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ABSTRACT 39 

 40 

The identification of autoantigens remains a critical challenge for understanding and treating 41 

autoimmune diseases. Autoimmune polyendocrine syndrome type 1 (APS1), a rare monogenic 42 

form of autoimmunity, presents as widespread autoimmunity with T and B cell responses to 43 

multiple organs. Importantly, autoantibody discovery in APS1 can illuminate fundamental disease 44 

pathogenesis, and many of the antigens found in APS1 extend to common autoimmune diseases. 45 

Here, we performed proteome-wide programmable phage-display (PhIP-Seq) on sera from an 46 

APS1 cohort and discovered multiple common antibody targets. These novel autoantigens exhibit 47 

tissue-restricted expression, including expression in enteroendocrine cells and dental enamel. 48 

Using detailed clinical phenotyping, we find novel associations between autoantibodies and organ-49 

restricted autoimmunity, including between anti-KHDC3L autoantibodies and premature ovarian 50 

insufficiency, and between anti-RFX6 autoantibodies and diarrheal-type intestinal dysfunction. 51 

Our study highlights the utility of PhIP-Seq for interrogating antigenic repertoires in human 52 

autoimmunity and the importance of antigen discovery for improved understanding of disease 53 

mechanisms. 54 

  55 
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INTRODUCTION 56 

Autoimmune Polyglandular syndrome type 1 (APS1) or Autoimmune Polyglandular-57 

Candidiasis-Ectodermal Dystrophy (APECED; OMIM #240300) is an autoimmune syndrome 58 

caused by monogenic mutations in the AIRE gene that result in defects in AIRE-dependent T cell 59 

education in the thymus (Aaltonen et al., 1997; Anderson, 2002; Conteduca et al., 2018; Malchow 60 

et al., 2016; Nagamine et al., 1997). As a result, people with APS1 develop autoimmunity to 61 

multiple organs, including endocrine organs, skin, gut, and lung (Ahonen et al., 1990; Ferré et al., 62 

2016; Söderbergh et al., 2004). Although the majority of APS1 autoimmune manifestations are 63 

thought to be primarily driven by autoreactive T cells, people with APS1 also possess autoreactive 64 

B cells and corresponding high-affinity autoantibody responses (DeVoss et al., 2008; Gavanescu 65 

et al., 2008; Meyer et al., 2016; Sng et al., 2019). These autoantibodies likely derive from germinal 66 

center reactions driven by self-reactive T cells, resulting in mirroring of autoantigen identities 67 

between the T and B cell compartments (Lanzavecchia, 1985; Meyer et al., 2016).  68 

Identification of the specificity of autoantibodies in autoimmune diseases is important for 69 

understanding underlying disease pathogenesis and for identifying those at risk for disease (Rosen 70 

& Casciola-Rosen, 2014). However, despite the long-known association of autoantibodies with 71 

specific diseases in both monogenic and sporadic autoimmunity, many autoantibody specificities 72 

remain undiscovered. Challenges in antigen identification include the weak affinity of some 73 

autoantibodies for their target antigen, as well as rare or low expression of the target antigen. One 74 

approach to overcome some of these challenges is to interrogate autoimmune patient samples with 75 

particularly high affinity autoantibodies. Indeed, such an approach identified GAD65 as a major 76 

autoantigen in type 1 diabetes by using sera from people with Stiff Person Syndrome (OMIM 77 

#184850), who harbor high affinity autoantibodies (Baekkeskov et al., 1990). We reasoned that 78 
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PhIP-Seq interrogation of APS1, a defined monogenic autoimmune syndrome with a broad 79 

spectrum of high affinity autoantibodies, would likely yield clinically meaningful targets – 80 

consistent with previously described APS1 autoantibody specificities that exhibit strong, clinically 81 

useful associations with their respective organ-specific diseases (Alimohammadi et al., 2008, 82 

2009; Ferré et al., 2019; Landegren et al., 2015; Popler et al., 2012; Puel et al., 2010; Shum et al., 83 

2013; Söderbergh et al., 2004; Winqvist et al., 1993).  84 

 The identification of key B cell autoantigens in APS1 has occurred most commonly 85 

through candidate-based approaches and by whole-protein microarrays. For example, lung antigen 86 

BPIFB1 autoantibodies, which are used to assess people with APS1 for risk of interstitial lung 87 

disease, were discovered first in Aire-deficient mice using a combination of targeted 88 

immunoblotting, tissue microscopy, and mass spectrometry (Shum et al., 2013, 2009). Recently, 89 

there have been rapid advances in large platform approaches for antibody screening; these 90 

platforms can overcome problems of antigen abundance by simultaneously screening the majority 91 

of proteins from the human genome in an unbiased fashion (Jeong et al., 2012; Larman et al., 2011; 92 

Sharon & Snyder, 2014; Zhu et al., 2001). In particular, a higher-throughput antibody target 93 

profiling approach utilizing a fixed protein microarray technology (ProtoArray) has enabled 94 

detection of a wider range of proteins targeted by autoantibodies directly from human serum 95 

(Fishman et al., 2017; Landegren et al., 2016; Meyer et al., 2016). Despite initial success of this 96 

technology in uncovering shared antigens across APS1 cohorts, it is likely that many shared 97 

antigens remain to be discovered, given that these arrays do not encompass the full coding potential 98 

of the proteome. 99 

 Here, we took an alternate approach to APS1 antigen discovery by employing Phage 100 

Immunoprecipitation-Sequencing (PhIP-Seq) based on an established proteome-wide tiled library 101 
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(Larman et al., 2011; O’Donovan et al., 2018). This approach possesses many potential advantages 102 

over previous candidate-based and whole-protein fixed array approaches, including (1) expanded, 103 

proteome-wide coverage (including alternative splice forms) with 49 amino acid (AA) peptide 104 

length and 24AA resolution tiling, (2) reduced volume requirement for human serum, and (3) high-105 

throughput, sequencing based output (Larman et al., 2011; O’Donovan et al., 2018). Of note, the 106 

PhIP-Seq investigation of autoimmune diseases of the central nervous system, including 107 

paraneoplastic disease, has yielded novel and specific biomarkers of disease (Larman et al., 2011; 108 

Mandel-Brehm et al., 2019; O’Donovan et al., 2018).  109 

Using a PhIP-Seq autoantibody survey, we identify a collection of novel APS1 110 

autoantigens as well as numerous known, literature-reported APS1 autoantigens. We orthogonally 111 

validate seven novel autoantigens including RFX6, KHDC3L, and ACP4, all of which exhibit 112 

tissue-restricted expression (Jeong et al., 2012; Larman et al., 2011; Sharon & Snyder, 2014; H. 113 

Zhu et al., 2001). Importantly, these novel autoantigens may carry important implications for 114 

poorly understood clinical manifestations such as intestinal dysfunction, ovarian insufficiency, and 115 

tooth enamel hypoplasia, where underlying cell-type specific antigens have remained elusive. 116 

Together, our results demonstrate the applicability of PhIP-Seq to antigen discovery, substantially 117 

expand the spectrum of known antibody targets and clinical associations in APS1, and point 118 

towards novel specificities that can be targeted in autoimmunity.  119 

  120 
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RESULTS 121 

 122 

Investigation of APS1 serum autoantibodies by PhIP-Seq 123 

Individuals with APS1 develop autoantibodies to many known protein targets, some of 124 

which exhibit tissue-restricted expression and have been shown to correlate with specific 125 

autoimmune disease manifestations. However, the target proteins for many of the APS1 tissue-126 

specific manifestations remain enigmatic. To this end, we employed a high-throughput, proteome-127 

wide programmable phage display approach (PhIP-Seq) to query the antibody target identities 128 

within serum of people with APS1 (Larman et al., 2011; O’Donovan et al., 2018). The PhIP-Seq 129 

technique leverages large scale oligo production and efficient phage packaging and expression to 130 

present a tiled-peptide representation of the proteome displayed on T7 phage. Here, we utilize a 131 

phage library that we previously designed and deployed for investigating paraneoplastic 132 

autoimmune encephalitis (Mandel-Brehm et al., 2019; O’Donovan et al., 2018). The library itself 133 

contains approximately 700,000 unique phage, each displaying a 49 amino acid proteome segment. 134 

As previously described, phage were immunoprecipitated using human antibodies bound to protein 135 

A/G beads. In order to increase sensitivity and specificity for target proteins, eluted phage were 136 

used for a further round of amplification and immunoprecipitation. DNA was then extracted from 137 

the final phage elution, amplified and barcoded, and subjected to Next-Generation Sequencing 138 

(Figure 1A). Finally, sequencing counts were normalized across samples to correct for variability 139 

in sequencing depth, and the fold-change of each gene was calculated (comprised of multiple 140 

unique tiling phage) as compared to mock IPs in the absence of human serum (further details of 141 

the protocol can be found in the methods section). 142 
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From a cohort of 67 APS1 serum samples, a total of 39 samples were subjected to PhIP-143 

