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Abstract— Although several guidelines for best practices in EEG 

preprocessing have been released, even those studies that strictly 

adhere to those guidelines contain considerable variation in the 

ways that the recommended methods are applied. An open 

question for researchers is how sensitive the results of EEG 

analyses are to variations in preprocessing methods and 

parameters. To address this issue, we analyze the effect of 

preprocessing methods on downstream EEG analysis using several 

simple signal and event-related measures. Signal measures include 

recording-level channel amplitudes, study-level channel amplitude 

dispersion, and recording spectral characteristics. Event-related 

methods include ERPs and ERSPs and their correlations across 

methods for a diverse set of stimulus events. Our analysis also 

assesses differences in residual signals both in the time and 

spectral domains after blink artifacts have been removed. Using 

fully automated pipelines, we evaluate these measures across 17 

EEG studies for two ICA-based preprocessing approaches 

(LARG, MARA) plus two variations of Artifact Subspace 

Reconstruction (ASR). Although the general structure of the 

results is similar across these preprocessing methods, there are 

significant differences, particularly in the low-frequency spectral 

features and in the residuals left by blinks. These results argue for 

detailed reporting of processing details as suggested by most 

guidelines, but also for using a federation of automated processing 

pipelines and comparison tools to quantify effects of processing 

choices as part of the research reporting. 

 
Index Terms— EEG, preprocessing, ERP, ERSP, MARA, ASR 

I. INTRODUCTION 

EG (electroencephalography) is widely used to record brain 

activity in clinical, research laboratory, and real-world 

settings. Although a number of guidelines for best practices 

in processing EEG have appeared in recent years (see for 

example, [1] [2] [3]), the guidelines are quite broad and give 

researchers significant leeway in creating compliant processing 

pipelines. A crucial question for evaluating the reliability and 

comparability of results from different studies is how details of 

the processing pipelines might influence the end results.  

This paper begins to address the preprocessing variability 

question by assessing differences in signal distributions across 

studies for several different preprocessing methods.  We also 

examine differences in event-related potentials and event-
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related spectral perturbations computed by both trial averaging 

(ERPs and ERSPs, respectively) and temporal overlap 

regression (rERPs and rERSPs, respectively) [4] [5] [6]. The 

remainder of the paper is organized as follows. Section II 

describes briefly describes the data corpus, delineates the four 

pipelines compared in this paper, and introduces the signal and 

event-related feature metrics used for evaluation. Section III 

presents comparisons organized by signal and event-related 

feature characteristics, with special evaluation of the effect of 

blinks. Section IV discusses some of the implications of the 

results, and Section V gives some concluding remarks. 

II. METHODS AND MATERIALS 

The data corpus for this study consists of EEG recordings 

from 17 studies performed at six experimental sites containing 

approximately 7.8 million event-related epochs from 1,100 

recordings as described [7]. The studies fall into two general 

categories: visual target detection and lane-keeping tasks that 

include distractions and other variations. The raw data and 

some levels of processed data are available through the 

DataCatalog at https://cancta.net. Code for the preprocessing 

pipelines and calculation of some of the metrics is available at 

https://github.com/VisLab/EEG-Pipelines. The study events 

were annotated using Hierarchical Event descriptors (HED 

tags) prior to any processing [8].  

A. Early-stage preprocessing 

We applied the PREP pipeline [9] to remove line noise, 

identify bad channels, and robust average reference the data. If 

bad channels were interpolated, EEGLAB’s eeg_interp() was 

used for spherical interpolation, and re-sampling was done with 

EEGLAB’s pop_resample(). All filtering operations used 

EEGLAB’s pop_eegfiltnew() with the default settings unless 

otherwise specified. Datasets with more than 64 channels were 

reduced to the 64 channels closest to the standard 10-20 

positions and assigned standard 10-20 labels [7]. Blink events, 

identified as the positions of the maximum amplitude of the 

blink, were then inserted into the EEG structure using the 

automated BLINKER toolbox [10]. 
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B. Preprocessing pipelines used in this study 

This work compares four processing pipelines, denoted as 

LARG, MARA, ASR_5* and ASR_10*, respectively. The 

LARG [7] and MARA [11] are closely-related ICA-based 

pipelines, while the ASR_x* pipelines are based on the Artifact 

Subspace Reconstruction algorithm [12], an automated EEG 

artifact removal algorithm that can be applied in real-time. The 

full ASR pipeline and is now part of the recommended 

preprocessing pipeline for EEGLAB [13] [14]. (See Suppl. Fig. 

1 for a summary diagram of the pipelines.) 

1) The LARG pipeline 

LARG [7] is an automated pipeline that emphasizes the 

removal of eye artifacts. After interpolating the bad channels 

identified by PREP, LARG uses the default settings of 

EEGLAB pop_eegfiltnew() to high-pass filter the data at 1 Hz 

with a zero-phase FIR filter and a Hamming window. After 

down-sampling to 128 Hz, LARG computes independent 

components (ICs) using Infomax applied to cleaned sections of 

the data as described in [15]. Some studies were processed 

using the CUDAICA GPU implementation of Infomax [16]. 

LARG removes from the signal ICs identified by EyeCatch [17] 

as eye artifacts, and applies temporal overlap regression to 

remove the residual time-domain blinks in intervals of [−1, 1]. 

2) The MARA pipeline 

MARA (Multiple Artifact Rejection Algorithm) automates 

the selection of artifactual independent components ICs by 

applying multiple statistical tests [18]. Our MARA pipeline 

uses a pipeline identical to LARG except that instead of 

applying EyeCatch and regressing out blinks, the MARA 

pipeline removes artifactual ICs based on the MARA criteria.  

3) The ASR* pipeline (ASR_5* and ASR_10*) 

The ASR (Artifact Subspace Reconstruction) algorithm [12] 

uses principal-component-like subspace decomposition to 

eliminate large transients. ASR can be applied in an online 

setting for real-time artifact removal. We applied ASR using the 

clean_asr() function from the clean_rawdata EEGLAB plugin. 

