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Abstract

Many modern problems in medicine and public health leverage machine learning methods

to predict outcomes based on observable covariates [1, 2, 3, 4]. In an increasingly wide array

of settings, these predicted outcomes are used in subsequent statistical analysis, often without

accounting for the distinction between observed and predicted outcomes [1, 5, 6, 7, 8, 9].

We call inference with predicted outcomes post-prediction inference. In this paper, we develop

methods for correcting statistical inference using outcomes predicted with an arbitrary machine

learning method. Rather than trying to derive the correction from the first principles for each

machine learning tool, we make the observation that there is typically a low-dimensional

and easily modeled representation of the relationship between the observed and predicted

outcomes. We build an approach for the post-prediction inference that naturally fits into the

standard machine learning framework. We estimate the relationship between the observed

and predicted outcomes on the testing set and use that model to correct inference on the

validation set and subsequent statistical models. We show our postpi approach can correct bias

and improve variance estimation (and thus subsequent statistical inference) with predicted

outcome data. To show the broad range of applicability of our approach, we show postpi

can improve inference in two totally distinct fields: modeling predicted phenotypes in re-

purposed gene expression data [10] and modeling predicted causes of death in verbal autopsy

data [11]. We have made our method available through an open-source R package: [https:

//github.com/SiruoWang/postpi]
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1 Introduction

The past decade has seen both an explosion in data available for precision health [12, 13, 14] and,

simultaneously, user-friendly tools such as the caret package [15] and Scikit-learn [16] that make

implementing complex statistical and machine learning methods possible for an increasingly wide

range of scientists. For example, machine learning from electronic medical records is used to predict

phenotypes [1, 17], genomic data is used to predict health outcomes [2], survey data is used to predict

cause of death in settings where deaths happen outside of hospitals [3, 18]. The increased focus on

ideas like precision medicine means the role of machine learning in medicine and public health will

only increase [4]. As machine learning plays an increasingly critical role across scientific disciplines,

it is critical to consider all sources of potential variability in downstream inference to ensure stable

statistical results [19].

In many settings, predicted outcomes from machine learning models become inputs into subse-

quent statistical analyses. One example from genetics is association studies between genetic variants

and Alzheimer’s disease for young adults. Because young adults have not developed Alzheimer’s

disease, it is difficult to associate the phenotype with genetic variants. However, these adults’ older

relatives can be used to predict the ultimate phenotype of participants in the study using known

inheritance patterns for the disease. The predicted outcome can be used in place of the observed

Alzheimer’s status when performing a genome-wide association study [6].

This is just one example of the phenomenon of post-prediction inference or posti for short. Re-

searchers predict an outcome or phenotype they care about and then use that predicted outcome

in subsequent downstream models. Though common, this approach poses multiple potential statis-

tical challenges. The predicted outcomes may be biased, may have less variability than the actual

outcomes, or the predictions may be based on the same covariates that would be used as inde-

pendent variables in the subsequent statistical analyses leading to overfitting [20]. Currently, the

standard approach to modeling predicted outcomes is to treat them as if they were the observed

data [1, 5, 6, 7, 8, 9]. This may lead to biased or overly optimistic statistical inference.

Here we focus on developing theoretical and simulation-based corrections for statistical models

using predicted outcomes. We focus specifically on settings where a predicted outcome becomes

the outcome (dependent) variable in subsequent analysis. We build our approach into the common

structure for machine learning problems of dividing the observed data into training, testing, and

validation set. We can build the prediction model on the training set, then estimate the relationship
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between the predicted and observed outcomes on the testing set, and use this estimated relationship

to evaluate statistical inference using predicted outcomes on the validation set. An advantage of

this approach is that it is not specific to a particular machine learning model. That is, we do

not need to know a priori the expected out of sample performance for a given method. Instead,

we assume that the relationship between the predicted and observed outcomes on the testing set

well-characterizes the same relationship on the validation set.

The setting we describe has parallels with multiple imputation [21] for missing data, but has

several distinct features. Any prediction problem could be cast as a missing data problem where

all of the values are missing and no missingness mechanism distinguishes observed and unobserved

outcomes. The reason is that on the validation set or the subsequent analyses in practical problems

there are no observed outcome data. Multiple imputation also frequently relies on a generative

model for simulating data, however in our setting, we wish to build a framework that can be used

for any machine learning model, regardless of its operating characteristics. We, therefore, need a

new methodology that can use a black-box machine learning algorithm but build a simple model

for the relationship between the predicted and observed outcome data. This problem is related to

the idea of errors-in-variables [22] or measurement error models [23], where either the outcome or

the covariates are measured with error. However, in prediction problems, we can no longer assume

that the errors are independent of the predicted values, since the machine learning predictions may

be more accurate for subsets of the y values.

Aside from its utility in medicine and public health, the methods we propose are also broadly

applicable in the social sciences. In political science, for example, machine learning tools classify

sentiment or political identification in segments of text and then fit regression models to identify

features of text leaning towards one party or another[24]. In urban sociology, researchers used

machine learning tools to infer the race of household heads subject to eviction, then used regres-

sion models to understand heterogeneity in circumstances related to evictions of individuals of a

particular race[25].

We apply our postpi approach to two open problems: modeling the relationship between gene

expression levels and tissue types [2], and understanding trends in (predicted) cause of death [26, 27].

We show that our method can reduce bias, appropriately model variability, and correct hypothesis

testing in the case where only the predicted outcomes are observed. We also discuss the sensitivity of

our approach to changes in the study population that might lead to a violation of the assumptions of

our approach. Our postpi approach is available as an open-source R package available from Github:
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[https://github.com/SiruoWang/postpi].

The remainder of the paper is organized as follows. In the remainder of this section, we provide

an example of the setting where our approach would be valuable. Then, Section 2 we present our

results, followed by evaluation in Section 3. We conclude in Section 4.

