C. Identical to A. but 
for DOS-cone sensitive cells. D. Cross-validated sum of squared errors (SSE) is plotted from Gabor fits and from DoG 
fits for simple cells. E. Identical to D. but for DOLM-opponent cells. F. Identical to D. but for DOS-cone sensitive cells. G. 
Bayesian Information Criterion (BIC) is plotted from Gabor fits and from DoG fits for simple cells. A better model 
fit yields a lower BIC. H. Identical to G. but for DOLM-opponent cells. I. Identical to G. but for DOS-cone sensitive cells.

p<0.001 p<0.001p=0.009

p<0.001 p<0.001 p<0.001

p<0.001 p<0.001 p<0.001

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.01.20.913111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913111


Figure S4
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Figure S4. Comparison of Gabor and non-concentric DoG model fits using three different analyses. A. 
Cross-validated prediction of spike triggered stimuli using the area under receiver operating characteristics (ROC 
AUC) is plotted from Gabor fits and from non-concentric DoG fits for simple cells. B. Identical to A. but for 
DOLM-opponent cells. C. Identical to A. but for DOS-cone sensitive cells. D. Cross-validated sum of squared errors (SSE) is 
plotted from Gabor fits and from  non-concentric DoG fits for simple cells. E. Identical to D. but for DOLM-opponent 
cells. F. Identical to D. but for DOS-cone sensitive cells. G. Bayesian Information Criterion (BIC) is plotted from Gabor fits 
and from non-concentric DoG fits for simple cells. A better model fit yields a lower BIC. H. Identical to G. but for 
DOLM-opponent cells. I. Identical to G. but for DOS-cone sensitive cells. 
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