Note that the recommended ASR artifact removal pipeline and 

the default approach implemented in clean_rawdata includes 

bad channel removal and bad window removal, which can 

significantly improve artifact removal as well as its own 

filtering. However, here we performed comparisons with only 

underlying subspace removal implemented in the clean_asr() 

function, without the benefits of these additional offline artifact 

removal steps. We therefore denote this approach as ASR*.  We 

use the non-interpolated average referenced signal produced by 

PREP, remove the channel means, and high-pass filter using the 

default settings for pop_eegfiltnew() with a cutoff of 1.5 Hz. 

The higher cutoff (compared to a 1 Hz cutoff for LARG and 

MARA) was needed to achieve suitable stop-band suppression 

below 0.5 Hz for some recordings that had significant drift 

thereby ensuring the data had a mean of approximately zero 

within short windows (an essential stationarity pre-condition 

for ASR to function properly).  

 ASR has a configurable burst cutoff parameter for 

determining how aggressively it removes transient high-

variance artifacts, with smaller values corresponding to more 

aggressive removal of artifacts. We used burst cutoff 

parameters: 5 (highly aggressive) and 10 (modestly aggressive, 

typical setting), denoting the pipelines as ASR_5* and 

ASR_10*, respectively. ASR calibration was performed 

separately for each recording using the default settings, which 

identify a signal subspace from clean segments of the entire 

recording after removal of segments of data containing high-

power artifacts in more than 7.5% of channels. 

C. Computation of robust channel signal statistics 

Bigdely-Shamlo et al. [19] introduced several robust 

summary metrics for signal channel distributions which we use 

here, including the recording channel amplitude vector and the 

study channel dispersion vector. These metrics capture the 

signal scale across channels in a recording, and the dispersion 

of that scale across a study, respectively. Due to the robust 

estimators being used, these measures are partially biased 

towards brain signals rather than artifacts, and can thus be used 

to track impacts on those brain signals before and after a given 

pre-processing method is applied.  

Prior to calculation of the summary features, the EEG signal 

is filtered using a [1, 20] Hz bandpass FIR filter and the 

following 10-20 standard set of 26 channels is selected: FP1, 

FP2, F3, Fz, F4, F7, F8, FC3, FCz, FC4, FT7, FT8, C3, Cz, C4, 

TP7, TP8, CP3, CPz, CP4, P3, Pz, P4, O1, Oz, and O2. All 

recordings in the corpus contain these 26 channels, which are 

used for the channel summary metrics unless otherwise stated. 

The recording channel amplitude vector is a 26×1 positive 

vector of the robust standard deviations (defined as 1.4826 × 

the median absolute deviation from the sample median) of the 

filtered channel signals from these 26 common channels. The 

study amplitude matrix is a 26×S matrix of the recording 

channel amplitude vectors stacked across the S recordings in the 

study. The corpus amplitude matrix A is a 26×C matrix formed 

by stacking the study amplitude matrices across all of the 

studies in the corpus. Here C is the total number of recordings 

in the corpus. The dispersion vector for a study or corpus 

amplitude matrix is a 26×1 positive vector calculated as the 

robust standard deviation of each row of the respective 

amplitude matrix divided by the median of that row. (See [7] 

for a more detailed description of these metrics.) 

Bigdely-Shamlo et al. [7] also showed that dividing the 

recording channel data by a recording-specific constant prior to 

computing the study or corpus dispersion vector greatly reduces 

the dispersion values. Several methods of computing the 

recording-specific constant were shown to be effective in 

reducing study-wide channel dispersion. Here we use the Huber 

mean of the recording channel amplitude vector as the 

recording-specific constant. The normalized study amplitude 

matrix and the normalized corpus amplitude matrix in this 

paper are formed by dividing each column of the respective 

amplitude matrix by its column Huber mean. 

To visualize, we take the median of the rows of the corpus 

amplitude matrix and plot the resulting 26×1 vector using 

EEGLAB’s topoplot(). To explore channel signal dependencies 

on recording-specific scaling, we plotted entry A(i, k) versus 

A(j, k) (with i ≠ j). A ball-shaped plot indicates that little of the 

recording variability can be addressed by this recording-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.01.20.913327doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913327


LARGE-SCALE ANALYSIS TO BENCHMARK EEG PREPROCESSING METHODS              3 

specific normalization, while a linear shape suggests that such 

normalization will improve comparability. 

To quantify to what extent dividing each recording by a 

recording-specific constant reduces channel dispersion across a 

corpus, we calculated the percentage of dispersion reduction for 

each study, channel, and method separately using the formula 

100*(dispersion before – dispersion after)/(dispersion before). 

We then averaged these percentages for each preprocessing 

method to obtain an overall dispersion reduction percentage [7]. 

D. Computation of channel spectral characteristics 

To see how different preprocessing approaches might distort 

the signal spectral characteristics, we calculated both summary 

and local measures as follows. Each recording was scaled by a 

recording-specific constant (the Huber mean of the recording 

amplitude vector). We computed the time-varying spectral 

decomposition of each of the 26 common channels by applying 

the MATLAB continuous wavelet transform cwt() using the 

complex Morlet wavelet family cmor1-1.5 and 50 frequencies 

logarithmically sampled in the range 2 to 30 Hz. We then 

normalized the amplitude at each frequency for each 

spectrogram by subtracting the median over time and dividing 

by the median absolute deviation from the median (MAD). We 

refer to this operation as robust z-scoring. 

For each preprocessing method, we created a spectral 

fingerprint of each recording by vectorizing the normalized 

spectrograms. We then computed correlations of the 

corresponding fingerprint vectors associated with pairs of 

preprocessing methods to summarize how much preprocessing 

affects spectral results. In addition, we averaged each 

spectrogram within standard frequency bands (delta: [2, 4] Hz, 

theta: [4, 7] Hz, alpha: [7, 12] Hz, beta: [12, 30] Hz) to form 

separate fingerprints for each band and computed band 

correlations for pairs of preprocessing methods. 

