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Abstract 13 

During development, cells gradually assume specialized fates via changes of 14 

transcriptional dynamics, sometimes even within the same developmental stage. For 15 

anterior-posterior patterning in metazoans, it has been suggested that the gradual 16 

transition from a dynamic genetic regime to a static one is encoded by different 17 

transcriptional modules. In that case, the static regime has an essential role in pattern 18 

formation in addition to its maintenance function. In this work, we introduce a geometric 19 

approach to study such transition. We exhibit two types of genetic regime transitions, 20 

respectively arising through local or global bifurcations.  We find that the global bifurcation 21 

type is more generic, more robust, and better preserves dynamical information. This could 22 

parsimoniously explain common features of metazoan segmentation, such as changes of 23 

periods leading to waves of gene expressions, “speed/frequency-gradient” dynamics, and 24 

changes of wave patterns. Geometric approaches appear as possible alternatives to gene 25 

regulatory networks to understand development.  26 
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Introduction 27 

Development from one zygote to a viable animal is a complex process (Wolpert et al., 28 

2006), comprising multiple dynamical sub-processes, including cell movements, tissue 29 

morphogenesis, dynamical gene expressions, and cellular differentiations. Eventually, 30 

cell identities are fixed by various mechanisms, such as multistable gene regulatory 31 

networks and epigenetic markers. Little is known about how this transition from a 32 

dynamic/initiation phase to a static/maintenance one is mediated. Are there general 33 

characteristics that should be matched between dynamic and static phases to mediate a 34 

robust transition?  35 

In dynamical systems theory, transitions between different regimes are called 36 

‘bifurcations’, which are defined as qualitative changes in the dynamics of a system driven 37 

by a so-called ‘control parameter’ (Strogatz, 2015). Bifurcations are of many types but 38 

can be systematically classified. For instance, generic families of potentials driving the 39 

dynamics have been identified as different “catastrophes” (Poston & Stewart, 2012). 40 

While such mathematical descriptions are highly technical, they are reminiscent of the 41 

theory of epigenetic landscapes pushed forward by Waddington (Waddington, 1957). It 42 

is thus natural to ask if such classifications can be done for development. Could dynamical 43 

systems theory help us in this pursuit, and in studying development in general? The main 44 

issue here is to frame the problem in a way that allows to derive general results. 45 

In recent years, numerous experimental studies have revealed that quantitative changes 46 

of gene expressions during development often followed standard predictions from 47 

dynamical systems theory (Huang et al., 2007). The Waddington landscape’s analogy 48 
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(Jaeger & Monk, 2014) has led to many insights in cell differentiation (Graf & Enver, 2009), 49 

and recent data on cell reprogramming quantitatively validated the associated “landscape 50 

picture” (Pusuluri et al., 2018).  Geometric models of development have been developed 51 

in particular cases, precisely predicting the general phenotypes of wildtype and mutants 52 

(e.g. the development of C. elegans vulva (Corson & Siggia, 2012) and Drosophila brittle 53 

patterns (Corson et al., 2017)). 54 

The Clock-and-Wavefront model (Cooke & Zeeman, 1976), accounting for the observed 55 

dynamical somite (vertebrae precursors) formation, was inspired by catastrophe theory. 56 

The model predicted that a retracting wavefront translates the periodic expression of a 57 

genetic clock into a spatial pattern via “catastrophic” transitions demarcating the positions 58 

of the somites (Figure 1A). Identification of the predicted clock in 1997 (Palmeirim et al., 59 

1997) has since led to many subsequent theoretical and experimental works, including 60 

observation of similar clocks in multiple arthropods (El-Sherif et al., 2012; Sarrazin et al., 61 

2012). Cooke and Zeeman originally assumed that the clock is an external process, blind 62 

to the subsequent segmentation process it directs (Cooke & Zeeman, 1976). However, it 63 

has been very clear from the early experiments in (Palmeirim et al., 1997) that cellular 64 

oscillators increase their period prior to segmentation, leading to traveling waves of 65 

various signalling pathways such as Notch (Giudicelli et al., 2007; Morelli et al., 2009) 66 

(Figure 1A). Importantly, Notch waves eventually stabilize into a pattern of delta ligand 67 

stripes (Giudicelli & Lewis, 2004; Jiang et al., 2000), with a functional continuity between 68 

the dynamic and the static regime. Indeed, it has been shown that the dynamical phase 69 

of the clock is encoded into static rostro-caudal identities (Oginuma et al., 2010). This 70 

suggests that the observed oscillation is not a simple external pacemaker for segment 71 
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formation: rather, clocks, associated waves and eventual stripe formations combine into 72 

an emergent process leading to proper fate encoding. Segmentation thus possibly 73 

appears as the canonical example of transition from a dynamical gene expression regime 74 

to a static functional one.  75 

Two broad scenarios have been proposed to model this process (see Figure 1). In the 76 

first scenario, the period of the individual oscillators is diverging to infinity as they become 77 

more anterior (or similarly, the frequency of the clock is going to 0), automatically giving 78 

rise to a fixed pattern (Figure 1B-F). This model corresponds to Julian Lewis’ model for 79 

somitogenesis (appendix of (Palmeirim et al., 1997)), and it is possible to experimentally 80 

quantify the period divergence within this model (Giudicelli et al., 2007). This also 81 

corresponds to the implicit scenario of many theoretical models assuming that the 82 

frequency of the clock goes to 0 as cells get more anterior, such as the models in (Ares 83 

et al., 2012; Morelli & Jülicher, 2007), possibly with a sharp discontinuity suppressing 84 

period divergence (Jörg et al., 2015). Those models are appealing owing to their simplicity, 85 

since all behaviour is encoded in a dynamical frequency gradient (possibly mediated by 86 

FGF (Dubrulle & Pourquié, 2004)). However it is unclear what happens from a dynamical 87 

systems theory standpoint (a noteworthy exception being the proposal that the gradient 88 

emerges through a singularity in phase similar to the Burger’s equation (Murray et al., 89 