1.1 Example problem

Consider an example, where we have observations for the outcome yi and covariates xij for i =

1, ..., n,j = 1, ..., p. We use Xi to denote vector [xi1, ..., xip]. In this example we will assume there

are three separate models for the data. The first is the true state of the relationship between y and

x which we will denote by h(·):

yi = h(Xi) + eTSi (1)

The second is a prediction model using any arbitrary machine learning method. This model

makes predictions of the outcome conditional on the covariates and may or may not accurately

reflect the true relationship between y and x. Here f(·) denotes the prediction model and yp

denotes the predicted outcome:

ypi = f(Xi) (2)

The third is the inferential model that we will subsequently apply to the data for scientific

interpretation. For example, it is common to use linear regression to relate a continuous outcome

to a set of covariates. Here we use Mxi to denote covariate matrix [ 1 xi1 ... xip ]T and this regression

model for continuous data could be of the form:

yi = Mxi
~β + eINFi

(3)

We could imagine fitting Equation 3 using either the observed outcome yi or the predicted

outcome ypi. Standard statistical inference procedures assume that the yi are observed without

error. However, when we use predicted outcomes ypi then Equation 3 no long appropriately reflects

our uncertainty about the outcome. Figure 1 shows a simple simulated example of this idea. We

simulate covariates xi1, xi2, xi3, xi4 and error terms eTSi from normal distributions and simulate

the observed outcome yi again from a normal distribution with mean function a linear combination
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Figure 1: Simulated example. Data were simulated from the ground truth model as a linear

model. (a) Observed outcomes versus the covariate of interest. The x-axis shows the covariate

of interest x1 and the y-axis shows the observed outcomes of y. (b) Predicted outcomes versus

the covariate of interest. The x-axis shows the covariate of interest x1 and the y-axis shows the

predicted outcomes of yp. (c) Observed outcomes versus predicted outcomes. The x-axis shows the

observed outcomes of y and the y-axis shows the predicted outcomes of yp.
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of covariates xi1, xi2, xi3, xi4. Then we separate the simulated values into training, testing, and

validation set. On the training set, we train a random forests [28, 29] model using all covariates xi1,

xi2, xi3, xi4 and observed outcome yi. Then we apply this machine learning model to the observed

covariates xi1, xi2, xi3, xi4 on the testing set to obtain the predicted values ypi. Now we estimate

the relationship between the predicted and observed outcomes on the testing set.

In the first panel Figure 1(a) we illustrate the true relationship between the simulated y and

x1 (blue color). In the second panel Figure 1(b) we show the predicted values yp versus x1 (red

color). You can see that the relationship has changed, with different slope and variance. In the

third panel Figure 1(c) we show the relationship between the observed and predicted outcomes.

In this simulated example, we know that the estimated coefficient for the relationship between the

observed outcome y and x is 3.87 with a standard error of 0.14. However, when we fit model using

the predicted outcome yp we get an estimate of 3.7 with a standard error of 0.068. This example

reflects that there is bias existing and standard error is reduced after using predicted outcome yp

in place of observed y.

To adjust for error in predictions, one option would be to derive bias and standard error cor-

rections for a specific machine learning method. This approach would leverage knowledge about

how a specific prediction tool works. To compute the bias and standard errors analytically we both

(a) need to know what machine learning model was used and (b) need to be able to theoretically

characterize the properties of that machine learning model’s predictions. This approach, however,

would then restrict an analyst to only one machine learning approach (i.e. the one with properties

that have been worked out). As we observe in Figure 1(c), however, the relationship between the

observed and predicted outcome can easily be modeled for a variety of machine learning techniques.

We leverage this observation in the subsequent approach.

The key idea of our approach is we use this relationship and the data on the testing set, to

estimate the bias and variance introduced by using predicted outcomes. This approach does not

require idiosyncratic information about each machine learning approach and, instead, assumes that

a relatively simple model captures the relationship between the predicted and observed outcomes.
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2 Method

2.1 Overview of our approach

Our goal is to develop a method for correcting inference in statistical models using predicted out-

comes. To do this we make the following assumptions about the structure of the data and model.

We assume that the data are generated from an unknown data generating model of the form:

g (E[yi|xi, zi]) = h(xi, zi). (4)

Here xi denotes the covariate of interest and zi denotes other covariates. This model represents the

“true state of nature“ but is not directly observed in any practical problem.

We also assume that in a new data set it may be too expensive, too time-consuming, or too

difficult to collect outcome variable yi for all samples. We, therefore, will attempt to predict this

outcome with an arbitrary machine learning algorithm f(·) so that ypi = f(xi, zi) is the predicted

outcome based on the observed covariates.

However, the primary goal of our analysis is not to simply predict outcomes but to relate them

directly to a subset of covariate xi (i.e. same covariates used to make predictions in the new

samples) or to a new set of xi (i.e. new covariate collected only in the new samples). Since the data

generating distribution is unknown, we fit a generalized linear regression model to relate outcomes

(observed or predicted) to covariates. Here, Mxi is the matrix notation of the covariate of interest:

g (E[yi|xi]) = Mxi
~β. (5)

When outcome is observed, we can directly compute the estimate of ~β. However, we assume that

in a new sample it will not be possible to observe outcome, so predicted outcome ypi will be used

in Equation 5.

The most direct approach to performing post prediction inference is to use predicted outcomes

and ignore the fact that they are predicted. This approach can lead to bias and reduced variance for

estimated coefficients as we saw in the simple example in Section 1.1. We will demonstrate that this

approach produces consistently inaccurate inference in the simulation and real application settings.

Despite these potential biases, this approach to direct use of predicted outcomes in inferential

models is popular in genomics [9], genetic [6], public health [18], and EHR phenotyping [1] among

other applications.
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Another strategy would be to try to directly derive the properties of the coefficients and stan-

dard errors in the subsequent inference model using the definition of the machine learning algorithm

f(·). When a prediction is based on a simple regression model, this may be possible to do directly.

However, machine learning models now commonly include complicated algorithmic approaches in-

volving thousands or millions of parameters, including k-nearest neighbors [30], SVM [31], random

forests [28, 29] and deep neural networks [32].

We instead focus on modeling the relationship between the observed and predicted outcomes.