Seq investigation, while the remaining 28 samples were obtained at a later time point and reserved 144 

for downstream validation experiments (for clinical data, refer to Supplemental Table 1). In 145 

addition, 28 non-APS1 anonymous blood donor serum samples were subjected to PhIP-Seq, and 146 

an additional group of 61 non-APS1 plasma samples were used for downstream validation 147 

experiments. 148 

 149 

Detection of literature-reported APS1 autoantigens 150 

PhIP-Seq results were first cross-referenced with previously reported APS1 autoantibody 151 

targets (Alimohammadi et al., 2008, 2009; Clemente et al., 1997; Fishman et al., 2017; Hedstrand 152 

et al., 2001; Husebye et al., 1997; Kluger et al., 2015; Kuroda et al., 2005; Landegren et al., 2016, 153 

2015; Leonard et al., 2017; Meager et al., 2006; Meyer et al., 2016; Oftedal et al., 2015; Pöntynen 154 

et al., 2006; Sansom et al., 2014; Shum et al., 2013, 2009; Söderbergh et al., 2004). To avoid false 155 

positives, a conservative set of criteria were used as follows. We required a minimum of 2/39 156 

APS1 samples and 0/28 non-APS1 control samples to exhibit normalized gene counts in the 157 

immunoprecipitation (IP) with greater than 10-fold enrichment as compared to the control set of 158 

18 mock-IP (beads, no serum) samples. This simple, yet stringent criteria enabled detection of a 159 

total of 23 known autoantibody specificities (Figure 1B). Importantly, many of the well-validated 160 

APS1 antigens, including specific members of the cytochrome P450 family (CYP1A2, CYP21A1, 161 

CYP11A1, CYP17A1), lung disease-associated antigen KCRNG, as well as IL17A, IL17F, and 162 

IL22, among others were well represented (Figure 1B). In contrast, the diabetes-associated 163 

antigens GAD65 and INS did not meet these stringent detection criteria and only weak signal was 164 

detected to many of the known interferon autoantibody targets known to be present in many people 165 
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with APS1, perhaps due to the conformational nature of these autoantigens (Figure 1B & Figure 166 

1: Figure Supplement 1) (Björk et al., 1994; Meager et al., 2006; Meyer et al., 2016; Wolff et al., 167 

2013; Ziegler et al., 1996).  168 

Three known autoantigens that were prevalent within our cohort were selected to determine 169 

how PhIP-Seq performed against an orthogonal whole protein-based antibody detection assay. A 170 

radioligand binding assay (RLBA) was performed by immunoprecipitating in vitro transcribed and 171 

translated S35-labeled proteins CYP11A1, SOX10, and NLRP5 with APS1 serum 172 

(Alimohammadi et al., 2008; Berson et al., 1956; Hedstrand et al., 2001; Winqvist et al., 1993). 173 

Importantly, and in contrast to PhIP-Seq, this assay tests for antibody binding to full-length protein 174 

(Figure 1C). By RLBA, these three antigens were present in and specific to both the initial 175 

discovery APS1 cohort (n=39) as well as the expanded validation cohort (n = 28), but not the non-176 

APS1 control cohort (n = 61). Together, these results demonstrate that PhIP-Seq detects known 177 

APS1 autoantigens and that PhIP-Seq results validate well in orthogonal whole protein-based 178 

assays.  179 

To determine whether the PhIP-Seq APS1 dataset could yield higher resolution information 180 

on antigenic peptide sequences with respect to previously reported targets, the normalized 181 

enrichments of all peptides belonging to known disease-associated antigens CYP11A1 and SOX10 182 

were mapped across the full length of their respective proteins (Figure 1: Figure Supplement 2). 183 

The antigenic regions within these proteins were observed to be similar across all samples positive 184 

for anti-CYP11A1 and anti-SOX10 antibodies, respectively (Figure 1: Figure Supplement 2) 185 

suggesting peptide-level commonalities and convergence among the autoreactive antibody 186 

repertoires across individuals. These data suggest that people with APS1 often target similar, but 187 

not identical protein regions.  188 
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 189 

Identification of novel APS1 autoantigens 190 

Having confirmed that PhIP-Seq analysis of APS1 sera detected known antigens, the same 191 

data were then investigated for the presence of novel, previously uncharacterized APS1 192 

autoantigens. We applied the same positive hit criteria as described for known antigens, and 193 

additionally increased the required number of positive APS1 samples to 3/39 to impose a stricter 194 

limit on the number of novel candidate autoantigens. This yielded a list of 82 genes, which included 195 

10 known antigens and 72 putative novel antigens (Figure 2).  196 

The most commonly held hypotheses regarding the nature and identity of proteins targeted 197 

by the aberrant immune response in APS1 are that targeted proteins (1) tend to exhibit AIRE-198 

dependent thymic expression and (2) have restricted expression to one or few peripheral organs 199 

and tend not to be widely or ubiquitously expressed. We investigated whether our novel antigens 200 

were also preferentially tissue-restricted. In order to systematically address this question, tissue-201 

specific RNA expression was assessed using a consensus expression dataset across 74 cell types 202 

and tissues (Uhlen et al., 2015). For each gene, the ratio of expression in the highest tissue as 203 

compared to the sum of expression across all tissues was calculated, resulting in higher ratios for 204 

those mRNAs with greater degrees of tissue-restriction. Using this approach, the mean tissue-205 

specificity ratio of the 82 PhIP-Seq positive antigens was increased by approximately 1.5-fold 206 

(p=0.0017) as compared to the means from iterative sampling of 82 genes (Figure 2: Figure 207 

Supplement 1). 208 

 209 

Identification of novel antigens common to many individuals 210 
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Identified autoantigens were ranked by frequency within the cohort. Five antigens were 211 

positive in ten or more APS1 samples, including two novel antigens. In addition, the majority of 212 

antigens found in 4 or more APS1 sera were novel (Figure 3A). Five of the most frequent novel 213 

antigens were selected for subsequent validation and follow-up. These included RFX6, a 214 

transcription factor implicated in pancreatic and intestinal pathology (Patel et al., 2017; S. B. Smith 215 

et al., 2010); ACP4, an enzyme implicated in dental enamel hypoplasia (Choi et al., 2016; Seymen 216 

et al., 2016; C. E. Smith et al., 2017); KHDC3L, a protein with oocyte-restricted expression (Li et 217 

al., 2008; Zhang et al., 2018; K. Zhu et al., 2015); NKX6-3, a gastrointestinal transcription factor 218 

(Alanentalo et al., 2006); and GIP, a gastrointestinal peptide involved in intestinal motility and 219 

energy homeostasis (Adriaenssens et al., 2019; Moody et al., 1984; Pederson & McIntosh, 2016). 220 

Several less frequent (but still shared) novel antigens were also chosen for validation, including 221 

ASMT, a pineal gland enzyme involved in melatonin synthesis (Ackermann et al., 2006; Rath et 222 

al., 2016); and PDX1, an intestinal and pancreatic transcription factor (Holland et al., 2002; 223 

Stoffers et al., 1997) (Figure 3A). Of note, this group of seven novel antigens all exhibited either 224 

tissue enriched, tissue enhanced, or group enhanced expression according to the Human Protein 225 

Atlas database (Uhlen et al., 2015) (Supplemental Table 2). Using a whole-protein radiolabeled 226 

binding assay (RLBA) for validation, all seven proteins were immunoprecipitated by antibodies in 227 

both the PhIP-Seq APS1 discovery cohort (n=39), as well as in the validation cohort of APS1 sera 228 

that had not been interrogated by PhIP-Seq (n=28). Whereas an expanded set of non-APS1 controls 229 

(n=61) produced little to no immunoprecipitation signal by RLBA as compared to positive control 230 

antibodies (low antibody index), APS1 samples yielded significant immunoprecipitation signal 231 

enrichment for each whole protein assay (high antibody index) (Figure 3B & Supplemental 232 

Table 3).  233 
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The comparison of PhIP-Seq data to the results from the RLBAs (n=39, discovery cohort 234 

only) yielded positive correlations between the two datasets (r = 0.62-0.95; Figure 3: Figure 235 

Supplement 1). Notably, for some antigens, such as NLRP5, and particularly for ASMT, the 236 

RLBA results revealed additional autoantibody-positive samples not detected by PhIP-Seq 237 

(Figure 3B & Figure 3: Figure Supplement 1 & Figure 1: Figure Supplement 2). 238 

 239 

Autoantibody-disease associations for both known and novel antigens 240 

Because the individuals in this APS1 cohort have been extensively phenotyped for 24 241 

clinical manifestations, the PhIP-Seq APS1 data was queried for phenotypic associations. Several 242 

autoantibody specificities, both known and novel, were found to possess highly significant 243 

associations with several clinical phenotypes (Figure 4 & Figure 4: Figure Supplement 1). 244 