2013)). In particular, the pattern in this scenario literally corresponds to a frozen clock, 90 

such that there is an infinite number of local steady states corresponding to the frozen 91 

phases of the oscillators. 92 

A second scenario grounded in dynamical systems theory has been proposed (François 93 

& Siggia, 2012). In this scenario, a genetic network transits from an oscillatory state to an 94 
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ensemble of (stable) epigenetic states (in Waddington’s sense) fixing the pattern. 95 

Possible examples include the initial reaction-diffusion based model by Meinhardt 96 

(Meinhardt, 1986), or the cell-autonomous model under morphogen control evolved in 97 

(François et al., 2007) (Figure 1G). Based on geometric arguments, if bifurcations are 98 

local, the most generic model of this transition is expected to present two steps as 99 

explained in (François & Siggia, 2012). As a steep control parameter (possibly controlled 100 

by a morphogen such as FGF) decreases, the oscillation dies out through a Hopf 101 

bifurcation, leading to a single transient intermediate state. Then, for even lower values 102 

of the morphogen, one or several new (stable) states appear (technically through saddle-103 

node bifurcations, see Figure 1–figure supplement 1). If the system translates rapidly 104 

enough from the oscillatory regime to the multistable regime, a pattern can be fixed 105 

(Figure 1H-K). Contrary to the previous scenario where the period of the clock goes to 106 

infinity, a Hopf bifurcation is associated to a finite period when the clock stops. The pattern 107 

of gene expression itself is laid thanks to multiple expression states discretizing the phase 108 

of the clock (Figure 1—figure supplement 1). Importantly, a finite number of states are 109 

observed, e.g. anterior and posterior fates within one somite (as first pointed out by 110 

Meinhardt (Meinhardt, 1982)). 111 

In this paper, we revisit those ideas with explicit modelling to characterize the behaviour 112 

of systems transitioning from a dynamical regime (such as an oscillation) to a static 113 

multistable regime. We introduce two new assumptions: 1. the two different phases of 114 

developmental expression (dynamic and static) can be separated into two independent 115 

sets of transcriptional modules acting on several genes simultaneously, and 2. the system 116 

smoothly switches from one set to the other. This proposal is motivated by the recent 117 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914598doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914598
http://creativecommons.org/licenses/by/4.0/


 7 

suggestion in insects that different sets of enhancers control waves of gap genes at 118 

different phases of embryonic growth (El-Sherif & Levine, 2016). Such assumptions 119 

simply explain the so-called “speed-gradient” model in Tribolium (Zhu et al., 2017) (see 120 

Figure 1—figure supplement 2). Using both gene network and geometric formalisms, we 121 

characterize the types of bifurcations found in systems transitioning from a dynamical to 122 

a static regime. We find that surprisingly, if the transition is smooth enough, global 123 

bifurcations appear. This situation is different from the standard scenario (Hopf and 124 

saddle-nodes) that we nevertheless recover if the transition is more non-linear. This is a 125 

generic result that is better studied and understood using geometric models. We further 126 

show that the transition through a global bifurcation is more robust than the sequence of 127 

Hopf and saddle-node bifurcations with respect to several perturbations that we simulate. 128 

Finally, we find that this model can explain many features of metazoan segmentation, 129 

such as “speed-gradient” mechanisms or changes of spatial wave profiles due to 130 

relaxation-like oscillations. This geometric approach thus offers a plausible scenario 131 

underlying embryonic patterning with many associated experimental signatures.  132 
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Model 133 

In the following, we consider a class of developmental models based on the combination 134 

of (at least) two different transcriptional modules. Biologically, those two modules 135 

correspond to two sequential developmental phases. The main assumptions are that 136 

those transcriptional modules are globally regulated for multiple genes at the same time 137 

(which could be done for instance through chromatin global regulations) and that there is 138 

a continuous transition from one to the other. Here we focus on metazoan segmentation, 139 

notably stabilization of vertebrate segmentation clock or gap gene waves into a striped 140 

pattern of genetic expressions, but the formalism might be applicable to other patterning 141 

processes where different enhancers with distinct developmental roles have been 142 

described. 143 

We use ordinary differential equations to model our system. Calling 𝑃 a vector encoding 144 

the state of all proteins in any given cell (typically 𝑃 corresponds to concentrations of 145 

proteins), a generic single-cell equation describing all models presented in the following 146 

is: 147 

𝑃̇ = 𝜃𝐷(𝑔) 𝐷(𝑃) + 𝜃𝑆(𝑔) 𝑆(𝑃) + 𝐶(𝑃) + 𝜂(𝑔, 𝑃)            (1) 148 

In Eq. 1, variable 𝑔 encodes an external control parameter of the developmental transition.  149 

For example, 𝑔 could be an external morphogen concentration driving patterning, but 150 

more complex situations with feedback are possible, where 𝑔 could also be part of the 151 

system (e.g. the phase difference between oscillators (Beaupeux & François, 2016; 152 

Sonnen et al., 2018)). For simplicity, we rescale variables so that 𝑔  is constrained 153 

between 0 and 1. The terms 𝐷(𝑃) and 𝑆(𝑃) correspond to different sets of modules, their 154 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914598doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914598
http://creativecommons.org/licenses/by/4.0/


 9 

influence on the dynamics being weighted by functions 𝜃𝐷(𝑔) and 𝜃𝑆(𝑔), respectively. 155 

The term 𝜂(𝑔, 𝑃) encodes the noise. Finally, 𝐶(𝑃) represents dynamical terms that are 156 

independent of the transcriptional modules, such as protein degradation. 157 

We focus here on the simplest two-module case, where 𝑆(𝑃)  encodes a multistable 158 

system (i.e. presenting multiple fixed points at steady state) and 𝐷(𝑃) a dynamic system 159 