For each preprocessing method, we also created a recording 

spectral sample by choosing at random 100 non-overlapping 

segments of 4 seconds duration from each recording and 

calculating the power spectral density (PSD) of each sample 

segment. We used the Matlab pmtm() multi-taper spectral 

density function with tapers having a half-bandwidth of 4 using 

512 points and 256 frequency bins in [1, 50] Hz. PSD samples 

were normalized by dividing by total spectral power, similar to 

those used by Cruz-Garza et al. [20]. We then computed the 

Pearson correlation (across frequency) between PSD samples 

for different pairs of preprocessing methods. This metric 

quantifies the relationship for each recording by 26×100 = 

2,600 correlations rather than via a single correlation value. 

We also computed the mean spectra for each spectral sample 

in each of five specified frequency bands (the delta, theta, alpha, 

and beta bands listed above, as well as a gamma band of [30, 

50] Hz) for each channel in each recording. We then calculated 

Pearson correlations between corresponding band spectral 

samples for pairs of preprocessing methods. 

E. Computation of event-related features 

We computed the event-related features on intervals of [−2, 

2] seconds time-locked around individual events separately for 

each preprocessing method. As described in [21], we used two 

different computation methods: ordinary trial averaging (ERPs 

and ERSPs) and temporal overlap regression (rERPs and 

rERSPs). We computed (r)ERPs for each (recording, study-

specific event code, channel) and (r)ERSPs for each (recording, 

study-specific event code, channel, frequency) combination. 

The (r)ERSPs were computed based on the time-varying 

amplitude spectrogram computed by applying the MATLAB 

continuous wavelet transform function, cwt(), to the continuous 

signal at 50 frequencies logarithmically sampled between 2 and 

40 Hz. We scaled the resulting amplitudes by subtracting the 

median and then dividing by 1.4826 times the median, with 

median computed separately at each frequency over all time 

points for each recording. We used the outlier detection scheme 

described in [21] to more robustly compute these features. 

Our corpus events were tagged using Hierarchical Event 

Descriptors (HED tags) to enable cross study comparison. 

Because many events in our corpus mark non-neurological 

phenomena such as experimental control, we only considered 

event codes tagged with Event/Category/Experimental stimulus 

and not also tagged with Attribute/Offset for the summary 

measures. Event-related features corresponding to a particular 

study-specific event code were only computed for recordings 

containing at least 10 occurrences of the event code. Event 

codes that frequently coincided with other event codes were 

detected and duplicates eliminated. We only considered 

combinations for which there were at least 5 recordings 

containing enough events with that event code.  

For each of the 26 common channels, we computed the 

pairwise Pearson correlations, between pairs of preprocessing 

methods, of the corresponding event-related (r)ERP features 

(recording, study-specific event code, channel). For (r)ERSP 

features, we vectorized the spectrograms before computing 

pairwise correlations. We displayed the resulting distributions 

of these correlations using boxplots and also performed 

statistical tests to determine which pairs of preprocessing 

methods produced more similar event-related features. 

F. Evaluating the effect of blinks 

We used the blink amplitude ratio to characterize the effect 

of blink removal for different preprocessing methods. Blink 

(r)ERPs were computed by time-locking to the maxFrame 

event inserted by BLINKER at the blink amplitude maxima in 

the EEG signal. We only consider the 26 common channels 

specified in the previous section. For each (recording, channel), 

we baselined the blink (r)ERP by subtracting the mean of the 

(r)ERP in the time intervals [−2, −1.5] and [1.5, 2] from the 

entire (r)ERP. We then computed the blink amplitude ratio by 

dividing the mean absolute value of the baselined blink (r)ERP  

in the time interval [−0.5, 0.5] by the mean absolute value of 

the baselined blink signal in the union of the intervals [−2, −1.5] 

and [1.5, 2]. Ratios close to 1 indicate that the blink signal has 

been removed during preprocessing without impacting the 

underlying activity. Ratios much greater than 1 indicate that the 

blink amplitude has not been fully subtracted from the signal, 

while ratios close to zero indicate that both the blink and 

underlying activity have been removed. 
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III. RESULTS 

A. Effects of preprocessing on EEG channel statistics 

Fig. 1 compares EEG signal properties using the corpus 

robust channel amplitude matrix, A. The top row shows results 

for data that has been average referenced with bad channels 

interpolated. The remaining rows correspond to data that has 

been processed by the LARG, MARA, ASR_10* and ASR_5*, 

respectively. All signals have been filtered in the range [1, 20] 

Hz prior to calculation of A. 

 

The first column of Fig. 1 shows the row medians of the 

corpus channel amplitude matrix, A, for various processing 

methods displayed as scalp maps. The scalp maps show a lateral 

symmetry with a lobe-like structure. Before artifact removal 

(top row), the signal distributions are dominated by frontal 

channels due to blinks and other eye artifacts, with additional 

stronger amplitudes in the occipital regions. 

After artifacts have been removed (rows 2 through 5), 

regardless of processing approach, channel amplitude becomes 

more equalized across the scalp, with the distinct bilateral lobes 

becoming more prominent. ASR_10* resembles the average 

referenced signal the most closely followed by ASR_5*, 

LARG, and MARA. Both LARG and MARA use ICA-based 

methods, with MARA removing ICs more aggressively. 

MARA and LARG show a local maximum near channels Fz 

and FCz not visible in the ASR variants. We note again, 

however, that LARG and MARA pipelines applied bad channel 

removal and interpolation while the ASR* pipelines did not. 

The scalp maps after normalization (second column of Fig. 

1) have a similar appearance to those prior to normalization, but 

with a much lower amplitude because normalizing by a constant 

results in a relative reweighting of the points contributing to the 

median, keeping the points in a roughly similar relationship. 

To investigate whether there is a linear relationship between  

robust channel amplitudes across recordings (third column of 

Fig. 1), we plot A(i, k) versus A(j, k)  with channel i ≠ channel j 

for all recordings k. The plots of column 3 show a distinct linear 

trend irrespective of processing method, indicating the presence 

of an underlying co-varying relationship. However, the average 

referenced only data (top row) have many more points on the 

outer arms, corresponding to the presence of large amplitude 

blinks and other eye artifacts. The plots corresponding to the 

other preprocessing methods have much smaller distributions 

along the axes. 

After dividing the channel data by the recording-specific 

Huber mean normalization factor (an overall robust measure of 

the recording’s channel amplitude), the A(i, k) versus A(j, k)  

plots become much less elongated (fourth column of Fig. 1). 