Among these were the associations of KHDC3L with ovarian insufficiency, RFX6 with diarrheal-245 

type intestinal dysfunction, CYP11A1 (also known as cholesterol side chain cleavage enzyme) 246 

with adrenal insufficiency (AI), and SOX10 with vitiligo (Figure 4). Strikingly, anti-CYP11A1 247 

antibodies are present in AI and are known to predict disease development (Betterle et al., 2002; 248 

Obermayer-Straub et al., 2000; Winqvist et al., 1993). Similarly, antibodies to SOX10, a 249 

transcription factor involved in melanocyte differentiation and maintenance, have been previously 250 

shown to correlate with the presence of autoimmune vitiligo (Hedstrand et al., 2001).   251 

 252 

Anti-KHDC3L antibodies in APS1-associated ovarian insufficiency  253 

Primary ovarian insufficiency is a highly penetrant phenotype, with an estimated 60% of 254 

females with APS1 progressing to an early, menopause-like state (Ahonen et al., 1990; Ferré et 255 

al., 2016). Interestingly, a set of 5 proteins (KHDC3L, SRSF8, PNO1, RASIP1, and MORC2) 256 
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exhibited a significant association with ovarian insufficiency in this cohort (Figure 4). A publicly 257 

available RNA-sequencing dataset from human oocytes and supporting granulosa cells of the 258 

ovary confirmed that of these 5 genes, only KHDC3L exhibited expression levels in female oocytes 259 

comparable to the expression levels seen for the known oocyte markers NLRP5 and DDX4 (Zhang 260 

et al., 2018) (Figure 4: Figure Supplement 2). We therefore chose to further investigate the 261 

relationship between anti-KHDC3L antibodies and ovarian insufficiency in our cohort (Figure 5).  262 

KHDC3L is a well-studied molecular binding partner of NLRP5 within the ovary (Li et al., 263 

2008; K. Zhu et al., 2015). Together, NLRP5 and KHDC3L form part of a critical oocyte-specific 264 

molecular complex, termed the subcortical maternal complex (SCMC) (Bebbere et al., 2016; 265 

Brozzetti et al., 2015; Li et al., 2008; Liu et al., 2016; K. Zhu et al., 2015). Furthermore, knockout 266 

of the NLRP5 and KHDC3L in female mice results in fertility defects, and human genetic mutations 267 

in these genes of the SCMC have been linked to infertility and molar pregnancies (Li et al., 2008; 268 

Y. Zhang et al., 2018; K. Zhu et al., 2015). Interestingly, previous work established NLRP5 as a 269 

parathyroid-specific antigen in APS1, with potential for additional correlation with ovarian 270 

insufficiency (Alimohammadi et al., 2008). However, anti-NLRP5 antibodies lack sensitivity for 271 

ovarian insufficiency. Importantly, unlike NLRP5, KHDC3L is expressed primarily in the ovary, 272 

and thus potentially represents a more oocyte-specific autoantigen (Liu et al., 2016; Virant-Klun 273 

et al., 2016; Y. Zhang et al., 2018). Using the dataset from Zhang et. al, we confirmed that 274 

KHDC3L, as well as NLRP5 and the known oocyte marker DDX4, are highly expressed within 275 

the oocyte population, but not in the supporting granulosa cell types (Y. Zhang et al., 2018) (Figure 276 

5A). Interestingly, the majority (64%) of APS1 sera had a concordant status for antibodies to 277 

KHDC3L and NLRP5 (Figure 5B). Although previous reports did not find a strong gender 278 

prevalence within samples positive for anti-NLRP5 antibodies, the mean anti-NLRP5 and anti-279 
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KHDC3L antibody signals were increased in females in this cohort (by 1.6- and 2.1-fold, 280 

respectively; Figure 5C). Finally, all 10 females in the expanded APS1 cohort with diagnosed 281 

ovarian insufficiency were also positive for anti-KHDC3L antibodies (Figure 5D).  282 

 283 

High prevalence of anti-ACP4 antibodies 284 

 Similar to known antigens CYP11A1, SOX10, and LCN1, the novel antigen ACP4 was 285 

found to occur at high frequencies in this cohort (Figure 3A). ACP4 (acid phosphatase 4) is highly 286 

expressed in dental enamel, and familial mutations in the ACP4 gene result in dental enamel 287 

hypoplasia similar to the enamel hypoplasia seen in ~90% of this APS1 cohort (Seymen et al., 288 

2016; C. E. Smith et al., 2017). Strikingly, 50% of samples were positive for anti-ACP4 antibodies 289 

by RLBA, with excellent correlation between RLBA and PhIP-Seq data (Figure 3B & Figure 3: 290 

Figure Supplement 1A). Consistently, samples from individuals with enamel hypoplasia 291 

exhibited a trend towards higher anti-ACP4 antibody signal by RLBA (Figure 3: Figure 292 

Supplement 1B, p = 0.064). 293 

  294 

High prevalence of anti-RFX6 antibodies 295 

In this cohort, 82% (55/67) of APS1 sera exhibited an RFX6 signal that was at least 3 296 

standard deviations above the mean of non-APS1 control signal due to the extremely low RFX6 297 

signal across all non-APS1 controls by RLBA (Figure 3B). Using a more stringent cutoff for 298 

RFX6 positivity by RLBA at 6 standard deviations above the mean, 65% of APS1 samples were 299 

positive for anti-RFX6 antibodies. RFX6 is expressed in both intestine and pancreas, and loss of 300 

function RFX6 variants in humans lead to both intestinal and pancreatic pathology (Gehart et al., 301 

2019; Patel et al., 2017; Piccand et al., 2019; S. B. Smith et al., 2010). Interestingly, across all 302 
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samples with anti-RFX6 antibodies, the response targeted multiple sites within the protein, 303 

suggesting a polyclonal antibody response (Figure 6: Figure Supplement 1A).  304 

 305 

Anti-enteroendocrine and anti-RFX6 response in APS1 306 

The extent and frequency of intestinal dysfunction in people with APS1 has only recently 307 

been clinically uncovered and reported, and therefore still lacks unifying diagnostic markers as 308 

well as specific intestinal target antigen identities (Ferré et al., 2016). This investigation of APS1 309 

sera revealed several antigens that are expressed in the intestine, including RFX6, GIP, PDX1, and 310 

NKX6-3. We chose to further study whether autoimmune response to RFX6+ cells in the intestine 311 

was involved in APS1-associated intestinal dysfunction. Using a publicly available murine single-312 

cell RNA sequencing dataset of 16 different organs and over 120 different cell types, RFX6 313 

expression was confirmed to be present in and restricted to pancreatic islets and intestinal 314 

enteroendocrine cells (Schaum et al., 2018) (Figure 6: Figure Supplement 1B & 1C). Serum 315 

from an individual with APS1-associated intestinal dysfunction and anti-RFX6 antibodies was 316 

next tested for reactivity against human intestinal enteroendocrine cells, revealing strong nuclear 317 

staining that colocalized with ChromograninA (ChgA), a well-characterized marker of intestinal 318 

enteroendocrine cells (Goldspink et al., 2018; O’Connor et al., 1983) (Figure 6A, right panel and 319 

inset). In contrast, enteroendocrine cell staining was not observed from APS1 samples that lacked 320 

anti-RFX6 antibodies or from non-APS1 control samples. (Figure 6A, center & left panels). 321 

Furthermore, serum from samples with anti-RFX6 antibodies stained transfected tissue culture 322 

cells expressing RFX6 (Figure 6B, Figure 6: Figure Supplement 2). These data support the 323 

notion that there exists a specific antibody signature, typified by anti-RFX6 antibodies, associated 324 

with enteroendocrine cells in APS1. 325 
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Both mice and humans with biallelic mutation of the gene encoding RFX6 have 326 

enteroendocrine cell deficiency and intestinal malabsorption (Mitchell et al., 2004; Piccand et al., 327 

2019; S. B. Smith et al., 2010), and humans with other forms of genetic or acquired 328 

enteroendocrine cell deficiency also suffer from chronic malabsorptive diarrhea (Akoury et al., 329 

2015; Li et al., 2008; Reddy et al., 2012; X. Wang et al., 2018; W. Zhang et al., 2019). In this 330 

cohort, 54/67 (81%) of individuals have intestinal dysfunction defined as the presence of chronic 331 

diarrhea, chronic constipation or an alternating pattern of both, without meeting ROME III 332 

diagnostic criteria for irritable bowel syndrome, as previously described (Ferré et al., 2016). When 333 

the cohort was subsetted by presence or absence of intestinal dysfunction, the anti-RFX6 RLBA 334 

signal was significantly higher when intestinal dysfunction was present (Figure 6C). Further 335 

subsetting of the cohort by subtype of intestinal dysfunction revealed that individuals with anti-336 