Our key insight is that even when we use a complicated machine learning tool to predict outcomes, a

relatively simple model can describe the relationship between the observed and predicted outcomes

(Figure 2). We then use this estimated relationship to compute bias and standard error corrections

for the subsequent inferential analyses using predicted values as the outcome variable.

Based on the observation in Figure 2, we relate the observed to the predicted data through a

flexible model k(·):

ypi = k(yi) (6)

For continuous outcomes, we can estimate the relationship as a linear regression model. For cat-

egorical outcomes, we can use a logistic regression model or a simple machine learning model to

estimate the relationship between the observed and predicted outcomes. To fit this relationship

model we take advantage of the standard structure of machine learning model development. The

observed data is split into training, testing, and validation set. We can build the prediction model

on the training set and then compute an unbiased estimate of the relationship model on the testing

set. Using this relationship model we derive a correction for the estimates, standard errors, and

test statistics for our inference model. Then on the validation set, we can evaluate the quality of

our correction in an independent sample.

In Section 2.2, we derive an analytic correction for the case where (1) the outcome is continuous,

based on the assumed model structure, and (2) the covariate of interest in the subsequent inference

model performed on predicted data is a subset of covariates that used to make such predictions. This

analytic correction holds regardless of the choice of machine learning algorithm f(·) used to make

the predictions, provided that there is a specific relationship between the observed and predicted

outcomes. In Section 2.3, we generalize this approach using a derived bootstrap procedure for two

reasons. First, it no longer assumes that predicted outcomes are continuous. Second, the covariate

of interest in the subsequent inferential analyses can be a new variable collected only in a new
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Figure 2: Relationship between the observed and predicted outcomes using different

machine learning models. Data were simulated from the ground truth model as a linear model

with normally distributed noise. On the x-axis is the observed outcome of y and on the y-axis are the

predicted outcomes yp. We show that regardless of the prediction method (a) k-nearest neighbors,

(b) Random Forests, (c) SVM, or (d) Neural Network, the observed and predicted outcomes follow

a distribution that can be accurately approximated with a regression model.
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sample.

2.2 Derivation correction

For continuous outcome yi, we assume that the predicted value ypi follows a normal distribution

centered around the observed value yi (see Equation 7), and we consider a relationship model such

that the mean value of ypi is modeled as a linear function of yi: E[ypi|yi] = Myi~γ. Recall the

inference model we assume in Equation 5 , in the case of continuous outcomes, observed outcome

yi is modeled as a normal distribution with mean Mxi
~β and variance σ2

INF (see Equation 8). On

the testing set, we consider the following models:

ypi | yi ∼ N (γ0 + γ1yi, σ
2
REL) (7)

yi | xi ∼ N (Mxi
~β, σ2

INF ) (8)

From the relationship model in Equation 7, we find the maximum likelihood estimation (MLE)

for parameters γ0, γ1, and σ2
REL. We use γ̂0, γ̂1, ˆσ2

REL for MLE notation which are obtained by finding

the parameter values that maximize the likelihood function. That is, γ̂0 = 1
n

∑n
i=1 ypi− γ̂1

1
n

∑n
i=1 yi

, γ̂1 =
∑n

i=1(yi−y)(ypi−yp)∑n
i=1(yi−y)2

and σ̂2
REL = 1

n

∑n
i=1(ypi − γ̂0 − γ̂1yi)

2 where y is the mean for observed

outcomes yi and yp is the mean for predicted outcomes ypi. Similarly, from the inference model

in Equation 8, we find the maximum likelihood estimator (MLE) for parameter σ2
INF , denoted as

σ̂2
INF . That is, σ̂2

INF = 1
n

∑n
i=1(yi −Mxi β̂)2.

The usual strategy is to perform inference relating the predicted outcomes yp and the covariate

of interest x (i.e. interchange yi with ypi in Equation 5) [1, 5, 6, 7, 8, 9]. To correct inference for

β̂p performed on data with predicted outcome yp, we first need to find the conditional expectation

and variance of predicted outcome given covariates. This expectation can be written as:

E [yp|x] = E [E [yp|x, y] |x] (9)

≈ E [E [yp|y] |x]

= γ0 + γ1Mx
~β.

In the second step of Equation 9, we have made the approximation of using the relationship be-

tween yp and y to model the conditional expectation E[yp|x, y] (see supplement Section 1 for full

derivation). Using the iterated expectation above alleviates the need to define the expectation of yp

given x directly. The reason we make such approximation is that the conditional expectation of yp
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given x may be arbitrarily complicated if we use a method such as random forests [28, 29], neural

networks [32], or boosted trees [33]. Instead, we only need to compute E [yp|y] for approximation,

which is directly estimable from the data.

For inference to relate yp and x through a regression model, we also must compute the variance of

the estimate β̂p. The challenge is that the variance is not simply calculated by fitting the regression

model between yp and x. Instead, we derive the variance of the predicted outcome from fitting both

the relationship model between the predicted and observed outcomes (yp and y) and the inference

model between the observed outcomes and covariate of interest (y and x). This variance can be

written as:

Var [yp | x] = E [Var [yp | x, y] | x] + Var [E [yp | x, y] | x] (10)

≈ E [Var [yp | y] | x] + Var [E [yp | y] | x]

= σ2
REL + γ21σ

2
INF .

In the second step of Equation 10, we again have made the approximation of using the relationship

between yp and y to model the conditional variance V ar[yp|x, y] (see supplement Section 1 for full

derivation). The conditional variance computed above does not consider bias correction. However,

our procedure is set up to estimate and remove bias in the inference step due to prediction error.

The bias in our estimate can be written as: Biasβ(β̂p) = Ey|X(β̂p) − β. In general, the bias of β̂p

relative to β will not be zero due to errors introduced by the prediction model f(·) in Equation 2.

To correct this problem, we take advantage of the structure of a machine learning problem and

use the testing set to estimate the bias. On the testing set, both y and yp are observed, so we can

make a direct comparison between the two coefficients. We estimate the bias as: ∆bias = β̂p
test
−β̂test

, where β̂p
test

is the no correction estimate performed on the predicted data and β̂test is the estimate

performed on the observed data.