The top graph of column 4 still has arms, reflecting the 

continued amplitude dominance of the frontal channels after 

normalization, as do the ASR variants. The linear channel i vs j 

dependence is greatly reduced as indicated by the median 

adjusted R2 values, which are around 0.5 before normalization 

and nearly 0 afterwards. To quantify the statistical significance 

of these patterns, we fit a linear regression model to A(i, k) and 

A(j, k) for each (i, j) channel pair with i ≠ j. Table 1 shows the 

results of this analysis. 
TABLE 1 

CHANNEL I VS CHANNEL J
* 

Metrica 
Processing method 

Filtered LARG MARA ASR_10* ASR_5* 

Median adj-R2 (B) 0.465 0.481 0.571 0.534 0.545 

Median adj-R2 (A) 0.023 0.015 0.015 0.018 0.018 

% sig slopes (B) 100 100 100 100 100 

% sig slopes (A) 76 65 67 73 72 

# sig channels (B) 26 26 23 26 26 

# sig channels (A) 26 26 24 26 26 
a   (B) = before normalization, (A) = after normalization.  

Before normalization, almost 100% of these 650 linear fits 

have nonzero slope (p < 0.01, FDR corrected). The fraction of 

significant non-zero slopes is reduced to between 0.65 and 0.76 

depending on the preprocessing method after normalization. 

Normalization not only reduces the number of non-zero slopes, 

but also sharply reduces the quality of the linear fit. This linear 

relationship, which explains about half of the variability in 

channel pair amplitudes, almost fully disappears after Huber 

mean normalization.  

Fig. 2 shows that channel dispersion (top graph) is 

substantially reduced after dividing each recording by its 

recording-specific Huber mean (bottom graph). The overall 

Fig. 1. Comparison of summary EEG signal distributions for different 
preprocessing methods using the 26 common channels. Rows from top to 

bottom correspond to preprocessing methods: average reference with bad 

channel interpolation, LARG, MARA, ASR_10*, and ASR_5*. The first 
column displays scalp maps of the row medians of the corpus amplitude matrix, 

A, while the second column displays scalp maps of the row medians of A after 

normalization by the recording-specific Huber means. Values in square 
brackets are the medians of the row medians of A. The third and fourth columns 

plot entries A(i, k) versus A(j, k) for all channels i ≠ j before and after Huber 

normalization, respectively. 
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average percentage dispersion reduction resulting from 

dividing each recording by a recording-specific constant ranged 

from 38% to 45% across studies with no obvious dependence 

on preprocessing method. The percent reduction was greater 

than zero with significance p < 0.001 (t-test, FDR corrected), 

indicating normalization reduces cross-recording variability 

B. Effects of preprocessing on spectral characteristics 

Fig. 3 summarizes the correlation between corresponding 

spectral features for various pairs of preprocessing methods 

based on correlations of corresponding spectral fingerprints.  

As expected, the spectral samples of ASR_10* and ASR_5* 

are very highly correlated, and LARG and MARA have 

reasonably high spectral correlations. Even with these closely 

related pairs of methods, there are many outliers (appearing as 

a dark continuous bar due to the density of cross markers) with 

lower correlations. These low correlations most likely reflect 

differences in handling of artifacts between pipelines. 

Disagreement between the ICA-based methods (LARG and 

MARA) and the ASR-based methods (ASR_10* and ASR_5*) 

in the delta frequency band ([2, 4] Hz for this analysis) is likely 

due to the differences in baselining and high-pass filtering that 

occurred at the beginning of the respective pipelines. However, 

ASR_10* and ASR_5* used the same input signals and even in 

this case, the correlations in the delta bands were much lower 

than in other bands. This suggests that not only should care be 

taken in specifying all baseline and preliminary filtering 

operations, but that small algorithmic differences in removal of 

large-amplitude low frequency artifacts such as blinks may 

affect downstream analysis in lower frequency bands. A 

comparison of spectral characteristics using the spectral 

sampling technique produces similar results. (See Fig S.2 in the 

supplementary material.) 

C. Relationships of event-related features across methods 

Many EEG studies focus on event-related potentials (ERPs) 

in order to quantify the difference in evoked response due to an 

experimental factor, and it is important to ascertain whether any 

of these differences are due to variations in preprocessing 

methods. We looked at ERPs and ERSPs associated with 

different types of stimulus events for the 26 common channels 

across all 17 studies and calculated the correlations between 

corresponding features for different pairs of preprocessing 

methods as shown in Fig. 4. 

Fig. 4 displays the distributions of correlations between 

corresponding features for pairs of preprocessing methods 

when ERPs (left graph) and ERSPs (right graph) are computed 

by trial averaging. Correlations are computed in the interval [0, 

1] seconds. Fig. 4 uses boxplots to display the distributions of 

correlations between corresponding features for pairs of 

preprocessing methods when ERPs (left graph) and ERSPs 

(right graph) are computed by trial averaging. Correlations are 

computed in the interval [0, 1] seconds. 

The graphs show that the relative levels of correlation 

between corresponding features are similar to those levels seen 

in the spectral analysis. The two variants of ASR are the most 

highly correlated although there are quite a few outlier features. 

LARG and MARA are more highly correlated for ERPs than 

either of those methods are with the ASR_5* and ASR_10*. 

LARG and ASR_10* are slightly more correlated than LARG 

and MARA for ERSPs. 

Fig. 2. Channel dispersions by study before and after normalization by a 

recording-specific constant for four preprocessing methods: LARG (black), 

MARA (blue), ASR_10* (green), and ASR_5*(red). 

Fig. 4. Correlations between corresponding event-related features produced 

by different pairs of preprocessing methods. Left boxplot shows ERPs and 
right boxplot shows ERSPs both computed by trial averaging. (Results 

using regression rather than trial averaging are similar and are not shown.) 

Fig. 3. Evaluations of differences in signal spectral characteristics 

between pairs of preprocessing methods using spectral fingerprints. 
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For each pair of pre-processing methods, we used one-

sample t-tests to test whether the mean of the distribution of 

ERP correlations (over all channels, analyzed events, and 

recordings) is significantly non-zero. Table 2 shows the means 

and 99% confidence intervals, confirming that the average 

correlation is significantly non-zero for all pairs of methods. 