RFX6 antibodies belonged preferentially to the diarrheal-type (as opposed to constipation-type) 337 

group of intestinal dysfunction (Figure 6D & Figure 6: Figure Supplement 3A). Given that 338 

RFX6 is also expressed in the pancreas, we also examined the association of anti-RFX6 antibodies 339 

with APS1-associated type 1 diabetes. We observed that 6/7 APS1-associated type 1 diabetes 340 

samples had positive signal for anti-RFX6 antibodies by RLBA (Figure 6: Figure Supplement 341 

3B). However, due to small sample size, an expanded cohort would be needed to determine the 342 

significance of this observation. Together, these data suggest that RFX6 is a common, shared 343 

autoantigen in APS1 that may be involved in the immune response to intestinal enteroendocrine 344 

cells as well as pancreatic islets. Future studies will help to determine whether testing for anti-345 

RFX6 antibodies possesses clinical utility for prediction or diagnosis of specific APS1 346 

autoimmune disease manifestations as well as for non-APS1 autoimmune disease.  347 

  348 
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DISCUSSION 349 

 350 

Here, we have identified a new set of autoantigens that are associated with autoimmune 351 

features in APS1 by using the broad-based antigen screening platform of PhIP-Seq.  Unlike fixed 352 

protein arrays, programmable phage display possesses the advantage of being able to 353 

comprehensively cover all annotated proteins and their isoforms. The PhIP-Seq library used here 354 

is composed of over 700,000 peptides, each 49 amino acids, and corresponding to approximately 355 

20,000 proteins and their known splicing isoforms. This is highly complementary to recently 356 

published protein arrays that cover approximately 9,000 distinct proteins (Fishman et al., 2017; 357 

Landegren et al., 2016; Meyer et al., 2016).  Recent protein array approaches with APS1 samples 358 

using strict cutoffs have been able to identify a number of new autoantigen targets that include 359 

PDILT and MAGEB2 (Landegren et al., 2016). Several new targets, including RFX6, KHDC3L, 360 

ACP4, NKX6-3, ASMT, and PDX1, were likely discovered here because these antigens were not 361 

present on previously published protein array platforms. Only a subset of the novel targets 362 

identified here were validated orthogonally. While none failed validation relative to non-APS1 363 

controls, further validation work will be needed for the many additional novel targets identified by 364 

PhIP-Seq. It is also worth mentioning that the PhIP-Seq method leverages continuing declines in 365 

the cost of oligonucleotide synthesis and Next-Generation Sequencing. Both technologies benefit 366 

from economies of scale, and once constructed, a PhIP-Seq phage library may be propagated in 367 

large quantities at negligible cost. The primary disadvantage of PhIP-Seq is the fact that 368 

conformation specific antibodies are likely to be missed, unless short linear subsequences carry 369 

significant binding energy. For example, PhIP-Seq detected only limited signal towards some 370 

literature reported antigens, including GAD65 and interferon family proteins in this APS1 cohort. 371 
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Given that these antigens have been reported to involve conformational epitopes, antibodies to 372 

these antigens would not be predicted to be easily detected by linear peptides (Björk et al., 1994; 373 

Meager et al., 2006; Meyer et al., 2016; Wolff et al., 2013; Ziegler et al., 1996). Nonetheless, the 374 

ability to detect anti-interferon antibodies in a subset of APS1 samples highlights the utility of 375 

PhIP-Seq for antigen discovery despite decreased sensitivity for certain epitopes (Figure 1: Figure 376 

Supplement 1).  377 

People with (Anderson, 2002; Cheng & Anderson, 2018; Husebye et al., 2018; Malchow 378 

et al., 2016)APS1 develop autoimmune manifestations over the course of many years, and it is 379 

thought that each manifestation may be explained by autoimmune response to one or few initial 380 

protein targets. In principle, these target proteins would most likely (1) exhibit thymic AIRE-381 

dependency and (2) be restricted to the single or narrow range of tissues associated with the 382 

corresponding autoimmune disease. For example, adrenal insufficiency, which results from 383 

autoimmune response to cells of the adrenal gland, is thought to occur due to targeting of adrenally-384 

expressed cytochrome p450 family members (Obermayer-Straub et al., 2000; Winqvist et al., 385 

1993). However, a more complete understanding of the protein target spectrum paired with clinical 386 

phenotypic associations has been lacking. This, combined with the limited applicability of murine 387 

observations to the human disease, has left the question of which clinical characteristics best 388 

associate with APS1 autoantigens a heavily debated subject (Pöntynen et al., 2006).   389 

Testing for defined autoantibody specificities provides substantial clinical benefit for 390 

prediction and diagnosis of autoimmune disease. A primary goal of this study was to identify 391 

autoantigens with potential clinical significance; consistently, our analyses focused primarily on 392 

antigens that appeared across multiple samples, rather than autoantigens that were restricted to 393 

individual samples. Using conservative inclusion criteria, we discovered 72 novel autoantigens 394 
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that were shared across a minimum of 3 APS1 samples, of which 7/7 were successfully validated 395 

at the whole protein level. Overall, we have expanded the known repertoire of common APS1 396 

antigens, confirming that the antibody target repertoire of common antigens in APS1 is larger than 397 

previously appreciated. Interestingly, our data also suggest that the size of the commonly 398 

autoantibody-targeted repertoire of proteins is dramatically lower than the number of genes 399 

(~4000) that exhibit AIRE-dependent thymic expression.   400 

The spectrum of different autoimmune diseases that can be observed in APS1 is extensive 401 

and has continued to expand through investigation of larger cohorts (Ahonen et al., 1990; Bruserud 402 

et al., 2016; Ferré et al., 2016). In this study, clinical metadata encompassing disease status across 403 

24 individual disease manifestations in a total of 67 people with APS1 was leveraged to uncover 404 

(among others) an association of anti-KHDC3L antibodies and ovarian insufficiency, a disease 405 

that affects over half of all women with APS1 and manifests as abnormal menstrual cycling, 406 

reduced fertility, and early menopause. While autoreactivity to the steroidogenic granulosa cells – 407 

the cells surrounding and supporting the oocytes – has been proposed as one etiology of the clinical 408 

ovarian insufficiency, it has also been suggested that there may exist an autoimmune response to 409 

the oocyte itself (Jasti et al., 2012; Maclaren et al., 2001; Obermayer-Straub et al., 2000; Otsuka 410 

et al., 2011; Welt, 2008). Our finding that females with APS1-associated ovarian insufficiency 411 

exhibit autoantibodies to KHDC3L, an oocyte specific protein, supports this hypothesis. As 412 

exemplified by autoantibody presence in other autoimmune conditions, anti-KHDC3L antibodies 413 

may also have predictive value. Specifically, in our cohort, we found anti-KHDC3L antibodies to 414 

be present in many young, pre-menstrual females; these observations will require additional 415 

studies in prospective, longitudinal cohorts for further evaluation of potential predictive value. 416 

Interestingly, primary ovarian insufficiency (POI) in the absence of AIRE-deficiency is 417 
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increasingly common and affects an estimated 1 in 100 women; up to half of these cases have been 418 

proposed to have autoimmune etiology (Huhtaniemi et al., 2018; Jasti et al., 2012; Nelson, 2009; 419 

Silva et al., 2014). 420 

We noted that the majority of samples with antibodies to KHDC3L also exhibited 421 

antibodies to NLRP5, and vice versa. Remarkably, both of these proteins are critical parts of a 422 

subcortical maternal complex (SCMC) in both human and murine oocytes (Li et al., 2008; K. Zhu 423 

et al., 2015). Indeed, “multi-pronged” targeting of the same pathway has been previously 424 

implicated in APS1, where antibodies to DDC and TPH1 – enzymes in the serotonin and melatonin 425 

synthesis pathways – have been described (Ekwall et al., 1998; Husebye et al., 1997; Kluger et al., 426 

2015). In addition to these targets, our data revealed an additional autoantibody-targeted enzyme 427 

ASMT in the same melatonin synthesis pathway. While the earlier TPH1- and DDC-catalyzed 428 

steps occur in both the intestine and pineal gland and precede the formation of serotonin, ASMT 429 

is predominantly expressed in the pineal gland and catalyzes the last, post-serotonin step in 430 

melatonin synthesis, suggesting that targeting of this pathway occurs at multiple distinct steps. To 431 

our knowledge, this is the first reported autoantigen in APS1 whose expression is restricted to the 432 

central nervous system.  433 

In past and ongoing investigations, some individuals with APS1 have been reported to 434 

feature histologic loss of intestinal enteroendocrine cells on biopsy (Högenauer et al., 2001; Oliva-435 