(i.e. oscillatory). In this situation we will assume 𝜃𝑆(0) = 1, 𝜃𝑆(1) = 0, 𝜃𝐷(0) = 0, and 160 

𝜃𝐷(1) = 1, meaning that for 𝑔 = 1 the network is in a pure dynamic phase, while for 𝑔 =161 

0 the network is multistable. Details on the specific forms of 𝐷(𝑃), 𝑆(𝑃), 𝜃𝐷(𝑔) and 𝜃𝑆(𝑔) 162 

are given in the following and in the Appendix. We study two types of models: gene-163 

network like models where 𝐷(𝑃)  and 𝑆(𝑃)  explicitly model biochemical interactions 164 

between genes (such as transcriptional repression), and geometric models where 𝐷(𝑃) 165 

and 𝑆(𝑃) directly encode flows in an abstract 2D phase space, similarly to (Corson & 166 

Siggia, 2017).  167 

We model an embryo as a line of cells, corresponding to the antero-posterior axis. The 168 

dynamics within each cell (position 𝑥) is described by Eq. 1. The only difference between 169 

cells is that the dynamics of 𝑔 is a prescribed function of 𝑥, e.g. we assume that there is 170 

a function 𝑔(𝑥, 𝑡) describing the dynamics of a morphogen. We focus on the transition 171 

between the two regimes as 𝑔 continuously changes from 1 to 0 in different cells as a 172 

function of time. We will typically consider a sliding morphogen gradient moving along the 173 

antero-posterior axis with speed 𝑣 , described by 𝐻(𝑠(𝑥 − 𝑣𝑡))  where the function 𝐻 174 

encodes the shape of the morphogen, and parameter 𝑠 is a measure of the gradient’s 175 

spatial steepness. 176 
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We also include noise in the system with the help of an additive Gaussian white noise. 177 

For gene networks, we follow an approach similar to the W-leaping algorithm (Gillespie, 178 

2001), where the variance of the noise corresponds to the sum of the production and the 179 

degradation terms (approximating independent Poisson noises). A multiplicative noise 180 

intensity term √1/Ω is introduced, where : can be interpreted as the typical concentration 181 

of the proteins in the system, so that bigger : corresponds to lower noise. In addition, we 182 

add diffusion coupling the cells in the stochastic gene network models. For the geometric 183 

model, the variance of the noise is held independent of the position 𝑥. A more detailed 184 

description of the noise and diffusion terms is provided in the Appendix. 185 

All source codes and data used for this paper are available at : 186 

https://github.com/laurentjutrasdube/Dual-187 

Regime_Geometry_for_Embryonic_Patterning  188 
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Results 189 

A model for the transition between two genetic modules: Hopf vs. SNIC.  190 

In (Zhu et al., 2017), it was suggested that the transition from a “wave-like” behaviour to 191 

a static pattern during Tribolium segmentation was mediated by a smooth transition from 192 

one set of modules (corresponding to the oscillatory phase) towards another one 193 

(corresponding to the fixed pattern). This explained the “speed-gradient” mechanism 194 

where the typical time-scale of the dynamical system depends strongly on an external 195 

gradient (in this case the concentration of Caudal). In the Appendix, we further study the 196 

associated bifurcation, and observe that new fixed points corresponding to the 197 

stabilization of gap gene expressions appear on the dynamical trajectory of those gap 198 

genes (Figure 1—figure supplement 2). In simple words, the gap gene expression pattern 199 

slowly “freezes” without any clear discontinuity in its behaviour from the dynamic to the 200 

static phase, which is reminiscent of the “infinite-period” scenario displayed on Figure 1. 201 

We first aim to generalize this observed property. A simple way to generate many waves 202 

of genetic expressions (as in the gap-gene system described above) is to consider an 203 

oscillatory process, so that each wave of the oscillation corresponds to a wave of gap 204 

genes. We are not saying here that the gap-gene system is an oscillator, but rather that 205 

its dynamics can be encompassed into a bigger oscillator (which has actually been 206 

suggested as an evolutionary scenario (Verd et al., 2018)). The other advantage of 207 

considering oscillators is that we can better leverage dynamical systems theory to identify 208 

and study the bifurcations. Furthermore, it allows for a better connection with oscillatory 209 

segmentation processes in vertebrates and other arthropods. 210 
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We thus start with an idealized gene regulatory network with 3 genes under the control of 211 

two regulatory modules (Figure 2). In the dynamic phase 𝐷(𝑃), we assume that the 3 212 

genes are oscillating with a repressilator dynamics (Elowitz & Leibler, 2000), so that the 213 

system keeps a reference dynamical attractor and an associated period. In the static 214 

phase 𝑆(𝑃), we assume that the module encodes a tristable system via mutual repression 215 

(Figure 2A).  216 

 We study the dynamics in a simulated embryo under the control of a regressing front of 217 

𝑔 (Figure 2B). Transition from the dynamic module to the static module is expected to 218 

form a pattern by translating the phase of the oscillator into different fates, implementing 219 

a clock and wavefront process similar in spirit to the one in (François et al., 2007). We 220 

compare two versions of this model, presenting the two different behaviours that we found. 221 

In Model 1 (Figure 2C-H), the weights of the two modules are non-linear in 𝑔: 𝜃𝐷(𝑔) = 𝑔2 222 

and 𝜃𝑆(𝑔) = (1 − 𝑔)2  (Figure 2C). In Model 2 (Figure 2I-N), the weights of the two 223 

modules are linear in 𝑔: 𝜃𝐷(𝑔) = 𝑔 and 𝜃𝑆(𝑔) = 1 − 𝑔 (Figure 2I). We note that the initial 224 

and final attractors of both models are identical. Importantly, only the transition from one 225 

set of modules (and thus one type of dynamics) to the other is different. This two-module 226 

system thus offers a convenient way to compare the performance of different modes of 227 

developmental transition while keeping the same “boundary conditions” (i.e. the same 228 

initial and final attractors). 229 

Figure 2E and Figure 2K show the kymographs for both models without noise, with 230 

behaviours of individual cells in Figure 2D and Figure 2J. While the final patterns of both 231 

models are the same (Figure 2F and Figure 2L), giving rise to a repeated sequence of 232 

three different fates, it is visually clear that the pattern formed with Model 2 is more precise 233 
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and sharper along the entire dynamical trajectory than the one formed with Model 1, which 234 

goes through a “blurry” transitory phase (compare mid-range values of 𝑔 on Figure 2E 235 

and Figure 2K).  236 

To better understand this, we plot the bifurcation diagram of both models as a function of 237 