Also shown in Table 2 are the median and the signed-rank 

statistic calculated using the Wilcoxon signed rank test for each 

pair of preprocessing methods. Regressed ERPs as well as 

averaged and regressed ERSPs gave similar statistical results. 

In all cases, the mean correlation was lower than the median. 
TABLE 2 

CORRELATIONS BETWEEN CORRESPONDING AVERAGED ERPS (DF = 840K) 

Preprocessing 

methods 

t-test signed-rank test 

mean conf int (α = 0.01) median rstat 

LARG v MARA 0.8588 [0.8584, 0.8593] 0.9175 −184 

LARA v ASR_10* 0.7761 [0.7755, 0.7768] 0.8553 −174 

LARG v ASR_5* 0.7627 [0.7621, 0.7633] 0.8286 −152 

MARA v ASR_10* 0.7185 [0.7179, 0.7192] 0.7889 −148 

MARA v ASR_5* 0.7017 [0.7011, 0.7024] 0.7618 −131 

ASR_10* v ASR_5* 0.9037 [0.9033,  0.9041] 0.9469 −175 

 To evaluate the consistency of features across recordings, for 

different preprocessing methods, we calculated the correlations 

among the features for recordings for each (study, event-code) 

triplet. We then performed paired t-tests and signed-rank tests 

both at the study and cross-study level to see which 

preprocessing methods produced the highest correlation for 

corresponding features across recordings. In all cases, both at 

the study level and at the corpus level, there was a strict 

statistically significant ordering of correlations: MARA > 

LARG > ASR_10* > ASR_5* with extremely small or 

vanishing p-values for both averaged and regressed features. 

That being said, the overall differences in correlations were 

very small. For regressed features, for example, the confidence 

intervals for the paired t-test comparisons were 

MARA−LARG: [0.001959, 0.002890], LARG−ASR_10*: 

[0.0095999, 0.010449], and ASR_10*−ASR_5*: [0.015595, 

0.016365]. The statistics for averaged features were similar.  

Although the feature correlations between preprocessing 

methods are similar, the actual features computed using trial 

averaging and regression have substantial differences. Fig. 5 

displays study-wide feature averages for target events in three 

different RSVP studies for channel FCz. These studies were 

performed at three sites using three different Biosemi headsets. 

The top group of plots uses temporal overlap regression to 

compute regressed ERSPs (rERSPs), while the bottom group 

uses averaging (ERSPs). Outlier detection algorithms are 

incorporated in both averaging and regression techniques as 

described in [21]. Within a feature computation technique, 

agreement is fairly consistent and a prominent P300 apparent; 

although MARA appears to have removed most of this signal 

in the study averages of regressed features for RsvpB. ASR is 

known to have this issue for low burst cutoff thresholds, but for 

higher amplitude phenomena such as P300 there appears to be 

little difference between ASR_5* and ASR_10*. Importantly, 

the problematic nature of averaging is evident across all 

preprocessing methods. The bottom group of plots in Fig. 5 

clearly shows the effect of other correlated and confounded 

events on ERSP estimation, with significant activity prior to the 

target event. 

D. Effects of preprocessing on blink removal 

Using box plots of the blink amplitude ratio, Fig. 6 summarizes 

how well the respective preprocessing methods remove blinks 

in the time domain.  

MARA and both variants of ASR display significant 

residuals in blink amplitude (ratio > 1) as shown by the 

extended whiskers in the corresponding box plots. In some 

recordings, this residual is very large, The ASR variations tend 

to leave more blink residual than MARA, while LARG tends to 

remove signal along with blinks (ratio <1). Signed-rank show a 

strict ordering of mean blink amplitude ratio of LARG << 1 << 

MARA < ASR_5* < ASR_10* with p values of essentially 0.  

Fig. 5. Comparison of study averages of (r)ERSP features for target events 

selected RSVP studies for channel FCz. Top group: averages of regressed 
ERSPs; bottom group: averaged ERSPs. Gray areas indicate lack of statistical 

significance (p > 0.01, FDR corrected). 

Fig. 6. Temporal blink features after preprocessing. Top: Distribution of blink 

amplitude ratios for the corpus recordings using different preprocessing 
pipelines. Bottom: Blink (r)ERPs for a typical recording, with blink amplitude 

ratios closest to the median ratios. Blink amplitude ratios are computed for the 

26 common channels in all recordings. 
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The bottom graph of Fig. 6 shows a typical blink ERPs 

overlaid for different preprocessing methods and different 

computation strategies. The ERP versions have been scaled by 

subtracting the mean in the intervals [−2, −1.5] and [1.5, 2] and 

then dividing by the median absolute value of the resulting 

amplitude in those subintervals. The particular recording whose 

(r)ERPs were chosen is the one whose blink amplitude ratio was 

closest to the individual median blink amplitude ratios for the 

different preprocessing methods.  

This example is typical of the others that we have examined. 

The residual signal is quite large for all preprocessing methods 

except LARG, which directly regresses out the blink signal in 

the interval [−1, 1]. In this example (which is typical), the other 

methods appear to remove too much signal at the blink 

maximum and too little signal before and after the maximum.  

The averaged and regressed blink ERPs are close for the ASR 

variants, but the averaged blink ERP for MARA shows more 

blink residual than its regressed version. 

All four preprocessing methods show spectral blink 

residuals. Fig. 7 compares the study averages of the rERSPs 

associated with the blink maximum event for three different 

studies. GuardA is a complex, time-extended visual search task, 

LKCal is a simulated vehicular lane-keeping task, while RSVPI 

is a demanding, time-compressed visual target detection task.  

 The top group shows channel FCz, while the bottom group 

shows channel O1. All of the methods exhibit a significant 

burst-like increase in power in the beta frequency range 

occurring slightly after the blink maximum, possibly associated 

with the beginning of the eye opening phase. MARA, and to a 

lesser extent the ASR variants, show significant low-frequency 

activity time-locked to the blink maximum, which could be 

associated with residual blink activity. 