We can fix ∆bias estimated on the testing set and use it to correct the bias on the validation set

due to prediction error: β̂der = β̂p
val
−∆bias. Here, β̂p

val
denotes the no correction estimate using the

predicted data on the validation set. Our corrected estimate β̂der is improved from no correction by

incorporating both the fixed bias term and the estimated conditional variance of predicted outcome.

Now the bias of coefficient β̂der is approximately zero (see supplement Section 1 for full derivation)

and the variance is adjusted to (M val
x

T
M val

x )−1(σ̂2
REL

test + γ̂1
2test · σ̂2

INF
test) (see supplement Section

1 for full derivation). Thus, we propose β̂der, with both bias and variance corrections, behaves more

similar to the gold standard estimate β̂ performed on the observed data.
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Using the corrected estimate and standard error, we can now perform hypothesis test for the

coefficient of interest in our regression model. Recall that the “inference model“ in Equation 5 we

are studying is of the form yi|xi = Mxi
~β + εi where we use yp in place of y. To test for the null

hypothesis against the alternative of the form: H0 : βpk = 0 vs. Ha : βpk 6= 0 (βpk is the k-th

component of the estimator vector), we can then build the test statistic:

t
β̂k

der =
β̂k

der
− βpk

ŝeder
(11)

=
β̂k

der√
(M val

x
TM val

x )−1 · (σ̂2
REL

test + γ̂1
2test · σ̂2

INF
test)

.

We define a decision rule to decide whether the null hypothesis shall be rejected or not. One way is

to compare the test statistic. We reject the null hypothesis H0 : βpk = 0 in favor of the alternative

hypothesis Ha : βpk 6= 0 at the significance level α when t
β̂k

der > tαn−p , where tαn−p is from the t

statistical table with p degrees of freedom and significance level α.

2.3 Bootstrap simulation

In the previous Section 2.2, we concentrated on a setting where the outcome is continuous and

approximately normally distributed. We also made assumptions that the covariate of interest in

the subsequent inferential model comes from the set of covariates used to get predicted values yp

through a machine learning tool. In this section, we expand our scope by proposing a bootstrap

approach for correcting the bias and variance in the downstream inferential analyses. This approach

can be applied for continuous, non-normal data, categorical data, or count data. For our approach

we make the following assumptions: (1) that the relationship between the observed and predicted

outcome can be modeled through a specific simple model, (2) the relationship model will hold out

of sample, and (3) we have a training, testing, and validation set for building the prediction model

and estimating parameters of the relationship model.

The first step of our bootstrap procedure follows the standard process for machine learning by

randomly splitting the data into a training, testing, and validation set. The algorithm then proceeds

as follows:

Bootstrap Procedure:

1. Use the training set data to estimate the outcome prediction function ypi = f̂(xi)

2. Use the testing set data to estimate the relationship model yi = k(ypi), where k can be any
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flexible function.

3. Use the validation set to bootstrap as follows

for Bootstrap iteration b = 1 to B do

(i) For i = 1, 2, ..., n, sample predicted values and the matching covariates (ybpi, x
b
i) with

replacement

(ii) Simulate values from the relationship model ỹbi = k(ybpi) using the function k(·) estimated

from the testing set in Step 2

(iii) Fit the inference model g
(
E[ỹbi |xbi ]

)
= M b

x
~β using the simulated outcomes ỹbi which build

in the prediction error from the relationship model and the matching model matrix based

on the sampled covariates xbi

(iv) Extract the coefficient estimator and its standard error from the inference model in (iii),

denoted as β̂b and se(β̂b), and save them to the coefficient estimator list and the standard

error list accordingly

end for

4. Estimate the coefficient and standard error using a median function: β̂boot = median
(
β̂1, β̂2, ..., β̂B

)
and ŝeboot = median

(
ŝe
(
β̂1
)
, ŝe
(
β̂2
)
, ..., ŝe

(
β̂B
))

The bootstrap approach builds in two types of errors: the error due to random sampling and

the prediction error. The prediction error is introduced by sampling from the relationship model in

the for loop Step 3(ii). We again make the simplifying assumption that yi and ypi can be related

through a model that is easy to fit. We can focus here on the class of generalized linear models,

but in the Bootstrap Procedure Step 2, the relationship function k(·) could be more general,

even flexible as a machine learning algorithm, provided it can be easily estimated and sampled.

The advantage of the relationship model is that we do not need to assume the type or complexity

of the function f(·) used to make the predictions. It can be arbitrarily complicated so long as the

estimated relationship between the observed and predicted values can be sampled.

3 Evaluation

Here we perform a series of comparisons between our derivation and bootstrap approaches to the

alternative of no correction. No correction means that the outcome is predicted and then treated as
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observed in downstream inference models. We can compare our methods postpi derivation, postpi

bootstrap and no correction to the case where we have the observed outcome. In practical examples,

we do not observe the true outcome, but for the purposes of these comparisons, we can either

use simulated data or use data from the validation set where the observed outcome is known for

comparison purposes.

3.1 Simulated data

We simulate the independent covariate x, the error term eTS, and then simulate observed outcome

y using the “true state of nature“ model in Equation 4. The “true state of nature“ is not directly

observed in practical problems but can be specified in simulated problems. We consider both the

case of a continuous outcome and a binary outcome.

3.1.1 Continuous case

For the continuous case we simulate covariates xij and error terms eTSi from normal distributions,

and simulate the observed outcome yi using a linear function h(·) as the “true state of nature“

model for i = 1, ..., n, j = 1, ..., p.

In each simulation cycle, we set the total sample size n = 900 and the dimension of covariate

matrix p = 4. To mimic a complicated data generating distribution and make predictions sufficiently

variable for illustration purposes, we generate data including both linear and smoothed terms.