𝑔 in Figure 2G and Figure 2M. As 𝑔 decreases, Model 1 is the standard case of a local 238 

Hopf bifurcation (Strogatz, 2015) happening at 𝑔 = 0.72. Three simultaneous saddle-239 

node bifurcations appear for lower values of 𝑔, corresponding to the appearance of the 240 

fixed points defining the three regions of the pattern. The behaviour of Model 2 is very 241 

different: the fixed points form on the dynamical trajectory, via three simultaneous Saddle 242 

Node on Invariant Cycle (or SNIC) bifurcations. Both models display waves 243 

corresponding to the slowing down of the oscillators, leading to a static regime. In Model 244 

1, the time-scale disappears with a finite value because of the Hopf bifurcation (Figure 245 

2H). For Model 2, it diverges because of the SNIC (Figure 2N), suggesting an explicit 246 

mechanism for the infinite-period scenario of Figure 1. 247 

To further quantify the differences of performance between the two models, we introduce 248 

noise (encoded with variable :, see the Model section and the Appendix) and diffusion 249 

(Figure 3A-D). We also define a mutual information metric, measuring how precisely the 250 

phase of the oscillator is read to form the final pattern (Figure 3E, see the Appendix for 251 

details), consistent with the experimental observation in vertebrate segmentation that 252 

oscillatory phases and pattern are functionally connected (Oginuma et al., 2010). 253 

Intuitively, this metric quantifies in a continuous way the number of fates encoded by the 254 

system at steady state. Ideal mutual information for the three mutually exclusive genes of 255 

Models 1 and 2 gives 𝑙𝑜𝑔(3) ~ 1.6 bits of mutual information, meaning that the pattern 256 
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deterministically encodes the phase of the cycle into three static fates with equal weights. 257 

While addition of noise decreases this mutual information as expected (Figure 3E), Model 258 

2 (black curves) always outperforms Model 1 (red curves). For a reasonable level of noise 259 

corresponding to a few thousands of proteins in the system, Model 2 can encode 260 

21.3 ~ 2.5 fates, close to the optimum 3. Furthermore, for a given diffusion constant, Model 261 

1 requires a ten times smaller noise level than Model 2 to encode the same amount of 262 

mutual information, which thus indicates much better noise resistance for Model 2. 263 

Those observations suggest that appearance of stable fixed points through SNIC rather 264 

than through Hopf generates a more robust pattern. The superiority of Model 2 can be 265 

rationalized in the following way: when there is a Hopf bifurcation, only one fixed point 266 

exists for a range of 𝑔  values, so that all trajectories are attracted towards it. This 267 

corresponds to the “blurred” zone in the kymographs of Figure 2 and Figure 3. In presence 268 

of noise, the effect is to partially erase the memory of the phase of the oscillation when 269 

only one fixed point is present for the dynamics. Conversely, a SNIC bifurcation directly 270 

translates the phase of the oscillation into fixed points, without any erasure of phase 271 

memory, ensuring higher information transfer from the dynamic to the static phase, and 272 

therefore more precise patterning. We confirmed these results with similar 3-gene models 273 

that used Hill functions for the weights 𝜃𝐷 and 𝜃𝑆 (Figure 2—figure supplement 1 and 274 

Figure 3—figure supplement 1).  275 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914598doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914598
http://creativecommons.org/licenses/by/4.0/


 15 

Gene-free models present a similar geometry of transition  276 

Hopf and saddle-node bifurcations are “local” bifurcations: they do not in principle require 277 

complex changes of the flow or fine-tuning of the parameters to happen. As such, they 278 

are the most standard cases in many natural phenomena and in most theoretical studies. 279 

Conversely, SNIC bifurcations are “global” bifurcations (Ermentrout, 2008): they are 280 

associated to global changes of the flows and usually require some special symmetries 281 

or parameter adjustments to occur (e.g. to ensure that a saddle-node collides with a cycle). 282 

It is therefore a surprise that SNIC bifurcations spontaneously appear in the model 283 

considered here. To better understand how this is possible and if this is a generic 284 

phenomenon, we follow ideas first proposed by Corson and Siggia (Corson & Siggia, 285 

2012), and consider geometric (or gene-free) systems. We aim to see if: 1. SNIC 286 

bifurcations are generically observed, and 2. a model undergoing a SNIC bifurcation is in 287 

general more robust to perturbations than a model undergoing a Hopf bifurcation, with 288 

initial and final attractors being held fixed. We thus build 2D geometric versions of the 289 

system (variables 𝑦  and  𝑧). The dynamic module 𝐷(𝑃) is defined by a non-harmonic 290 

oscillator on the unit circle, while the static module 𝑆(𝑃) is defined by two fixed points, at 291 

𝑦 = ± 1, 𝑧 = 0 (see Figure 4A, and the Appendix for the equations). Like previously, we 292 

build a linear interpolation between the two systems as a function of 𝑔 and explore the 293 

consequence on the bifurcations (Figure 4B-H). Since the flow in the system is 2D, we 294 

can also easily visualize it (Figure 4I and Figure 4—movie supplement 1). 295 

In brief, this geometric approach confirms all the observations made on the gene network 296 

model of the previous section, and further clarifies the origin of the SNIC bifurcation. 297 