Hemker et al., 2006; Posovszky et al., 2012, Natarajan et al., manuscript in preparation). The 436 

association of anti-RFX6 antibodies with the diarrheal type of intestinal dysfunction is consistent 437 

with published studies in murine models of Rfx6 (and enteroendocrine cell) ablation (Piccand et 438 

al., 2019; S. B. Smith et al., 2010). In addition, human enteroendocrine cell deficiency as well as 439 

mutations in enteroendocrine gene NEUROG3 have been linked to chronic diarrhea and 440 
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malabsorption, and recently, intestinal enteroendocrine cells have been suggested to play a role in 441 

mediating intestinal immune tolerance (Ohsie et al., 2009; Sifuentes-Dominguez et al., 2019; J. 442 

Wang et al., 2006). In sum, although APS1-associated intestinal dysfunction may have multiple 443 

etiologies, including autoimmune enteritis or dysfunction of exocrine pancreas, our findings of 444 

highly prevalent anti-RFX6 antibodies provide evidence of a common, shared autoantigen 445 

involved with this disease phenotype. In addition, patients with type 1 diabetes alone (not in 446 

association with APS1) frequently exhibit intestinal dysfunction related to multiple etiologies 447 

including Celiac disease, autonomic neuropathy, and exocrine pancreatic insufficiency (Du et al., 448 

2018); future studies will be needed to determine whether anti-RFX6 antibodies may distinguish 449 

a subset of these patients with an autoimmune enteroendocrinopathy contributing to their 450 

symptoms. 451 

While we report many novel antigens, we also acknowledge that the relationship between 452 

autoantibody status and disease is often complicated. This concept can be illustrated by examining 453 

the well-established autoantibody specificities in autoimmune diabetes (Taplin & Barker, 2009). 454 

First, islet autoantibodies (GAD65, ZNT8, etc.) can be found within non-autoimmune sera, where 455 

they are thought to represent an increased risk of developing disease as compared to the antibody-456 

negative population. Second, not all patients with autoimmune diabetes are autoantibody positive. 457 

In sum, while autoantibodies can be extremely useful for risk assessment as well as for diagnosis, 458 

they often lack high sensitivity and specificity; both of these caveats can result in difficulties 459 

detecting strong clinical associations. For example, anti-ACP4 antibodies are highly prevalent in 460 

our cohort, but they exhibit only a trending association with dental enamel hypoplasia despite the 461 

strong biological evidence that ACP4 dysfunction leads to enamel hypoplasia (Seymen et al., 2016; 462 

C. E. Smith et al., 2017). Our data in humans is currently insufficient to determine whether immune 463 
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responses to novel antigens such as ACP4 are pathogenic, indirectly linked to risk of disease, or 464 

instead simply represent a B-cell bystander effect. To better address these questions, we propose 465 

that future studies in mouse models could elucidate whether immune response to specific proteins, 466 

including ACP4, can result in the proposed phenotypes.  467 

As the spectrum of diseases with potential autoimmune etiology continues to expand, the 468 

characteristic multiorgan autoimmunity in APS1 provides an ideal model system to more broadly 469 

approach the question of which proteins and cell types tend to be aberrantly targeted by the immune 470 

system. The data presented here has illuminated a collection of novel human APS1 autoimmune 471 

targets, as well as a novel antibody-disease association between RFX6 and diarrheal-type intestinal 472 

dysfunction, a highly prevalent disorder in APS1 that has until now lacked clinically applicable 473 

predictive or diagnostic markers. In sum, this data has significantly expanded the known 474 

autoantigen target profile in APS1 and highlighted several new directions for exploring the 475 

mechanics and clinical consequences of this complex syndrome.     476 
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MATERIALS AND METHODS 477 

 478 

Data collection 479 

All patient cohort data was collected and evaluated at the NIH, and all APECED/APS1 patients 480 

were enrolled in a research study protocols approved by the NIAID, NIH Clinical Center, and NCI 481 

Institutional Review Board Committee and provided with written informed consent for study 482 

participation. All NIH patients gave consent for passive use of their medical record for research 483 

purposes (protocol #11-I-0187). The majority of this cohort data was previously published by Ferré 484 

et al. 2016 and Ferré et al. 2019. 485 

 486 

Phage Immunoprecipitation – Sequencing (PhIP-Seq) 487 

For PhIP-Seq, we adapted a custom-designed phage library consisting of 731,724 49AA 488 

peptides tiling the full protein-coding human genome including all isoforms (as of 2016) with 489 

25AA overlap as previously described (O’Donovan et al., 2018). 1 milliliter of phage library was 490 

incubated with 1 microliter of human serum overnight at 4C, and human antibody (bound to phage) 491 

was immunoprecipitated using 40ul of a 1:1 mix of protein A/G magnetic beads (Thermo Fisher, 492 

Waltham, MA, #10008D & #10009D). Beads were washed 4 times and antibody-bound phage 493 

were eluted into 1ml of E. Coli at OD of 0.5-0.7 (BLT5403, EMD Millipore, Burlington, MA) for 494 

selective amplification of eluted phage. This library was re-incubated with human serum and 495 

repeated, followed by phenol-chloroform extraction of DNA from the final phage library. DNA 496 

was barcoded and amplified (Phusion PCR, 30 rounds), gel purified, and subjected to Next-497 

Generation Sequencing on an Illumina MiSeq Instrument (Illumina, San Diego, CA). 498 

 499 
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 500 

PhIP-Seq Analysis 501 

Sequencing reads from fastq files were aligned to the reference oligonucleotide library and peptide 502 

counts were subsequently normalized by converting raw reads to percentage of total reads per 503 

sample. Peptide and gene-level enrichments for both APS1 and non-APS1 sera were calculated by 504 

determining the fold-change of read percentage per peptide and gene in each sample over the mean 505 

read percentage per peptide and gene in a background of mock-IP (A/G bead only, n = 18). 506 

Individual samples were considered positive for genes where the enrichment value was 10-fold or 507 

greater as compared to mock-IP. For plotting of multiple genes in parallel (Figures 1 & 2), 508 

enrichment values were z-scored and hierarchically clustered using Pearson correlation.  509 

 510 

Statistics 511 

For comparison of distribution of PhIP-Seq gene enrichment between APS1 patients with and 512 

without specific disease manifestations, a (non-parametric) Kolmogorov-Smirnov test was used.  513 

For radioligand binding assays, antibody index for each sample was calculated as follows: (sample 514 

value – mean blank value) / (positive control antibody value – mean blank value). Comparison of 515 

antibody index values between non-APS1 control samples and APS1 samples was performed using 516 

a Mann-Whitney U test. Experimental samples that fell 3 standard deviations above of the mean 517 

of non-APS1 controls for each assay were considered positive, except in the case of RFX6, where 518 

a cutoff of 6 standard deviations above the mean of non-APS1 controls was used.   519 

 520 

Assessing tissue-specific RNA expression 521 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.20.913186doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913186


Vazquez et al. 25 

To determine tissue-specificity and tissue-restriction of Rfx6 expression in mice, we used publicly 522 

available Tabula Muris data (tabula-muris.ds.czbiohub.org) (Schaum et al., 2018). For 523 

investigation of KHDC3L expression in human ovary, we downloaded publicly available 524 

normalized FPKM transcriptome data from human oocytes and granulosa cells 525 

(GSE107746_Folliculogenesis_FPKM.log2.txt) (Y. Zhang et al., 2018). With this data, we 526 

performed principle component analysis, which clustered the two cell types correctly according to 527 

their corresponding sample label, and plotted log2(FPKM) by color for each sample.  528 

 529 

293T overexpression assays 530 

Human kidney embryo 293T (ATCC, Manassas, VA, #CRL-3216) cells were plated at 30% 531 

density in a standard 24-well glass bottom plate in complete DMEM media (Thermo Fisher, 532 

#119651198) with 10% Fetal Bovine Serum (Thermo Fisher, #10438026), 292ug/ml L-glutamine, 533 

100ug/ml Streptomycin Sulfate, and 120Units/ml of Penicillin G Sodium (Thermo Fisher, 534 

#10378016). 18 hours later, cells were transiently transfected using a standard calcium chloride 535 

transfection protocol. For transfections, 0.1ug of sequence-verified pCMV-insert-MYC-FLAG 536 

overexpression vectors containing either no insert (Origene #PS100001; ‘mock’ transfection) or 537 

RFX6 insert (Origene #RC206174) were transfected into each well. 24 hours post-transfection, 538 

cells were washed in 1X PBS and fixed in 4% PFA for 10 minutes at room temperature.  539 

 540 

293T indirect immunofluorescence 541 

Fixed 293T cells were blocked for 1 hour at room temperature in 5% BSA in PBST. For primary 542 

antibody incubation, cells were incubated with human serum (1:1000) and rabbit anti-FLAG 543 

antibody (1:2000) in 5% BSA in PBST for 2 hours at room temperature (RT). Cells were washed 544 
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4X in PBST and subsequently incubated with secondary antibodies (goat anti-rabbit IgG 488, 545 

Invitrogen, Carlsbad, CA; #A-11034, 1:4000; & goat anti-human 647, Invitrogen #A-21445, 546 

