Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A bacterial symbiont protects honey bees from fungal disease

Delaney L. Miller, Eric A. Smith, View ORCID ProfileIrene L. G. Newton
doi: https://doi.org/10.1101/2020.01.21.914325
Delaney L. Miller
1Department of Biology, Indiana University, Bloomington, Indiana, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric A. Smith
1Department of Biology, Indiana University, Bloomington, Indiana, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Irene L. G. Newton
1Department of Biology, Indiana University, Bloomington, Indiana, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Irene L. G. Newton
  • For correspondence: irnewton@indiana.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Fungi are the leading cause of insect disease, contributing to the decline of wild and managed populations1,2. For ecologically and economically critical species, such as the European honey bee (Apis mellifera), the presence and prevalence of fungal pathogens can have far reaching consequences, endangering other species and threatening food security3,4,5. Our ability to address fungal epidemics and opportunistic infections is currently hampered by the limited number of antifungal therapies6,7. Novel antifungal treatments are frequently of bacterial origin and produced by defensive symbionts (bacteria that associate with an animal/plant host and protect against natural enemies 89. Here we examined the capacity of a honey bee-associated bacterium, Bombella apis, to suppress the growth of fungal pathogens and ultimately protect bee brood (larvae and pupae) from infection. Our results showed that strains of B. apis inhibit the growth of two insect fungal pathogens, Beauveria bassiana and Aspergillus flavus, in vitro. This phenotype was recapitulated in vivo; bee brood supplemented with B. apis were significantly less likely to be infected by A. flavus. Additionally, the presence of B. apis reduced sporulation of A. flavus in the few bees that were infected. Analyses of biosynthetic gene clusters across B. apis strains suggest antifungal production via a Type I polyketide synthase. Secreted metabolites from B. apis alone were sufficient to suppress fungal growth, supporting this hypothesis. Together, these data suggest that B. apis protects bee brood from fungal infection by the secretion of an antifungal metabolite. On the basis of this discovery, new antifungal treatments could be developed to mitigate honey bee colony losses, and, in the future, could address fungal epidemics in other species.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 23, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A bacterial symbiont protects honey bees from fungal disease
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A bacterial symbiont protects honey bees from fungal disease
Delaney L. Miller, Eric A. Smith, Irene L. G. Newton
bioRxiv 2020.01.21.914325; doi: https://doi.org/10.1101/2020.01.21.914325
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A bacterial symbiont protects honey bees from fungal disease
Delaney L. Miller, Eric A. Smith, Irene L. G. Newton
bioRxiv 2020.01.21.914325; doi: https://doi.org/10.1101/2020.01.21.914325

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4246)
  • Biochemistry (9173)
  • Bioengineering (6806)
  • Bioinformatics (24064)
  • Biophysics (12158)
  • Cancer Biology (9565)
  • Cell Biology (13825)
  • Clinical Trials (138)
  • Developmental Biology (7660)
  • Ecology (11737)
  • Epidemiology (2066)
  • Evolutionary Biology (15544)
  • Genetics (10672)
  • Genomics (14362)
  • Immunology (9515)
  • Microbiology (22910)
  • Molecular Biology (9131)
  • Neuroscience (49156)
  • Paleontology (358)
  • Pathology (1487)
  • Pharmacology and Toxicology (2584)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6206)
  • Zoology (1303)