Because of the smooth transition between modules, the entire flow in 2D needs to 298 
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interpolate from a cycle to a bistable situation. When both modules have close to equal 299 

weights (around 𝑔 = 0.5), the flow and associated cycle concentrate around two future 300 

fixed points. This appears in retrospect as the most natural way to interpolate between 301 

the two situations since both types of attractor (stable limit cycle, and multiple stable fixed 302 

points) are effectively present at the same time around 𝑔 = 0.5. For this reason, the 303 

oscillations are also more similar to relaxation oscillations, rapidly jumping between two 304 

values corresponding to the future fixed points. When 𝑔 is further lowered, the weight of 305 

the static module dominates and “tears apart” the cycle, forming two fixed points. 306 

This situation is so generic that in fact, to obtain a Hopf bifurcation, we have to 307 

mathematically reinforce the fixed point at 𝑦 = 0 for intermediate 𝑔. To do so, we add an 308 

extra term and use a non-linear combination of the three terms (see Figure 4—figure 309 

supplement 1). In this situation, as expected the flow first concentrates on the central 310 

fixed point at 𝑦 = 0, before re-emerging in a bistable pattern for lower 𝑔 (Figure 4—figure 311 

supplement 1I and Figure 4—movie supplement 2). As in the previous section, our mutual 312 

information metric confirms that the pattern is more precise when the system goes 313 

through a SNIC bifurcation rather than through a sequence of Hopf and pitchfork 314 

bifurcations (Figure 4—figure supplement 2). This thus suggests that the properties we 315 

observe are generic, and that keeping the static and dynamic attractors fixed, patterning 316 

is both more generic and more robustly encoded through a SNIC bifurcation than through 317 

a Hopf bifurcation, at least in simple low-dimension models.  318 
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Robustness and asymmetry in the fixed points  319 

A concern with the results of the previous section might be that those mathematical 320 

models are in fact fine-tuned and too symmetrical, so that in particular when the transition 321 

occurs, both new fixed points appear for the same value of the control parameter. 322 

Furthermore, real biological networks have no reasons to be perfectly symmetrical 323 

(although evolution itself might select for more symmetrical dynamics if needed). We thus 324 

relax our hypotheses to study a system where parameters and trajectories are not 325 

symmetrical (Figures 5 and 6).  326 

Going back first to the gene network model, we induce an asymmetry between the fixed 327 

points by changing thresholds of repression in the static phase (Figure 5A). The 328 

bifurcation diagrams of Figure 5B-C indicate that the asymmetry of the fixed points indeed 329 

breaks the simultaneity of appearance of all fixed points in both scenarios. We 330 

nevertheless notice that for those changes of parameters, all bifurcations still happen in 331 

a very narrow range of 𝑔 for the SNIC model. 332 

Asymmetry of the fixed points might therefore destroy the advantage of SNIC vs Hopf by 333 

creating a transient zone where one of the fixed points always dominates. We thus 334 

perform a comparison between Models 1 and 2 with the same asymmetric static 335 

enhancers (Figure 5, see also Figure 5—figure supplements 1 and 2, and the Appendix 336 

for details). To compare the two cases, we consider different time-scales of the 337 

morphogen gradient. The reasoning is that the slower the decay of 𝑔, the more time the 338 

system spends in a region of parameter space without all three final fixed points, allowing 339 

the system to relax and “lose” phase information. Conversely, a faster decay of 𝑔 means 340 
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that less time is spent in a region with few fixed points, and therefore the patterns are 341 

expected to be more robust.  342 

We first decrease the thresholds of repression of gene A by both genes B and C (Figure 343 

5A). Results of these simulations are shown in Figure 5: Model 2 with a SNIC bifurcation 344 

still outperforms Model 1 with Hopf and saddle-node bifurcations. In particular, it is again 345 

visually very clear on kymographs how Model 2 produces a robust and well-defined 346 

pattern at any time point of the simulations, while Model 1 gives rise to a much fuzzier 347 

pattern before the transition. Model 1 produces a robust static pattern only for a steep 348 

gradient (allowing to quickly move through the “fuzzy” phase) and a weak asymmetry in 349 

the static module (Figure 5E). It is brittle to any change of the dynamics of 𝑔 (Figure 5H) 350 

or to stronger asymmetry in the static module (Figure 5—figure supplement 1E,H). 351 

Conversely, Model 2 is robust to different shapes of the morphogen (Figure 5F,I). Only 352 

for a strong asymmetry does the system lose one fixed point (Figure 5—figure 353 

supplement 1I), but even in this case transitions through a SNIC bifurcation appear 354 

superior to transitions through a Hopf bifurcation.  355 

The fragility of the Hopf bifurcation to asymmetries in the parameters can be understood 356 

as follows. In the asymmetric versions of Model 1, one of the fixed points of the static 357 

term forms during the Hopf bifurcation, way before the two other fixed points form. It is 358 

therefore the only attractor available for a large range of 𝑔 values. However, in Model 2 359 

the same asymmetry only favors one of the saddle-nodes for a small range of 𝑔 values, 360 

generating a robust pattern. Again, we can use the mutual information metric defined 361 

above to quantify the robustness of the pattern and confirm the superiority of Model 2 362 

(Figure 5—figure supplement 2J). We also confirmed these results for the case of random 363 
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modifications of the repression thresholds of all interactions in the static term (Figure 5—364 

figure supplement 2). 365 

The asymmetry introduced in Figure 5 changes the shapes of the basins of attraction and 366 

the positions of the fixed points. The geometric model allows to change those features 367 

independently. The most generic way to introduce asymmetry in the system is to fix the 368 

position of the fixed points of the static regime while only changing the positions of the 369 

basins of attraction (the reason is that the future fates depend on the position of the 370 

separatrix between different regimes (Corson & Siggia, 2012)). To replicate this situation 371 

in the 2D gene-free models, we thus move the unstable fixed point of the static term along 372 

the 𝑦 axis. Results of this procedure are shown on Figure 6 and confirm our results on 373 

the network-based models: Model 2 bifurcates via a SNIC and is always more robust than 374 