1:4000) for 1 hour at room temperature. Finally, cells were washed 4X in PBST, incubated with 547 

DAPI for 5 minutes at RT, and subsequently placed into PBS for immediate imaging. All images 548 

were acquired with a Nikon Ti inverted fluorescence microscope (Nikon Instruments, Melville, 549 

NY). All experiments were performed in biological duplicates.  550 

 551 

Indirect dual immunofluorescence on human fetal intestine 552 

Human fetal small bowels (21.2 days gestational age) were processed as previously described 553 

(Berger et al., 2015). Individual APS1 sera (1:4000 dilution) were used in combination with rabbit 554 

antibodies to human Chromogranin A (Abcam, Cambridge, MA; #ab15160, 1:5000 dilution). 555 

Immunofluorescence detection utilized secondary Alexa Fluor secondary antibodies (Life 556 

Technologies, Waltham, MA; 488 goat anti-human IgG, #A11013; & 546 goat anti-rabbit IgG, 557 

#A11010). Nuclear DNA was stained with Hoechst dye (Invitrogen, #33342). All images were 558 

acquired with a Leica SP5 White Light confocal laser microscope (Leica Microsystems, Buffalo 559 

Grove, IL). 560 

 561 

35S-radiolabeled protein generation and binding assay 562 

DNA plasmids containing full-length cDNA under the control of a T7 promoter for each of the 563 

validated antigens (Supplemental Table 3) were verified by Sanger sequencing and used as DNA 564 

templates in the T7 TNT in vitro transcription/translation kit (Promega, Madison, WI; #L1170) 565 

using [35S]-methionine (PerkinElmer, Waltham, MA; #NEG709A). Protein was column-purified 566 

on Nap-5 columns (GE healthcare, Chicago, IL; #17-0853-01) and immunoprecipitated on 567 
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Sephadex protein A/G beads (Sigma Aldrich, St. Louis, MO; #GE17-5280-02 and #GE17-0618-568 

05, 4:1 ratio) in duplicate with serum or control antibodies in 96-well polyvinylidene difluoride 569 

filtration plates (Corning, Corning, NY; #EK-680860). Each well contained 35’000 counts per 570 

minute (cpm) of radiolabeled protein and 2.5ul of serum or appropriately diluted control antibody 571 

(Supplemental Table 3). The cpms of immunoprecipitated protein was quantified using a 96-well 572 

Microbeta Trilux liquid scintillation plate reader (Perkin Elmer).  573 

 574 

  575 
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 FIGURES 1098 

 1099 
Figure 1.  PhIP-Seq identifies literature-reported autoantigens in APS1 A. Overview of PhIP-1100 
Seq experimental workflow. B. PhIP-Seq identifies known autoantibody targets in APS1. 1101 
Hierarchically clustered (Pearson) z-scored heatmap of literature reported autoantigens with 10-1102 
fold or greater signal over mock-IP in at least 2/39 APS1 sera and in 0/28 non-APS1 control sera. 1103 
See also Figure 1: Figure Supplement 1. C. Radioligand binding assay (RLBA) orthogonal 1104 
validation of literature-reported antigens CYP11A1, SOX10, and NLRP5 within the expanded 1105 
cohort of APS1 (n = 67) and non-APS1 controls (n = 61); p-value was calculated across all samples 1106 
using a Mann-Whitney U test. D. CYP11A1 RLBA antibody index and CYP11A1 PhIP-Seq 1107 
enrichment are well correlated (r = 0.79); see also Figure 1: Figure Supplement 2.  1108 
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Figure 2.  PhIP-Seq identifies novel (and known) antigens across multiple APS1 sera. A. 1109 
Hierarchically clustered (Pearson) Z-scored heatmap of all genes with 10-fold or greater signal 1110 
over mock-IP in at least 3/39 APS1 sera and in 0/28 non-APS1 sera. Black labeled antigens (n=69) 1111 
are potentially novel and grey labeled antigens (n=12) are previously literature-reported antigens. 1112 
See also Figure 2: Figure Supplement 1.  1113 
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Figure 3. Novel PhIP-Seq autoantigens are shared across multiple APS1 samples and 1114 
validate in whole protein binding assays. A. Graph of the PhIP-seq autoantigens from Figure 2 1115 
that were shared across the highest number of individual APS1 sera (left panel). ASMT and PDX1 1116 
were positive hits in 3 and 2 sera, respectively, but are known to be highly tissue specific (right 1117 
panel). Genes in red were chosen for validation in whole protein binding assay. B. Validation of 1118 
novel PhIP-Seq antigens by radiolabeled binding assay, with discovery cohort (black, nAPS1 = 39), 1119 
validation cohort (light red, nAPS1 = 28) and non-APS1 control cohort (nHC = 61). P-value was 1120 
calculated across all samples using a Mann-Whitney U test. See also Figure 3: Figure Supplement 1121 
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Figure 4. PhIP-Seq reproduces known clinical associations with anti-CYP11A1 and anti-1123 
SOX10 antibodies. A. Heatmap of p-values (Kolmogorov-Smirnov testing) for differences in 1124 
gene enrichments for individuals with versus without each clinical phenotype. Significant p-values 1125 
in the negative direction (where mean PhIP-Seq enrichment is higher in individuals without 1126 
disease) are masked (colored >0.05). See also Figure 4: Figure Supplement 1. B. Anti-CYP11A1 1127 
PhIP-Seq enrichments are significantly different between APS1 patients with and without adrenal 1128 
insufficiency (top panel; Kolmogorov-Smirnov test). Anti-SOX10 PhIP-Seq enrichments are 1129 
significantly different between APS1 patients with and without Vitiligo (bottom panel). Anti-1130 
KHDC3L PhIP-Seq enrichments are significantly different between APS1 patients with and 1131 
without ovarian insufficiency (middle panel). See also Figure 4: Figure Supplement 2. 1132 
 1133 
ND, nail dystrophy. HP, hypoparathyroidism. KC, keratoconjunctivitis. CMC, chronic 1134 
mucocutaneous candidiasis. ID (D), Intestinal dysfunction (diarrheal-type). AIH, autoimmune 1135 
hepatitis. POI, primary ovarian insufficiency. HTN, hypertension. HT, hypothyroidism. B12 def, 1136 
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B12 (vitamin) deficiency. DM, diabetes mellitus. SS, Sjogren’s-like syndrome. Pneum, 1137 
Pneumonitis. GH def, Growth hormone deficiency. AI, Adrenal Insufficiency. EH, (dental) enamel 1138 
hypoplasia.  1139 
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 1140 
 Figure 5. Autoantibodies to oocyte-expressed protein KHDC3L are associated with ovarian 1141 
insufficiency. A. Principle component analysis of transcriptome of single human oocytes (red) 1142 
and granulosa cells (GCs, blue); data from Zhang et al., Mol Cell 2018. KHDC3L is highly 1143 
expressed in oocytes, along with binding partner NLRP5 and known oocyte marker DDX4. For 1144 
comparison, known GC markers INHBA and AMH are primarily expressed in the GC population. 1145 
B. APS1 sera that are positive for one of anti-KHDC3L and anti-NLRP5 autoantibodies tend to 1146 
also be positive for the other. C. Antibody indices for both KHDC3L and NLRP5 are increased in 1147 
females with APS1. D. Antibody indices for females with APS1 by age; All 10 patients with 1148 
primary ovarian insufficiency (POI) are positive for anti-KHDC3L antibodies. Of note, many of 1149 
the individuals with anti-KHDC3L antibodies but without POI are younger and therefore cannot 1150 
be fully evaluated for ovarian insufficiency.   1151 
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Figure 6. APS1 patients with intestinal dysfunction mount an antibody response to intestinal 1152 
enteroendocrine cells and to enteroendocrine-expressed protein RFX6. A. Anti-RFX6 positive 1153 
APS1 serum with intestinal dysfunction co-stains Chromogranin-A (ChgA) positive 1154 
enteroendocrine cells in a nuclear pattern (right panel & inset). In contrast, non-APS1 control sera 1155 
as well as anti-RFX6 negative APS1 serum do not co-stain ChgA+ enteroendocrine cells (left and 1156 
center panels). B. Anti-RFX6+ serum, but not anti-RFX6- serum, co-stains HEK293T cells 1157 
transfected with an RFX6-expressing plasmid. See also Figure 6: Figure Supplement 2. C. 1158 
Radioligand binding assay (RLBA) anti-RFX6 antibody index is significantly higher across 1159 
individuals with intestinal dysfunction (ID; Mann-Whitney U, p = 0.006). Purple color indicates 1160 
samples that fall above 6 standard deviations of the mean non-APS1 control RLBA antibody index. 1161 
D. Individuals with the diarrheal subtype of ID have a higher frequency of anti-RFX6 antibody 1162 
positivity as compared to those with constipation-type ID (Mann-Whitney U, p=0.0028) or no ID 1163 
(p=0.0015). See also Figure 6: Figure Supplement 3. 1164 
For associated RFX6 PhIP-Seq & tissue expression data, see Figure 6: Figure Supplement 1.  1165 
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SUPPLEMENTAL FIGURES 1166 