IV. DISCUSSION  

This paper investigated differences in outcome at various 

stages in analysis due to choices made during processing. We 

focused on two types of processing approaches: ICA-based 

(LARG and MARA) and subspace reconstruction (ASR_5* and 

ASR_10*). Our large-scale analysis shows that the resulting 

signals have generally similar characteristics, but there are 

small systematic differences in outcomes, even between closely 

related methods. 

A. Eye artifacts affect signal characteristics 

The characteristics of signals with just external artifacts 

removed (top row of Fig. 1) are dramatically different than the 

characteristics of signals in which subject-generated artifacts 

(rows 2 through 5 of Fig. 1) are also removed. Fig. 1 also shows 

that the global signal characteristics after subject-generated 

artifacts are removed are very similar across preprocessing 

methods. Since LARG mainly focuses on the removal of blinks 

and eye artifacts, one can conclude, as expected, that the 

majority of the large-scale signal differences are due to blinks.  

These methods produce data in which blinks are difficult to 

observe in single trials. LARG, which directly regresses out 

blinks during preprocessing, has blink amplitude ratios less than 

1, leading to the concern that perhaps too much EEG signal has 

been removed, while the other preprocessing methods may not 

remove enough of the blink artifacts (Fig. 6). All of the 

methods, including LARG, show similar well-defined time-

frequency features time-locked to blink events after blink 

removal (Fig. 7).  

We also computed (not shown here) blink amplitude ratios of 

epochs time-locked to the blink maximum for selected 

individual recordings. The blink ratios for the individual epochs 

are very close to 1 for all methods and indistinguishable from 

randomly selected epochs that contain no blinks.  However, 

when we average these epochs for a single recording, the blink 

ratios are in agreement with those reported in Fig. 6. This 

suggests that direct viewing of the signals after preprocessing, 

may lead to a false conclusion that the blink effects have been 

mostly removed, when in fact there are systematic biases in 

blink epochs. Blum et al. [22] recently compared blink removal 

in the regular ASR algorithm and a modification based on 

Riemannian geometry. They also observed systematic blink 

residuals that may be indicative of event-related potentials 

associated with eye blinks.  

Blink entrainment in certain visual tasks can further 

complicate the interpretation [23]. We recommend that 

researchers generally assume residual blink signals are present 

in their data after preprocessing and take active measures to 

address this when interpreting their results. However, 

researchers have observed neural activity locked to spontaneous 

blinks. This is hypothesized to be related to attentional 

disengagement and transient activation/deactivation of cortical 

brain networks [24]. It is therefore important to examine 

multiple factors, including the spatial and spectral distribution 

of residual activity locked to blinks, when characterizing the 

origin of this activity. Temporal overlap regression [5] [6] may 

also be a particularly suitable method to address this problem 

by regressing out common patterns of activity unique to blink 

events. 

Fig. 7. Comparison of regressed ERSPs of blink events for 3 selected studies. 

The top group displays the results for channel FCz and the bottom group 

displays the results for channel O1. Gray areas indicate lack of statistical 

significance (p > 0.01, FDR corrected). 
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B. Scaling by a constant reduces inter-recording variability 

As we reported in earlier work [19], our results highlight the 

potential for factoring out a portion of inter-recording 

variability by uniform scaling of channel amplitudes (Fig. 2). 

This simple step is effective across preprocessing methods and 

is strongly recommended for cross-recording comparisons, 

even within a single study. This scaling does not change the 

relative sizes of the respective channel amplitudes. 

C. Filtering and pre-processing differences  

Filtering and its effects on EEG signals is a complex issue 

that has been examined by a number of authors [25]. Widmann 

et al. [26] provide useful guidelines, pointing out that filter 

design trade-offs are highly dependent on the nature of the 

problem being addressed and on the signal quality. In this 

paper, we opted for high-pass filtering using FIR non-casual 

zero-phase filtering with Hamming windows for all 

preprocessing methods. We recognize that this choice is 

limiting for certain applications, and that a large-scale study of 

signal distortion for different filtering alternatives would be 

useful. Universal recommendations for filter selection are 

probably not possible, even if trade-offs are well-documented. 

One place where there was a distinct difference in the choice 

of filter parameters was in the high-pass filter used for ASR 

versus the other preprocessing methods. ASR depends on the 

signal having zero mean, both globally, as well as over local 

(e.g., 0.5 sec) analysis windows. High-pass filtering is an 

effective way to remove local signal drift and produce a zero-

mean time series. However, EEG recording hardware from 

some manufacturers, such as Biosemi, have large DC offsets or 

drift that may require a suitably large stop-band suppression in 

the filter to ensure that power at 0 Hz (corresponding to the 

mean) is as close to zero as possible. In this work, we used an 

FIR high-pass filter with a 0.75-1.5 Hz transition band to 

achieve 70 dB reduction in power at 0.5 Hz using the same FIR 

filtering approach used for LARG and MARA. However, since 

LARG and MARA used a 0.5-1 Hz transition band, we cannot 

rule out that some differences observed between these methods 

and ASR, particularly in the delta band, may be attributed to 

differences in the filter cutoff. However, since each pair of 

methods (pair 1: LARG and MARA; pair 2: ASR_10* and 

ASR_5*) used the same input within the pair, the large spectral 

differences within each pair of methods is likely attributable to 

differences in artifact handling not filtering (Fig. 3). 

Another difference between the input signals to the four 

preprocessing pipelines is that ASR requires full-rank data and 

thus cannot be applied after channel interpolation, ICA 

component removal, or other rank-reducing methods. However, 

the comparison metrics described here require a fixed, common 

set of channels. LARG and MARA interpolated bad channels 

prior to performing their analysis and used PCA to reduce rank. 

The normal offline ASR algorithm operates after bad channels 

have been removed. ASR* just dealt with the bad channels as 

part of its subspace removal and did relatively well. The effects 

of channel interpolation should be further investigated. 

D. Event-related features 

ERPs have been used in restricted experimental settings to 

assess processing or headsets effects. Barham et al. [27] 

compared correlations of individual target and non-target trials 

for 15 subjects in an auditory oddball task. They also compared 

the N200 and P300 amplitudes and latencies between standard 

and deviate trials. Cruz-Garza et al. [20] used a spectral 

clustering approach to quantify headset differences since direct 

comparison was not possible across different datasets. 