Model 1. When we change the positions of the fixed points in the static regime to move 375 

them away from the limit cycle (still in an asymmetric way), interestingly both Models 1 376 

and 2 now bifurcate via SNICs (Figure 6—figure supplement 1). Furthermore, we see that 377 

for Model 1, the amplitude of the limit cycle decreases before the bifurcation, while for 378 

Model 2, the amplitude increases.  379 

We conclude from all those numerical perturbations that even with asymmetric basins of 380 

attraction and asymmetric parameters, transitions based on SNIC bifurcations are both 381 

more generic and more robust than the ones based on Hopf bifurcations.  382 
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SNIC and asymmetric wave patterns 383 

It is then worth studying other properties of systems transitioning from oscillatory to static 384 

patterns. As said above, close to the SNIC bifurcation, the time-scale of the system 385 

diverges, suggesting an explicit mechanism explaining infinite-period transitions in 386 

metazoan segmentation within a dynamical systems framework. We thus compare the 387 

behaviour of the wave pattern in this model to a model where such infinite-period 388 

behaviour is assumed, namely the model of a collection of coupled oscillators from 389 

(Morelli et al., 2009). A kymograph of the spatio-temporal profile of the frequency imposed 390 

on the oscillators is shown in Figure 7A, and the dynamics of the resulting pattern 391 

formation process is shown on the kymograph of Figure 7B, with the final pattern on 392 

Figure 7C. The most striking difference is observed on the shape of the wave pattern as 393 

it moves towards the region where the pattern stabilizes. In the infinite-period scenario of 394 

(Morelli et al., 2009), the phase profile is by construction symmetric (albeit stretched in 395 

the posterior compared to the anterior, see Figure 7D,E). In the SNIC scenario, we see a 396 

clear asymmetry in the wave pattern: the transition from low to high values is sharp, while 397 

the transition from high to low values is smooth (Figure 7F, see also Figure 7—movie 398 

supplement 1 comparing different scenarios). This phenomenon is observed in all our 399 

versions of Model 2 (and is notably absent from all our versions of Model 1, see Figure 400 

7—figure supplement 1). Such asymmetries in the wave pattern are actually observed in 401 

somitogenesis, where there is a clear asymmetry in the behaviour of oscillations in the 402 

transition within one somite (i.e. anterior to posterior in one somite) vs the transition from 403 

one somite to the other (i.e. posterior of one somite to anterior of the next) (Shih et al., 404 

2015). This suggests that our model could offer a simple explanation of wave symmetry, 405 
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solving the long-standing problem of the asymmetry of AP vs PA transitions, which is 406 

possibly crucial for segment polarity as first suggested by Meinhardt (Meinhardt, 1982).  407 
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Discussion 408 

In this work, we have explored the dynamical properties of generic two-module systems, 409 

where one set of modules corresponds to a dynamic phase of genetic expression and the 410 

other corresponds to a static phase controlling embryonic patterning. The surprising and 411 

unexpected result is that those models typically present global bifurcations where new 412 

fixed points appear on the trajectories in phase space (SNIC). SNIC bifurcations come 413 

from the smooth interpolation between a flow defining an oscillator in phase space and a 414 

landscape characterized by several fixed points. The oscillating attractor then gets 415 

continuously deformed until it breaks into several fixed points, leading to the SNIC. This 416 

interpolation is a direct consequence of the assumed two-module control as shown on 417 

multiple examples above. Importantly, the overall developmental sequence in this context 418 

is emergent, since the dynamic close to the bifurcation cannot be understood 419 

independently from the static or dynamic modules only. SNIC bifurcations also provide 420 

robustness to various perturbations (since, fixed points appearing on cycles better 421 

preserve information on the oscillatory phase).  422 

The most straightforward prediction of the model proposed here is the presence of several 423 

global transcriptional modules between strongly interacting genes, directly controlling the 424 

smooth changes of developmental time-scale (in a similar way to the “speed-gradient” 425 

model in (Zhu et al., 2017)). Many developmental genes are regulated by multiple 426 

“shadow” enhancers (Cannavò et al., 2016). A smooth transition between different 427 

enhancers has even been observed for gap genes in Drosophila (El-Sherif & Levine, 428 

2016). Global regulation of transcriptional modules could be biologically achieved through 429 

“super enhancers” regulating many genes at the same time (Hnisz et al., 2017). A non-430 
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trivial prediction of our model is that the intrinsic time-scale of the system is a function of 431 

the relative balance of transcriptional activities of the modules. The transcriptional control 432 

described here naturally allows for infinite-period bifurcations, an implicit mechanism in 433 

several models of metazoan segmentation. This is to be contrasted with classical models 434 

of negative feedback oscillators such as the Goodwin model, where the time-scale is 435 

entirely controlled by degradation and is independent from transcription/translation rates 436 

(Forger, 2011), and delayed oscillators, where the time-scale is essentially controlled by 437 

transcriptional delays (Lewis, 2003).  438 

Our model is controlled by an external parameter 𝑔. The natural hypothesis would be that 439 

𝑔 corresponds to an actual morphogen gradient, such as Caudal in Tribolium (Zhu et al., 440 

2017). However, in the spirit of the initial wavefront proposal by Cooke and Zeeman, 𝑔 441 

could also be in some context a temporal variable, e.g. an effective timer. Recent works 442 

on somitogenesis have suggested that the segmentation front could also be coupled to 443 

the slowing down of oscillators (Lauschke et al., 2013), so that the oscillation could 444 

feedback on itself to define 𝑔. It is important to point out that in our framework the nature 445 

of the bifurcation does not depend on the nature of 𝑔 , so it might be difficult to 446 

experimentally disentangle feedbacks between the bifurcations and the control parameter 447 

from actual properties of the bifurcations themselves. However, irrespective of the nature 448 

of 𝑔, period divergence would be observed close to the SNIC (and would not be observed 449 

for a Hopf bifurcation). We notice though that infinite-period scenarios could be difficult to 450 

distinguish from a Hopf bifurcation scenario (with a non negligible frequency change) by 451 

simple monitoring of oscillations : for instance, peak-to-peak measurements of the period 452 
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do not show a clear difference between Models 1 and 2 (see Figure 2—figure supplement 453 