For the smoothed terms, we use Tukey’s running median smoothing with a default smoothing

parameters“3RS3R” [34]. The error terms are also simulated from a normal distribution with

independent variance. The model specification is:

xi1, xi2, xi3 ∼ N (1, 1)

xi4 ∼ N (2, 1)

eTSi ∼ N (0, 1)

yi = β1xi1 + β2xi2 + β3 · smooth (xi3) + β4 · smooth (xi4) + eTSi

We create a training, testing and validation set by randomly sampling the observed data into three

equal size groups each with sample size 300. To mimic a more realistic setting, we assume that we

are only interested in associating the outcome (yi) and one covariate (in this case xi1), and we will

use a linear inference model to quantify this relationship.
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For our simulation we use random forests [28, 29] to estimate the prediction function f(·). We

fit the random forests model on the training set using all of the covariates xi1, xi2, xi3, xi4 as features

to predict the observed outcomes yi. This prediction, while possibly very accurate at predicting

outcomes, is not designed to estimate the “true state of nature“ or to perform statistical inference.

n testing set we apply the trained prediction model to get predicted outcomes ypi. We estimate

the relationship between the observed and predicted outcome (yi and ypi) as a simple linear re-

gression model: yi|ypi ∼ N (My~γ, σ
2
REL). We then use standard maximum likelihood estimation to

approximate the parameter estimates, γ̂ and σ̂2
REL.

Our evaluation of the performance of different methods is done on an independent validation

set. We will compare inference directly with the predicted outcome (no correction), post-prediction

inference through postpi derivation and post-prediction inference through postpi bootstrap. Since

the validation data includes the observed outcome yi (reserved for results validation but not directly

observed in practical settings), we can compare the results of each approach to what would happen

if we observed the outcome. The baseline model we are comparing to fits the regression model

E[yi|xi1] = β0 + xi1β1 to the observed data on the validation set. We then estimate the coefficient,

standard error, and t-statistic using standard maximum likelihood estimation.

To fit the three correction approaches we first perform the following steps. On the training set,

we estimate the prediction function f̂(·). We then predict the outcome on the testing and validation

sets to produce outcome predictions ypi = f̂(xi1, xi2, xi3, xi4).

To fit the no correction approach, we perform a regression of the form: E[ypi|xi1] = βp0 +xi1βp1,

treating the predicted outcome as if it was observed and calculate the coefficient, standard error,

and t-statistic using maximum likelihood, ignoring the fact that the outcome is predicted.

To fit the postpi derivation approach, we estimate the coefficient by estimating the bias between

the coefficients we get using the observed and predicted data on the testing set. We estimate the

variance of this term using both the inference model and the relationship model on the testing set.

We then apply these corrections to calculate the postpi derivation estimate β̂1
der

, standard error

ŝeder, and t-statistics tder =
β̂der
1

ŝeder
on the validation set.

To fit the postpi bootstrap approach, we follow the Bootstrap Procedure Step 1-4 in Sec-

tion 2.3. In Step 1 we fit the random forests [28, 29] prediction model on the training set. In

Step 2 we estimate the relationship model yi|ypi ∼ N (My~γ, σ
2
REL) on the testing set. In Step 3 we

first set the bootstrap size B = 100 to start the for loop, and then repeat Step 3(i)-(iv) on the

validation set. Specifically, in Step 3(ii) we estimate the relationship model k(·) as a linear function
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and simulate values from the distribution: ỹbi |ybpi ∼ N (M b
yp γ̂, σ̂

2
REL). Both the mean and standard

deviation of the sampling distribution come from the estimated relationship model. In Step 3(iii)

we fit a linear regression model as the inference model: E[ỹbi |xbi1] = βp0 + xbi1βp1. We then estimate

the postpi bootstrap coefficient β̂boot1 , standard error ŝeboot, and t-statistic tboot =
β̂boot
1

ŝeboot
.

Across 500 simulated cases, we fix the values of β2 = 0.5, β3 = 3, β4 = 4 and set β1 to be a range

of values in [−6,−5, ..., 5, 6] for the covariate of interest xi1 in the downstream inferential model.

We then compute the estimates, standard errors, and t-statistics for β1 with no correction, postpi

derivation, and postpi bootstrap approaches and compare them to the baseline results where the

outcome is observed.

In this simulation example, the prediction has relatively little bias, so the estimated coefficients

using the predicted outcome are relatively close to the estimates using the observed outcome in

Figure 3(a). However, the standard errors for the no correction approach (red color) in Figure 3(b)

is much lower than what we would have observed in the observed outcomes. This is because the

prediction function attempts to capture the mean function, but not the variance in the observed

outcome. We compute the root mean squared error (RMSE) [35] to show that both the postpi

derivation and postpi bootstrap approaches outperform the no correction approach. The standard

errors are closer to the truth with an RMSE reduced from 0.087 for no correction (red color) to

0.073 for postpi derivation (green color), and further improved to 0.020 for postpi bootstrap (blue

color) in Figure 3(b). The improved standard errors are reflected in improved t-statistics using the

postpi derivation and postpi derivation bootstrap approaches in Figure 3(c), with RMSE reduced

from 20.80 for no correction (red color) to 12.14 for postpi derivation (green color) and further to

3.84 for postpi bootstrap (blue color).

3.1.2 Binary case

For the binary case we simulate a categorical covariate xic, continuous covariates xi1, xi2, and an

error term eTSi, and then simulate the observed outcome yi assuming a generalized linear model h(·)

for i = 1, ..., n. In this case, we specify the “true state of nature“ model h(·) to be a logistic regression

model. To simulate observed outcomes yi, we first set up covariates through a linear combination

where we smooth a subset of continuous covariates using Tukey running median smoothing [34]

and include errors to increase variability in outcomes yi. We apply the inverse logit function to the

linear predictor to simulate probabilities which we use to simulate Bernoulli outcomes (yi = 0 or 1)
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Figure 3: Continuous simulation. Data were simulated from the ground truth model as described

in Section 3.1.1. On the x-axis are the values calculated using the observed outcome and on the

y-axis are the values calculated using no correction (red color), postpi derivation (green color) and

postpi bootstrap (blue color). We show (a) the estimates, (b) the standard errors and (c) the t-

statistics. The postpi bootstrap and postpi derivation approaches improve the standard errors and

t-statistics compared to no correction.

through binomial distributions. We simulate as follows:

xi1 ∼ N (1, 1)

xi2 ∼ N (2, 1)

xic ∼Multinom(1, (1/3, 1/3, 1/3))

eTSi ∼ N (0, 1)

zi = βB1(xic = B) + βC1(xic = C) + β1 · smooth (xi1) + β2 · smooth (xi2) + eTSi

pri =
1

1 + e−zi

yi ∼ Binom(1, pri)

We generate 1,500 samples for each iteration and and separate the data into a training, testing

and validation set of equal size. We set 1(xc = C) as the covariate of interest in the subsequent

inferential model and compute the corrected coefficient estimate, standard error and test statistic

using the Bootstrap Procedure Step 1-4 in Section 2.3.