Fig. 6 shows that, although one might expect roughly similar 

event-related features across preprocessing methods, the details 

of individual corresponding features may differ considerably. 

Even the two ASR variants, which have a median feature 

correlation greater than 0.9, have many outlier examples with 

very low correlation. All of the event-related features computed 

in this paper used a trial outlier method that excludes epochs 

with unusually large amplitudes. Identifying other types of 

artifactual trials before preprocessing and systematically 

examining how excluding these trials changes the feature, may 

be useful in evaluating feature generalizability. 

To improve the generalizability, we uses a diverse set of 

stimulus events and extended the comparison to event-locked 

time-frequency features and regression-derived features. Our 

conclusions are generally consistent across feature and event 

types. Fig. 5 shows that ERSPs computed by trial averaging can 

have significant mixing of evoked responses from temporally 

adjacent events, particularly for RSVP paradigms that elicit 

overlapping activity from rapidly presented stimuli. 

V. CONCLUSION 

In this work, we characterized the effects of four pre-

processing approaches on spatial, spectral, and temporal EEG 

features across 17 heterogeneous studies. Our results suggest 

that even small changes in artifact removal strategy may result 

in differences with large effects on particular portions of the 

signal. While there is general agreement on the steps that should 

be taken for preprocessing (e.g., filtering, line-noise removal, 

references, bad channels handling, artifact removal), a range of 

“standard” choices may affect results in unknown ways. While 

differences may be small when averaged over a large, diverse 

corpus, they may be significant when considered for a single 

study. Rather than anoint a particular analysis path as the “gold 

standard”, a diversity approach may lead to more reproducible 

and meaningful results. If a federation of automated processing 

pipelines with well-documented parameter choices were 

available, researchers could run their data through several of 

them and compare the results as part of reporting their research. 

Large differences in analysis output would be analyzed as part 

of the research reporting, leading to a better understanding both 

of the methods and the underlying neural phenomena. In 

addition to using regression instead of averaging to calculate 

event-related features, we also recommend that researchers 

analyze the distribution of blinks relative to other events. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.01.20.913327doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913327


LARGE-SCALE ANALYSIS TO BENCHMARK EEG PREPROCESSING METHODS              9 

ACKNOWLEDGMENT 

The authors would like to thank Tony Johnson and Michael 

Dunkel for data assembly, and the experimenters, including 

Ching-Teng Lin and Jung-Tai King of NCTU, who contributed 

their data. This work received computational support from 

UTSA’s HPC cluster Shamu. Research was sponsored by the 

United States Army Research Laboratory under Cooperative 

Agreement Number W911NF-10-2-0022. The views and the 

conclusions contained in this document are those of the authors 

and should not be interpreted as representing the official 

policies, either expressed or implied, of the Army Research 

Laboratory or the U.S Government. The U.S Government is 

authorized to reproduce and distribute reprints for Government 

purposes notwithstanding any copyright notation herein. 

REFERENCES 

[1] J. Gross et al., “Good practice for conducting and reporting 

MEG research,” NeuroImage, vol. 65, pp. 349–363, Jan. 2013, 

doi: 10.1016/j.neuroimage.2012.10.001. 

[2] A. Keil et al., “Committee report: Publication guidelines and 

recommendations for studies using electroencephalography and 

magnetoencephalography,” Psychophysiology, vol. 51, no. 1, 

pp. 1–21, 2014, doi: 10.1111/psyp.12147. 

[3] C. R. Pernet et al., “Best practices in data analysis and sharing 

in neuroimaging using MEEG,” 2018, doi: 

10.31219/osf.io/a8dhx. 

[4] V. Litvak, A. Jha, G. Flandin, and K. Friston, “Convolution 

models for induced electromagnetic responses,” NeuroImage, 

vol. 64, pp. 388–398, Jan. 2013, doi: 

http://dx.doi.org.libweb.lib.utsa.edu/10.1016/j.neuroimage.2012

.09.014. 

[5] E. Kristensen, A. Guerin-Dugué, and B. Rivet, “Regularization 

and a general linear model for event-related potential 

estimation,” Behav. Res. Methods, pp. 1–20, Mar. 2017, doi: 

10.3758/s13428-017-0856-z. 

[6] B. V. Ehinger and O. Dimigen, “Unfold: an integrated toolbox 

for overlap correction, non-linear modeling, and regression-

based EEG analysis,” PeerJ, vol. 7, p. e7838, Oct. 2019, doi: 

10.7717/peerj.7838. 

[7] N. Bigdely-Shamlo, J. Touryan, A. Ojeda, C. Kothe, T. Mullen, 

and K. Robbins, “Automated EEG mega-analysis I: Spectral 

and amplitude characteristics across studies,” NeuroImage, p. 

116361, Nov. 2019, doi: 10.1016/j.neuroimage.2019.116361. 

[8] N. Bigdely-Shamlo et al., “Hierarchical Event Descriptors 

(HED): Semi-structured tagging for real-world events in large-

scale EEG,” Front. Neuroinformatics, vol. 10, 2016, doi: 

10.3389/fninf.2016.00042. 

[9] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, and K. A. 

Robbins, “The PREP pipeline: standardized preprocessing for 

large-scale EEG analysis,” Front. Neuroinformatics, vol. 9, 

2015, doi: 10.3389/fninf.2015.00016. 

[10] K. Kleifges, N. Bigdely-Shamlo, S. E. Kerick, and K. A. 

Robbins, “BLINKER: Automated extraction of ocular indices 

from EEG enabling large-scale analysis,” Front. Neurosci., vol. 

11, 2017, doi: 10.3389/fnins.2017.00012. 

[11] I. Winkler, S. Haufe, and M. Tangermann, “Automatic 

classification of artifactual ICA-components for artifact 

Removal in EEG signals,” Behav. Brain Funct., vol. 7, p. 30, 

2011, doi: 10.1186/1744-9081-7-30. 

[12] C. A. E. Kothe and T.-P. Jung, “Artifact removal techniques 

with signal reconstruction,” WO2015047462A9, 16-Jul-2015. 