2). 454 

Since the SNIC bifurcations are the generic scenario that we observe in our framework, 455 

the mechanism of patterning itself remains largely robust to parameter modifications. This 456 

could explain how and why there is so much quantitative variability in segmentation 457 

mechanisms such as short/intermediate germ band segmentation (as suggested in (Zhu 458 

et al., 2017)), or somitogenesis  (number of waves, rescaled period (Gomez et al., 2008)), 459 

while the qualitative dynamics itself appears very conserved (see e.g. (Krol et al., 2011) 460 

for somitogenesis). In other words, having a two-module mechanism makes the dynamics 461 

both more robust – a generic bifurcation scenario gives precise phase encoding – and 462 

more evolvable – one can vary many features of the system (e.g. basins of attractions, 463 

dynamics of 𝑔) and still get proper patterning. 464 

The dynamics in this model is smooth, with the same genes interacting to control the 465 

system in both the dynamic and static regimes. This is consistent with what is observed 466 

for gap genes dynamics in short germ insects (Zhu et al., 2017). For vertebrate 467 

segmentation, we do not know yet mechanistically how both regimes are controlled, but 468 

the Notch signalling pathway is known to gate information from the oscillatory to the 469 

segmented regime (Oginuma et al., 2010). An opposite view would be that the transition 470 

from dynamic to static regime is de facto sudden (even if it appears as smooth for other 471 

reasons). Such scenario could be realized in different ways. For instance, different 472 

enhancers could regulate completely different sets of genes in the dynamic vs static 473 

phases. The “static” genes would then interact with the “dynamic” genes only briefly 474 

during development, ensuring transmission of positional information between the static 475 
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and dynamic regions in a very localized region in time and space. In somitogenesis, 476 

specific genes are indeed expressed at the so-called “front” (such as Mesp2 (Koseki et 477 

al., 2000)) and could act like gating processes transferring the information from the clock 478 

to an independent patterning system. In this case, we would be back to a sequential point 479 

of view where different regimes of development live in different regions of phase space, 480 

and the local bifurcation scenario would then be more plausible (and in fact has appeared 481 

in simulations of the evolution of patterning (François et al., 2007)). The problem with this 482 

simpler model is that it does not explain a priori all other phenomena described here which 483 

are direct consequences of the smooth transition from one regime to the other, including 484 

period divergence, robustness to changes of morphogen dynamics and to noise.  485 

It has been known for a long time that the original Clock and Wavefront model does not 486 

require any smooth transition (such as spatial waves of genetic expression) for patterning. 487 

But the slowdown of gene expression dynamics during metazoan segmentation appear 488 

to be smooth, and the segmentation process itself is experimentally robust to many 489 

perturbations, such as changes in morphogen dynamics (Zhu et al., 2017). The model 490 

proposed here provides a possible explanation for a smooth robust transition, with a non-491 

trivial (global) bifurcation. Further experimental and theoretical studies are required to 492 

assess the importance of smooth transitions for encoding dynamic information into spatial 493 

patterns of genetic expressions.  494 
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Figures 616 

Figure 1: Scenarios for segment formation. 617 

(A) General phenomenology of segment or somite 618 

formation. The white to blue gradient represents the 619 

oscillating system (e.g. some Notch signaling pathway 620 

gene). The determination front (red vertical line) 621 

sweeps the embryo in the posterior direction (red arrow) 622 

and translates the periodic expression of a genetic 623 

clock into a spatial pattern. (B-F) Pattern formation with 624 

the infinite-period scenario. (B) Period divergence is 625 

imposed as control parameter 𝑔 decreases from 1 to 0. 626 

(C) Two simulated cells with the same dynamics of 𝑔 627 

end up with different final values of the phase. (D-E) 628 

Kymographs showing respectively the dynamics of 629 

parameter 𝑔  used in the simulated embryo and the 630 

dynamics of the genetic clock. (F) Schematic of the 631 

final pattern. (G-K) Pattern formation with the Hopf 632 

scenario. (G) Schematic of the gene regulatory network. 633 

(H) Depending on the dynamics of 𝑔, simulated cells 634 

can end up with either a high or a low concentration of 635 

protein E. (I-J) Kymograph showing respectively the 636 

dynamics of parameter g used in the simulated embryo 637 

and the dynamics of protein E. (K) Schematic of the 638 

final pattern. The boundary between two segments (“Si”) 639 

is set arbitrarily at the transition from high to low 640 

concentrations of protein E.  641 
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Figure 2: 3-gene models for pattern 642 

formation. (A) Schematic of the gene regulatory 643 

networks encoded by the dynamic term (dotted line) 644 

and the static term (solid line). (B) Kymograph showing 645 

the dynamics of parameter 𝑔  used in the simulated 646 

embryos for both Models 1 and 2. (C-H) Simulation 647 

results for Model 1. (C) Weights of the dynamic (dotted 648 

line) and static (solid line) modules as a function of 649 

parameter 𝑔 . (D) Gene concentration and value of 650 

parameter 𝑔 inside a representative simulated cell as a 651 

function of time. (E) Kymograph showing the dynamics 652 

of gene expression in the simulated embryo. 653 

Transparent colors are used to represent the 654 

concentration of the 3 genes, so that mixes of the 3 655 

genes can be easily perceived. Genes A, B, and C are 656 

shown in transparent white, blue and purple, 657 

respectively. Simulated cells with intermediate 658 

concentrations of all genes appear grey. (F) Schematic 659 

of the final pattern. (G) Bifurcation diagram showing the 660 

types of dynamics available to the simulated embryo as 661 

a function of parameter 𝑔. The maximum and minimum 662 

concentrations of gene A on the stable limit cycles are 663 

shown in black. Stable and unstable fixed points are 664 

shown in green and red, respectively. “SN” stands for 665 

saddle-node bifurcation. (H) Period (grey line) and 666 

amplitude (red line) of the oscillations along the stable 667 

limit cycle. (I-N) Simulation results for Model 2.  668 
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Figure 3: Stochastic simulations of the 3-669 