We again use random forests [28, 29] as a machine learning tool and all independent covariates

xic, xi1, xi2 as features to estimate the prediction function f(·) on the training set. Then we apply
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the trained prediction model on the testing and validation sets to get the predicted outcome ypi

as well as the probability pri of the predicted outcomes (i.e. pri = Pr(yi = 1)). On the testing

set, we use a logistic regression to estimate the relationship between the observed outcome and the

predicted probability: g(E[yi = 1|pri]) = γ0 + priγ1, where g(·) is the natural log of the odds such

that g(p) = Ln( p
1−p). Here we form the relationship model with the predicted probability. The

reason is that the outcome is dichotomous, so we have little flexibility to model the variance in

the observed outcome as a function of the predicted outcome. Instead, using predicted probability

provides more flexibility to model the relationship.

In the case of a categorical outcome, the derivation approach no longer applies, so we apply the

bootstrap correction only. On the validation, set we follow the Bootstrap Procedure Step 1-4.

First we set the bootstrap size B = 100 to start the for loop. In Step 3(ii) ỹbi = k(prbi ), we simulate

values in two steps: (1) use prbi and the estimated relationship model to predict the probability of

getting the ”success” outcome (i.e. Pr(ỹbi = 1)), and then (2) sample ỹbi from a binomial distribution

with the probability parameter as Pr(ỹbi = 1) obtained from (1). In Step 3(iii) we again fit a logistic

regression model as the inference model: g(E[ỹbi |xbc]) = βp0 + 1(xc = C)bβpC . Then we follow the

postpi bootstrap algorithm to estimate the coefficient β̂boot, standard error ŝeboot, and t-statistic

tboot = β̂boot

ŝeboot
.

In each simulation cycle described above, we fix the values of β1 = 1, β2 = −2, βB = 1. Here we

choose 1(xc = C) as the covariate of interest in the downstream inferential analyses, so we set βC

to be a range of values in [−2,−1.5, ..., 4.5, 5] for illustration purpose. In this example, we see bias

in the coefficient estimate using the no correction approach (red color) in Figure 4(a) with RMSE

8.27 compared to the truth. This bias is corrected through the postpi bootstrap approach (blue

color) in Figure 4(a) with RMSE reduced to 0.65. In this case, we see that both the estimates and

standard errors are inflated in the case of no correction (red color) in Figure 4(a) and (b). Especially

the standard errors for no correction (red color) in Figure 4(b) have extremely large RMSE 473.53

(large standard errors are not shown in the graph for clarity). This is due to the problem of sparsity

in the dichotomous covariates under many simulations. By randomly bootstrapping samples in the

Bootstrap Procedure Step 3(i) and using median function in Step 4, we can get robust standard

errors. Therefore, the standard errors are underestimated with the postpi bootstrap approach (blue

color) in Figure 4(b) and RMSE reduces to 0.041. The t-statistics are biased with no correction

(red color) and this bias is reduced from RMSE 4.02 to 2.14 for postpi bootstrap approach (blue

color) in Figure 4(c). We also observe a horizontal line (red color) in the t-statistic plot. This is
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Figure 4: Categorical simulation. Data were simulated from the ground truth model as described

in Section 3.1.2. On the x-axis are the values calculated using the observed outcome and on the

y-axis are the values calculated using no correction (red color) and postpi bootstrap (blue color).

We show (a) the estimates, (b) the standard errors and (c) the t-statistics. The Postpi bootstrap

improves the estimates, leads to smaller standard errors, and less biased t-statistics compared to no

correction. Extreme values of standard errors are also removed with the postpi bootstrap, which

removes the t-statistics forced to zero under no correction.

due to large standard errors forcing the t-statistics close to zero in the no correction approach. The

postpi bootstrap approach (blue color) removes these values along the horizontal line.

3.2 Applications

To demonstrate the wide applicability of our methodology for performing post-prediction inference,

we present two examples from widely different fields: genomics and verbal autopsy analysis. These

applications share very little in common scientifically, but represent two high profile examples where

inference is typically performed with uncorrected predictions as the outcome (dependent) variable.

First, consider the “Recount2“ Project (https://jhubiostatistics.shinyapps.io/recount)

[36] which consists of RNA sequencing (RNA-seq) gene expression data for over 70,000 human

samples aligned using a common pipeline processed in Rail-RNA [37]. While “Recount2“ human

samples have available gene expression information, not all samples contain observed phenotype

information since the majority of the samples are pulled directly from public data on the sequence

read archive [38]. However, we previously showed that many of these missing phenotype data can
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be predicted from the genomic measurements [2]. Our goal is to perform inference using these

predicted phenotypes.

Second, we describe the distribution of (predicted) causes of death. In regions of the world where

routine monitoring of births and deaths is not possible, one approach to estimating the distribution

of deaths by cause is the verbal autopsy (VA) survey. These surveys take place with a caregiver

or relative of the decedent and ask about the circumstances surrounding the person’s death, and

typically take place when deaths happen outside of hospitals or routine medical care. Either expert

guidance about the relationship between reported symptoms prior to death and the eventual cause

or small “gold standard” datasets are used to train algorithms that predict causes of death based on

reported symptoms. Algorithm development to predict causes of death is an active area of research

and is challenging since data typically contain a mixture of binary, continuous, and categorical

symptoms and many causes of death have similar presentations. After assigning a predicted cause

of death, a common task is to describe patterns in the cause of death distribution. A scientist may

be interested, for example, in how the distribution of deaths varies by region or by sex.