Supplemental Table 1. APS1 cohort: Clinical Data. 1167 

Patient Code Gender Age* Clinical Phenotypes Cohort 

AIRE.04 F 14 
CMC, HP, AI, DM, EH, ND, HTN, SS, 
Pneumonitis, UE, GH def, ID (D) 

D 

AIRE.05 F 11 
CMC, HP, AI, AIH, Gastritis, EH, HTN, 
Pneumonitis, UE, Vitiligo, ID (B) 

D 

AIRE.09 F 10 HP, AIH, EH, Pneumonitis, UE D 
AIRE.13 F 10 CMC, HP, AI, Gastritis, UE, Vitiligo, ID (D) D 

AIRE.14 M 7 
CMC, AI, AIH, DM, Gastritis, EH, ND, KC, SS, 
Pneumonitis, UE, Vitiligo, B12 def, ID (C) 

D 

AIRE.18 F 18 CMC, HP, AI, POI, ND, SS D 

AIRE.19 M 12 
CMC, HP, AI, AIH, Gastritis, EH, Pneumonitis, 
UE, GH def, Asplenia, ID (B) 

D 

AIRE.20 F 25 CMC, AI, Gastritis, EH, KC, SS, ID (D) D 

AIRE.21 M 65 
CMC, HP, AI, HT, DM, EH, HTN, SS, Vitiligo, 
B12 def, ID (B) 

D 

AIRE.23 M 38 
CMC, HP, AI, Gastritis, TIN, EH, ND, KC, HTN, 
Vitiligo, Alopecia, B12 def, Asplenia, ID (D) 

D 

AIRE.24 F 15 CMC, HP, AI, AIH, Gastritis, EH, KC, ID (C) D 

AIRE.27 M 18 
CMC, AI, AIH, DM, Gastritis, EH, KC, SS, 
Pneumonitis, UE, Vitiligo, B12 def, ID (B) 

D 

AIRE.08 M 11 CMC, HP, AI, EH, UE D 
AIRE.07 M 12 CMC, HP, AI, HT, ND, KC, Alopecia, ID (C) D 
AIRE.28 M 15 CMC, HP, AI, Gastritis, EH, KC, Vitiligo, ID (C) D 

AIRE.22 F 7 
CMC, HP, AIH, Gastritis, EH, ND, SS, 
Pneumonitis, UE, Alopecia, GH def, ID (D) 

D 

AIRE.29 M 9 AI, AIH, EH, ND, UE, Vitiligo, Alopecia, ID (B) D 

AIRE.30 M 17 
CMC, HP, AIH, EH, UE, Vitiligo, Alopecia, B12 
def, ID (C) 

D 

AIRE.23c F 41 CMC, HP, AI, HT, POI, EH, SS D 

AIRE.31 F 18 
CMC, HP, AI, AIH, DM, EH, ND, KC, SS, UE, 
Vitiligo, ID (D) 

D 

AIRE.33 F 14 HP, AI, AIH, POI, EH, UE, ID (D) D 

AIRE.34 F 54 
CMC, HP, AI, HT, POI, Gastritis, EH, HTN, SS, 
Pneumonitis, B12 def, ID (D) 

D 

AIRE.35 F 23 
CMC, HP, AI, AIH, HT, POI, Gastritis, EH, SS, 
Pneumonitis, UE, B12 def, Asplenia, ID (D) 

D 
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AIRE.11 M 19 
CMC, HP, AI, AIH, TF, Gastritis, EH, SS, UE, 
Vitiligo, GH def, ID (B) 

D 

AIRE.36 M 15 HP, AI, EH, Alopecia D 
AIRE.37 F 28 CMC, HP, AI, POI, EH, SS, UE, ID (D) D 
AIRE.38 F 7 HP, AI, EH, ND, UE, Alopecia, ID (C) D 
AIRE.17 F 6 CMC, HP, EH, KC, UE, ID (D) D 

AIRE.39 F 18 
CMC, HP, AI, AIH, HT, EH, ND, KC, 
Pneumonitis, UE, ID (B) 

D 

AIRE.40 F 16 
CMC, HP, AI, AIH, POI, EH, Pneumonitis, UE, 
Alopecia, Asplenia, ID (D) 

D 

AIRE.41 M 20 
CMC, AI, HT, TF, EH, HTN, Vitiligo, Alopecia, 
ID (D) 

D 

AIRE.44 F 24 
CMC, HP, AI, POI, Gastritis, EH, ND, KC, HTN, 
SS, UE, Alopecia, B12 def, ID (D) 

D 

AIRE.46 F 22 
CMC, HP, AI, EH, KC, SS, B12 def, GH def, ID 
(B) 

D 

AIRE.12 F 7 
CMC, HP, AI, Gastritis, EH, KC, SS, 
Pneumonitis, UE, Vitiligo, B12 def, ID (D) 

D 

AIRE.06 F 16 
CMC, HP, AI, AIH, HT, Gastritis, EH, HTN, SS, 
Vitiligo, ID (D) 

D 

AIRE.50 F 26 
CMC, AI, Gastritis, HTN, SS, Pneumonitis, UE, 
B12 def, ID (B) 

D 

AIRE.02 M 51 
CMC, HP, AI, TF, Gastritis, EH, HTN, SS, Hpit, 
Pneumonitis, Vitiligo, B12 def, ID (D) 

D 

AIRE.03 F 19 HP, AI, POI, TIN, EH, HTN, Pneumonitis, UE D 
AIRE.52 F 9 HP, HT, EH, UE, Vitiligo, ID (D) D 
AIRE.53 F 8 CMC, HP, AI, HT, EH, HTN, UE, ID (D) V 

AIRE.58 M 16 
CMC, HP, AI, TF, Gastritis, EH, ND, KC, 
Alopecia, B12 def, ID (D) 

V 

AIRE.59 M 7 CMC, HP, AI, EH, ND, Alopecia, ID (D) V 
AIRE.60 M 19 CMC, ND, EH, Alopecia, ID (C) V 
AIRE.61 F 54 CMC, HP, AI, EH, SS, Pneumonitis, ID (C) V 
AIRE.62 F 15 AI, AIH, HT, Gastritis, Pneumonitis, UE, ID (C) V 
AIRE.55 M 19 CMC, HP, AI, Gastritis, EH, UE, Alopecia V 
AIRE.69 M 18 CMC, AI, AIH, ID (B) V 
AIRE.56 M 2 AIH, EH, UE, ID (D) V 
AIRE.54 F 7 CMC, HP, AI, EH, Pneumonitis, UE V 
AIRE.63 F 15 CMC, HP, AI, EH, B12 def, ID (B) V 
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AIRE.71 F 30 
CMC, HP, Gastritis, EH, Pneumonitis, Vitiligo, 
ID (D) 

V 

AIRE.71B M 15 
CMC, AI, HT, Gastritis, ND, Pneumonitis, 
Alopecia 

V 

AIRE.74 F 11 
CMC, HP, AI, HT, Gastritis, TIN, EH, SS, 
Pneumonitis, UE, Alopecia, ID (C) 

V 

AIRE.68 F 15 
CMC, AI, Gastritis, EH, SS, Pneumonitis, B12 
def, ID (C) 

V 

AIRE.70 F 16 CMC, SS, UE, B12 def, ID (C) V 
AIRE.66 M 13 CMC, HP, AI, DM, EH, UE, Alopecia V 
AIRE.67 M 20 CMC, HP, AI, Pneumonitis, UE, Vitiligo, ID (D) V 

AIRE.87 F 15 
CMC, HP, AI, AIH, HT, EH, Pneumonitis, 
Vitiligo, B12 def, ID (B) 

V 

AIRE.65C M 2 CMC, HP, AI, UE, ID (C) V 
AIRE.65B M 6 CMC, HP, AI, EH V 
AIRE.65 F 11 CMC, HP, AI, EH, UE, Vitiligo, GH def, ID (D) V 
AIRE.73 F 13 CMC, HP, AIH, HT, POI, EH, ID (B) V 
AIRE.76 M 10 CMC, HP, UE, Vitiligo, ID (D) V 
AIRE.86 F 3 HP, UE, ID (C) V 

AIRE.77 M 10 
HP, AIH, HT, SS, Pneumonitis, Vitiligo, 
Alopecia, ID (D) 