[13] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox 

for analysis of single-trial EEG dynamics including independent 

component analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 

9–21, Mar. 2004, doi: 10.1016/j.jneumeth.2003.10.009. 

[14] A. Delorme et al., “EEGLAB, SIFT, NFT, BCILAB, and 

ERICA: New tools for advanced EEG processing,” 

Computational Intelligence and Neuroscience, 2011. [Online]. 

Available: 

https://www.hindawi.com/journals/cin/2011/130714/. 

[Accessed: 14-Aug-2017]. 

[15] T. R. Mullen et al., “Real-time neuroimaging and cognitive 

monitoring using wearable dry EEG,” IEEE Trans. Biomed. 

Eng., vol. 62, no. 11, pp. 2553–2567, Nov. 2015, doi: 

10.1109/TBME.2015.2481482. 

[16] F. Raimondo, J. E. Kamienkowski, M. Sigman, and D. 

Fernandez Slezak, “CUDAICA: GPU optimization of Infomax-

ICA EEG analysis,” Computational Intelligence and 

Neuroscience, 2012. [Online]. Available: 

https://www.hindawi.com/journals/cin/2012/206972/. 

[Accessed: 20-Apr-2019]. 

[17] N. Bigdely-Shamlo, K. Kreutz-Delgado, C. Kothe, and S. 

Makeig, “EyeCatch: Data-mining over half a million EEG 

independent components to construct a fully-automated eye-

component detector,” in 2013 35th Annual International 

Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC), 2013, pp. 5845–5848, doi: 

10.1109/EMBC.2013.6610881. 

[18] I. Winkler, S. Brandl, F. Horn, E. Waldburger, C. Allefeld, and 

M. Tangermann, “Robust artifactual independent component 

classification for BCI practitioners,” J. Neural Eng., vol. 11, no. 

3, p. 035013, 2014, doi: 10.1088/1741-2560/11/3/035013. 

[19] N. Bigdely-Shamlo, J. Touryan, A. Ojeda, C. Kothe, T. Mullen, 

and K. Robbins, “Automated EEG mega-analysis I: Spectral 

and amplitude characteristics across studies,” NeuroImage, p. 

116361, Nov. 2019, doi: 10.1016/j.neuroimage.2019.116361. 

[20] J. G. Cruz-Garza et al., “Deployment of mobile EEG 

technology in an art museum setting: Evaluation of signal 

quality and usability,” Front. Hum. Neurosci., vol. 11, 2017, 

doi: 10.3389/fnhum.2017.00527. 

[21] N. Bigdely-Shamlo, J. Touryan, A. Ojeda, C. Kothe, T. Mullen, 

and K. Robbins, “Automated EEG mega-analysis II: Cognitive 

aspects of event related features,” NeuroImage, p. 116054, Sep. 

2019, doi: 10.1016/j.neuroimage.2019.116054. 

[22] S. Blum, N. S. J. Jacobsen, M. G. Bleichner, and S. Debener, “A 

Riemannian nodification of Artifact Subspace Reconstruction 

for EEG artifact handling,” Front. Hum. Neurosci., vol. 13, 

2019, doi: 10.3389/fnhum.2019.00141. 

[23] C. Kranczioch, “Individual differences in dual-target RSVP task 

performance relate to entrainment but not to individual alpha 

frequency,” PLOS ONE, vol. 12, no. 6, p. e0178934, Jun. 2017, 

doi: 10.1371/journal.pone.0178934. 

[24] M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. 

A. Gusnard, and G. L. Shulman, “A default mode of brain 

function,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 2, pp. 

676–682, Jan. 2001, doi: 10.1073/pnas.98.2.676. 

[25] G. A. Rousselet, “Does filtering preclude us from studying erp 

time-courses?,” Front. Psychol., vol. 3, May 2012, doi: 

10.3389/fpsyg.2012.00131. 

[26] A. Widmann, E. Schröger, and B. Maess, “Digital filter design 

for electrophysiological data – a practical approach,” J. 

Neurosci. Methods, vol. 250, pp. 34–46, Jul. 2015, doi: 

10.1016/j.jneumeth.2014.08.002. 

[27] M. P. Barham, G. M. Clark, M. J. Hayden, P. G. Enticott, R. 

Conduit, and J. A. G. Lum, “Acquiring research-grade ERPs on 

a shoestring budget: A comparison of a modified Emotiv and 

commercial SynAmps EEG system,” Psychophysiology, vol. 54, 

no. 9, pp. 1393–1404, 2017, doi: 10.1111/psyp.12888. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.01.20.913327doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913327


Raw EEG studies

Remove line noise,  robust 
reference, and identify bad

channels (PREP)

Continuous EEG without eye activity

START HERE

Ignore PREP’s
bad channel identi�cation

Highpass �lter at 1.5 Hz

Call low-level function
clean_asr

Set ASR burst criterionIdentify and remove artifactual
ICs using MARA 

Highpass �lter at 1 Hz

Do Infomax ICA

Add eye blink events
(BLINKER) 

Pre-ICA clean

Use eeg_interp to interpolate
bad channels identi�ed by PREP 

Downsample to 128 Hz 
and 64  EEG channels 

Remove eye-related ICs
(EyeCatch)

Regress out blinks

Downsample to 128 Hz 
and 64  EEG channels 

MARA/LARG ASR*

LARG
speci�c

Standard
calculationData �les

MARA
speci�c

ASR*
speci�c

Remove channel mean

Add eye blink events
(BLINKER) 

Supplemental �gure 1:  Summary of pipelines

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.01.20.913327doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913327


LARG vs MARA

LARG vs ASR_10*

LARG vs ASR_5*

MARA vs ASR_10*

MARA vs ASR_5*

ASR_10* vs ASR_5*

0 0.5 1
Correlation

Beta Gamma All
Delta Theta Alpha

Supplemental Figure 2:  Random sample spectral correlations

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.01.20.913327doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913327

	TRSNE_Benchmarks_RevisionFinal.pdf
	PipelineOverviewWithCaption
	FigureSpectralSampleOnlyBoxPlotWithCaption