3.2.1 Predicting tissue types

We consider a motivating problem from the “Recount2“ Project [36] (https://jhubiostatistics.

shinyapps.io/recount/). In this example, the phenotype we care about is the tissue type where

the RNA is sampled from. Understanding gene expression levels across tissues and cell types have

many applications in basic molecular biology. Many research topics concentrate on finding which

genes are expressed in which tissues, aiming to expand our fundamental understanding of the origins

of complex traits and diseases [39, 40, 41, 42, 43]. The Genotype-Tissue Expression (GTEx) project

[44], for example, studies how gene expression levels are varied across individuals and diverse tissues

of the human body for a wide variety of primary tissues and cell types [39, 44]. Therefore, to better

understand the cellular process in human biology, it is important to study the variations in gene

expression levels across tissue types.

Even though tissue types are available in GTEx [44], they are not available for most samples

in the “Recount2“. In a previous paper [2], we developed a method to predict for those missing

phenotypes using gene expression data. In this example, we collected a subset of samples that we

have observed tissue types as breast or adipose tissues. We also had predicted values for the above

samples calculated in a previous training set [2] using the 2281 expressed regions [10] as predictors.
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Our goal in this example is to understand which of these regions are most associated with breast

tissue in new samples (i.e. samples without observed tissue types) so that we can understand which

measured genes are most impacted by the biological differences between breast and adipose tissues.

Although here the phenotype we care about is the tissue types, especially breast and adipose tissues,

our method can be broadly applied to any predictions to all phenotypes.

To test our method, we collected 288 samples from the “Recount2“ with both observed and

predicted tissue types. Among the observed tissue types, 204 samples are observed as adipose tissues

and 84 samples are observed as breast tissues. The predicted values obtained from a previously

trained data set [2] include the predicted tissue type (i.e. adipose tissue or breast tissue) and the

probability for assigning a predicted tissue type. In this example, we compare no correction and

postpi bootstrap approaches only since the outcomes we care about - tissue types are categorical.

The inference model we are interested in is: g(E[yi = 1|ERj
i ]) = βj0 + βj1ERj. Here g(·) is the

logit link function for j = 1, . . . , 2281 (expressed regions) and i = 1, . . . , n, n is the total number

of samples in the “Recount2“. In the model, yi = 1 or yi = 0 represents whether breast tissue is

observed or adipose tissue is observed at the ith sample, and ERj
i is the gene expression level for

the jth region on the ith sample.

For this dataset (288 samples), we have binary tissue type outcomes. Since the predicted out-

comes were obtained in a previously trained set [2], we only need to separate our data into a testing

and validation set, each with a sample size n = 144. On the testing set, we fit a k-nearest neigh-

bors [30] model to estimate the relationship between the observed tissue type and the probability

of assigning the predicted value. On the validation set, we follow the Bootstrap Procedure in

Section 2.3. Particularly in Step 3(ii), we simulate values from a distribution ỹbi |prbi ∼ Fγ̂. Similar

to we did with the simulated data in Section 3.1, in this example, we set Fγ to be a binomial distri-

bution with the probability parameter (i.e. probability of assigning the outcome as breast cancer)

estimated from the relationship model. In this way, we utilize the estimated relationship to account

for necessary variations in simulated outcomes.

Among the 2281 expressed regions [10] used to make tissue type predictions [2], we care about

the regions that have expression values across a relatively large amount of samples on the validation

set. It is a well-known phenomenon that many RNA-seq measurements may be zero if the number

of collected reads is low. To avoid highly variable model fits due to zero variance covariates, we only

fit logistic regressions inference models to each filtered expressed region with expressed values over

at least 20% samples. Under this filtering procedure, we include 101 expressed regions as regression
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Figure 5: Breast versus adipose tissue prediction. Data were collected from the ”Recount2”

as described in Section 3.2.1. On the x-axis are the values calculated using the observed outcome

yi (i.e. yi = 1 represents that breast tissue is observed) and on the y-axis are the values calculated

using no correction (red color) and postpi bootstrap (blue color). We show (a) the estimates, (b)

the standard errors and (c) the t-statistics. The postpi bootstrap approach improves the estimates,

standard errors and t-statistics compared to no correction.

variables, and fit the inference model described above to each of the region on the validation set.

We then get 101 estimates, standard errors and t-statistics. We compare them to the no correction

approach as we did with the simulated data.

By comparing RMSE, we observed that the estimates, standard errors and test statistics are

improved from no correction to postpi bootstrap. In Figure 5(a), RMSE of no correction (red color)

is 0.36 compared to the truth and reduces to 0.08 with postpi bootstrap (blue color). The standard

errors in Figure 5(b) have RMSE 0.076 for no correction (red color), but corrected to 0.01 for postpi

bootstrap (blue color). The resulting t-statistics are improved from 0.91 for no correction (red color)

to 0.63 for postpi bootstrap (blue color).

We also applied our approach to correct inference for models using predicted RNA-quality as an

example of how to do post prediction inference for continuous outcomes (See Supplemental Section

2.1).
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3.2.2 Describing cause of death distributions

We now move to our second example where the outcome of interest is the (predicted) cause of death

and inputs are symptoms or circumstances reported by a caregiver or relative. Symptoms might

include, for example, whether a person had a fever before they died, how long a cough lasted (if one

was reported), or the number of times they visited a medical professional. We use data from the

Population Health Metrics Research Consortium (PHMRC), which consists of about 7,800 “gold

standard” deaths from six regions around the world. These data are rare because they contain

both a physical autopsy (including pathology and diagnostic testing) and a verbal autopsy survey.

Typically, only a small fraction of deaths will have an assigned cause (e.g. by a clinician reading

the verbal autopsy survey) and these few labeled deaths will be used as inputs to train a model for

the remaining deaths.