V 

AIRE.78 M 2 HP V 
AIRE.79 M 10 CMC, HP, AI, AIH, EH, UE, GH def, Asplenia V 

 1168 

ND, nail dystrophy. HP, hypoparathyroidism. KC, keratoconjunctivitis. CMC, chronic 1169 
mucocutaneous candidiasis. ID (D, C, B), Intestinal dysfunction (diarrheal-type, constipation-type, 1170 
both). AIH, autoimmune hepatitis. POI, primary ovarian insufficiency. HTN, hypertension. HT, 1171 
hypothyroidism. B12 def, B12 (vitamin) deficiency. DM, diabetes mellitus. SS, Sjogren’s-like 1172 
syndrome. GH def, Growth hormone deficiency. AI, Adrenal Insufficiency. EH, (dental) enamel 1173 
hypoplasia. TF, testicular failure. TIN, Tubulointerstitial Nephritis. Hpit, Hypopituitarism. UE, 1174 
Urticarial eruption. 1175 
D, Discovery cohort; V, Validation cohort. 1176 
*Age at most recent evaluation 1177 
  1178 
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Supplemental Table 2. Tissue-restricted expression patterns of validated novel APS1 1179 

antigens. 1180 

Gene 
(Human/mouse) 

Protein Atlas: RNA 
specificity category 
(Tissue)14 

Selected literature annotations 

RFX6/Rfx6 Tissue enhanced Pancreas 
Islets (Piccand et al., 2014; S. B. Smith et al., 2010) 

Intestine 
Enteroendocrine cells (Gehart et al., 2019; Piccand 
et al., 2019; S. B. Smith et al., 2010) 

KHDC3L/Khdc3 Group enriched Ovary 
Oocytes (Y. Zhang et al., 2018; K. Zhu et al., 2015) 

ACP4/Acp4 Tissue enhanced Testes (Yousef et al., 2001) 
Dental enamel (Green et al., 2019; Seymen et al., 2016; C. 
E. Smith et al., 2017) 

ASMT/Asmt Tissue enhanced Brain 
Pineal Gland (Rath et al., 2016) 

GIP/Gip Tissue enriched Intestine 
Enteroendocrine cells (Moody et al., 1984) 

NKX6-3 / Nkx6-3 Group enriched Pancreas 
PP-cells (Schaum et al., 2018) 

Intestine (Alanentalo et al., 2006) 
PDX1 / Pdx1 Group enriched Pancreas 

Islets (Holland et al., 2002; Stoffers et al., 1997) 
 1181 

  1182 
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Supplemental Table 3. Antibody information by application. 1183 

antibody Application 
 (IF: 
immunofluorescence;  
RLBA: radioligand 
binding assay; CBA: 
cell-based assay) 

dilution 

Anti-NLRP5 (Santa Cruz, Dallas, TX; #sc-50630) NLRP5 RLBA 1:50 
Anti-SOX10 (Abcam, Cambridge, MA, #ab181466) SOX10 RLBA 1:25 
Anti-RFX6 (R&D Systems, Minneapolis, MN; 
#AF7780) 

RFX6 RLBA 1:50 

Anti-KHDC3L (Abcam, #ab170298) KHDC3L RLBA 1:25 
Anti-CYP11A1 (Abcam, #ab175408) CYP11A1 RLBA 1:50 
Anti-NKX6-3 (Biorbyt, Cambridge, Cambridgeshire, 
UK; #orb127108) 

NKX6-3 RLBA 1:50 

Anti-GIP (Abcam, #ab30679) GIP RLBA 1:50 
Anti-PDX1 (Invitrogen, Carlsbad, CA, #PA5-78024) PDX1 RLBA 1:50 
Anti-ASMT (Invitrogen, #PA5-24721) ASMT RLBA 1:25 
Anti-CHGA (Abcam, Cambridge, MA, USA, # 
ab15160) 

Tissue IF 1:5000 

Human serum Tissue IF  
CBA IF 
RLBA 

1:4000 
(Tissue) 
1:500 (CBA) 
1:25 (RLBA) 

Secondary abs: 
488 goat anti-human IgG (Life Technologies, 
Waltham, MA, USA: #A11013) 
546 goat anti-rabbit IgG (Life Technologies, A11010) 

Tissue IF 1:400 
 
 

Secondary abs: 
647 goat anti-human IgG (Thermo Fisher, #A-21445) 
488 goat anti-rabbit IgG (Thermo Fisher, #A-11034) 

CBA IF 1:1000 

Anti-DYKDDDDK (D6W5B) (Cell Signaling 
Technologies, Danvers, MA; #14793) 

CBA IF; 
ACP4 RLBA 

1:2000 (CBA 
IF) 
1:125 (RLBA) 

Nuclear staining: 
Hoechst dye (Invitrogen, #33342) 
DAPI (Thermo Fisher, #D1306) 

 
Tissue IF 
CBA IF 
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FIGURE SUPPLEMENTS  1185 

Figure 1: Figure Supplement 1. Hierarchically clustered (Pearson) Z-scored heatmap of literature 1186 
reported autoantigens that did not meet the cutoff of 10-fold or greater signal over mock-IP in at 1187 
least 2/39 APS1 sera and in 0/28 non-APS1 control sera. 1188 
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Figure 1: Figure Supplement 2. A. Scatterplot of individual PhIP-Seq enrichment values (log10) 1191 
over mock-IP as compared to radioligand binding assay antibody index values (1 = commercial 1192 
antibody signal) for known antigens SOX10 and NLRP5, with Pearson correlation coefficient r.  1193 
B. PhIP-Seq enables 49 amino acid resolution of antibody signal from APS1 sera to literature-1194 
reported antigens CYP11A1 and SOX10. Top panels: PhIP-Seq signal (fold-change of each 1195 
peptide as compared to signal from mock-IP, log10-scaled) for fragments 1-21 for CYP11A1 and 1196 
fragments 1-19 for SOX10. Bottom panels: Trace of normalized signal for CYP11A1 and SOX10 1197 
fragments across the mean of all 39 APS1 sera. 1198 
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1200 
Figure 2: Figure Supplement 1. The mean of tissue-specificity ratio of 82 PhIP-Seq antigens 1201 
(Figure 2) is increased as compared to the tissue-specificity ratio of n=82 randomly sampled genes 1202 
(n-sampling = 10’000). Data from Protein Atlas, HPA/Gtex/Fantom5 RNA consensus dataset 1203 
(Uhlen et al., 2015). 1204 
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 1206 
Figure 3: Figure Supplement 1. A. Scatterplot of individual PhIP-Seq enrichment values (log10) 1207 
over mock-IP as compared to radioligand binding assay antibody index values (1 = commercial 1208 
antibody signal) for novel antigens ACP4, ASMT, GIP, RFX6, KHDC3L, NKX6.3, and PDX1, 1209 
with Pearson correlation coefficient r (Note that for PDX1, there are insufficient positive data 1210 
points for the correlation to be meaningful). B. ACP4 RLBA autoantibody index, broken down by 1211 
enamel hypoplasia (EH) status. 1212 
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Figure 4: Figure Supplement 1. Clustered disease correlations in the APS1 1214 
cohort (Spearman’s rank correlation; n = 67). 1215 
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  1217 
Figure 4: Figure Supplement 2. KHDC3L is highly expressed in oocytes (top), but not in 1218 
granulosa cells (bottom). In contrast, SRSF8 and PNO1 are highly expressed in granulosa cells, 1219 
but not in oocytes. Data from (Y. Zhang et al., 2018) 1220 
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Figure 6: Figure Supplement 1. A. PhIP-Seq enables 49 amino acid resolution of antibody signal 1222 
from novel autoantigen RFX6. PhIP-Seq signal (fold-change of each peptide as compared to signal 1223 
from mock-IP, log10-scaled) for fragments 1-38 for RFX6 from APS1 sera (n=39). B. Single cell 1224 
RNA expression of Rfx6. Left: normalized RNA expression of Rfx6 in single cells from 20 1225 
different organs. Right inset: Rfx6 shares an expression pattern with pancreatic beta-cell marker 1226 
Ins2 (Schaum et al., 2018). C. Single cell RNA expression of Rfx6. Left: normalized RNA 1227 
expression of Rfx6 in single cells from the intestine. Right inset: Rfx6 shares an expression pattern 1228 
with intestinal enteroendocrine cell marker ChgA (Schaum et al., 2018). 1229 
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Figure 6: Figure Supplement 2. Anti-RFX6+ sera (top two panels), but not anti-RFX6- serum or 1231 
non-APS1 control serum (bottom two panels), co-stain HEK293T cells transfected with an RFX6-1232 
expressing plasmid. None of the sera tested stain 293T cells transfected with empty vector 1233 
(‘mock’). No cross-reactivity of secondary antibodies was observed (right panel).  1234 
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Figure 6: Figure Supplement 3. A. APS1 patients with the diarrheal subtype, as well as those 1236 
with both subtypes of ID (red), have increased anti-RFX6 antibody signal by RLBA as compared 1237 
to those with constipation-type ID or no ID. B. 6/7 (6 diagnosed prior to serum draw, 1 diagnosed 1238 
post serum draw) APS1 patients with type 1 diabetes have positive anti-RFX6 signal by RLBA. 1239 
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