We split the data into a training and testing set, with 75% of the data used for training.

The PHMRC data classify cause of death at several levels of granularity. For our experiments, we

combined causes into twelve broad causes of death (Cancers, Diabetes, Renal diseases, Liver diseases,

Cardiovascular causes, Stroke, Pneumonia, HIV/AIDS or Tuberculosis, Maternal causes, External

causes, Other communicable diseases, and Other non-communicable diseases). We predicted the

cause of death using InSilicoVA[11] which uses a Naive Bayes classifier embedded in a Bayesian

framework to incorporate uncertainty between cause classifications.

In this example, we want to understand trends in the twelve combined causes of death and

we care about both continuous and categorical symptoms. Continuous symptoms include age,

number of people living at this address, age of the respondent. Categorical symptoms include

year of death (2007, 2008, 2009, 2010), sex (male or female), death certificate issued (yes or no),

used tobacco (yes or no), used alcohol (yes or no), education of deceased (College or Higher, High

School, Primary School, No Schooling), separate room for cooking (yes or no), sex of respondent

(male or female), education of respondent (College or Higher, High School, Primary School, No

Schooling), region (AP, Bohol, Dar, Mexico, UP). The inference model we are interested in is:

g(E[yi|SYM j
i ]) = βj0 + βj1SYMj. Here g(·) is the logit link function for j = 1, . . . , 13 (symptoms)

and i = 1, . . . , n, n is the total number of samples in the dataset. In this model, yi represents one

of the twelve combined causes at the ith sample and SYM j
i is the jth symptom of interest on the

ith sample.

For this dataset, we use categorical outcomes as the causes of death for the 1960 samples and
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assume the outcomes are unobserved, as they typically would be in practice, for the remaining

cases. Since the predicted values were obtained in a previously trained set using InSilicoVA[11],

we only separate our data into a testing and validation set, each with a sample size n = 980.

On the testing set, we fit a k-nearest neighbors model [30] to estimate the relationship between

the observed cause of death and the probability of assigning the cause. On the validation set, we

follow the Bootstrap Procedure in Section 2.3. Particularly in Step 3(ii), we simulate values

from a distribution ỹbi |prbi ∼ Fγ̂. In this example, we set Fγ to be a multinomial distribution with

the probability parameters (i.e. probability of assigning each of the twelve broad causes of death)

estimated from the relationship model as we did in the simulated data.

Among all the symptoms used to make causes of death prediction [11], we care about a subset

of symptoms that also have balanced classes across the twelve broad causes of death to avoid highly

variable model fits due to zero variance covariates. We then filter 13 symptoms we are interested in

as regression variables and fit a logistic regression inference model to each of the selected symptom

on the validation set. Because we include categorical regression variables with multiple factor levels

in the inference model and get a inference result for each factor level, we obtain more factor level

results than the number of symptoms. In total, we get 22 estimates, standard errors and t-statistics

on the validation set. We then compare them to the no correction approach as we did with the

simulated data.

By comparing RMSE, we observed that the estimates, standard errors and t-statistics are im-

proved from no correction to postpi bootstrap (see RMSE table in Figure 6(d)). In Figure 6(a),

RMSE of no correction (red color) is 0.84 compared to the truth and reduces to 0.42 with postpi

bootstrap (blue color). The standard errors in Figure 6(b) have rmse 0.2 for no correction (red

color), but corrected to 0.08 for postpi bootstrap (blue color). The resulting t-statistics are im-

proved from 1.66 for no correction to 1.24 for postpi bootstrap (blue color).

4 Discussion

As machine learning becomes more common across a range of applications, it will become more

common for predicted outcomes to be used as outcome variables in the subsequent statistical anal-

yses. As we have shown, post-prediction inference can lead to highly variable or biased estimates

of parameters of interest.

Here we introduced methods to correct for post-prediction inference and adjust point and interval
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Figure 6: Twelve causes of death prediction. Data were collected from Population Health

Metrics Research Consortium (PHMRC) described in Section 3.2.2. On the x-axis of the panel (a),

(b), and (c) are the values calculated using the observed causes of death as outcome and on the

y-axis are the values calculated using no correction (red color) and postpi bootstrap (blue color).

We show (a) the estimates, (b) the standard errors, (c) the t-statistics and (d) the RMSE table.

The postpi bootstrap approach improves the estimates, standard errors and t-statistics compared

to no correction.
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estimates when using predicted outcomes in place of observed outcomes. Our method is flexible

enough to be applied to continuous and categorical outcome data, observed in fields such as medicine,

public health, and sociology. Through simulated and real data, we show that our results outperform

the most common current approach of ignoring the prediction step and performing inference without

correction. By appropriately modeling the variability and bias due to the prediction step, the

estimates, standard errors and test statistics are corrected towards the gold standard analysis we

would obtain if we used the true outcomes.

Our approach relies on the key observation that the relationship between the observed and

predicted values can be described as a simple model. While this observation is empirically true

for the models and algorithms we considered, it may not hold universally. One limitation of our

approach is that it depends on the fitness of the relationship model. For instance, when the predicted

values are obtained from weak learners, the correlation between the observed and predicted outcomes

is not strong, which may not be well captured by a simple model. Another limitation is that we

assume the training, testing and validation sets follow approximately the same data generating

distribution. If this assumption does not hold, inference performed on the bootstrapped values on

the validation set will no longer reflect the true underlying data generating process. A potential

solution is that we should first conduct data normalization using methods such as SVA [45], RUV [46]

and removeBatchEffect in limma [47] to correct for latent confounders in the testing or validation

sets. The normalized samples can then be input into our method for subsequent inferential analyses.

Despite these limitations, we believe correction for post-prediction inference is crucial for ob-

taining accurate inference when using outcomes produced by machine learning methods. Our cor-

rection represents the first step toward a general solution to the post-prediction inference prob-

lem. To make this method usable by the community we have released the postpi R package:

[https://github.com/SiruoWang/postpi].
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