gene models. (A-D) Kymographs showing the 670 

stochastic dynamics of gene expression in simulated 671 

embryos. The specific values of the typical 672 

concentration Ω and of the diffusion constant D used to 673 

generate each kymograph are indicated on the panels. 674 

The concentration of the three genes at the last 675 

simulated time point is shown schematically in the 676 

lower part of each panel. (E) Mutual information as a 677 

function of typical concentration Ω for Model 1 (red lines) 678 

and Model 2 (black lines). Paler colors correspond to 679 

lower values of the diffusion constant D. The thick 680 

horizontal black line indicates the ideal mutual 681 

information for 3 mutually exclusive genes. Note that 682 

higher values of Ω correspond to lower noise levels.  683 
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Figure 4: 2D geometric model for pattern 684 

formation. (A) Schematic of the flow encoded by the 685 

dynamic and static terms. The grey circle represents 686 

oscillations on the unit circle. Green and red dots 687 

represent unstable and stable fixed points, respectively. 688 

(B) Weights of the dynamic (dotted line) and static 689 

(solid line) modules as a function of parameter 𝑔. (C) 690 

Values of geometric coordinates 𝑦  and 𝑧  and of 691 

parameter 𝑔 in a simulated cell as a function of time. 692 

(D-E) Kymographs showing respectively the dynamics 693 

of parameter 𝑔 used in the simulated embryo and the 694 

dynamics of coordinate 𝑦. (F) Schematic of the final 695 

pattern. (G) Bifurcation diagram showing the types of 696 

dynamics available to the simulated embryo as a 697 

function of parameter 𝑔. The maximum and minimum 698 

values of coordinate 𝑦  on the stable limit cycles are 699 

shown in black. Stable and unstable fixed points are 700 

shown in green and red, respectively. (H) Period (grey 701 

line) and amplitude (red line) of the oscillations. (I) Flow 702 

in phase space for different values of parameter 𝑔. The 703 

same color scheme than panel A is used to represent 704 

the cycles and the fixed points. Positions along the limit 705 

cycle at time points separated by a fixed time interval 706 

are indicated with black dots, so that variations of the 707 

speed of the oscillations along the limit cycle can be 708 

visualized. The yellow and orange lines represent the 𝑦 709 

and 𝑧 nullclines, respectively.  710 
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 36 

Figure 5: Perturbation of the morphogen gradient steepness in asymmetric 3-gene 711 

models. (A) Schematic of the gene regulatory networks encoded by the dynamic term (dotted line) and 712 

the static term (solid line). The thick red lines indicate stronger repression than the black lines (see the 713 

parameters in the Appendix). (B-C) Bifurcation diagram showing the types of dynamics available in Models 714 

1 and 2. The maximum and minimum concentrations of gene A on the stable limit cycles are shown in black. 715 

Stable and unstable fixed points are shown in green and red, respectively. The main bifurcations are 716 

identified with vertical lines. “SN” stands for saddle-node bifurcation. (D-F) Simulation results for a steep 717 

gradient of parameter 𝑔. (D) Kymograph showing the dynamics of parameter 𝑔 used in the simulated 718 

embryos for both Models 1 and 2. (E-F) Kymograph showing the dynamics of gene expression in the 719 

simulated embryo of Models 1 and 2. The concentration of the three genes at the last simulated time point 720 

is shown schematically in the lower part of the panels. (H-J) Simulation results for a shallow gradient of 721 

parameter 𝑔.  722 
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Figure 6: Perturbation of the morphogen gradient steepness in geometric models. 723 

(A) Flow plots showing the changes of geometry of the static module. (B-C) Corresponding kymographs 724 

and final patterns for Model 1. (D) Associated bifurcations diagrams. “SN” stands for saddle-node 725 

bifurcation. (E-F) Corresponding kymographs and final patterns for Model 2. (G) Associated bifurcation 726 

diagrams.  727 
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 38 

Figure 7: Wave pattern in different models for the infinite-period scenario.                   728 

(A) Frequency profile for the simulation of the model of coupled oscillators from (Morelli et al., 2009).           729 

(B-C) Kymograph showing the dynamics of the phase of the oscillators and the corresponding final pattern. 730 

(D) Two examples of possible wave patterns (symmetrical vs asymmetrical). (E) Wave pattern for the model 731 

of Panels (A-C) for two different time points. (F) Wave pattern for Model 2 of Fig. 4 for two different time 732 

points.  733 

 38 

Figure 7: Wave pattern in different models for the infinite-period scenario.                   728 

(A) Frequency profile for the simulation of the model of coupled oscillators from (Morelli et al., 2009).           729 

(B-C) Kymograph showing the dynamics of the phase of the oscillators and the corresponding final pattern. 730 

(D) Two examples of possible wave patterns (symmetrical vs asymmetrical). (E) Wave pattern for the model 731 

of Panels (A-C) for two different time points. (F) Wave pattern for Model 2 of Fig. 4 for two different time 732 

points.  733 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914598doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914598
http://creativecommons.org/licenses/by/4.0/


 39 

Supplementary Figures 734 

Figure 1—figure supplement 1: Bifurcation 735 

analysis of the Hopf scenario of Fig. 1.       736 

(A) Bifurcation diagram showing the types of dynamics 737 

available to the system as a function of morphogen 𝑔 738 

concentration. The maximum and minimum 739 

concentrations of gene 𝐸 on the stable limit cycle are 740 

shown in black. Stable fixed points are show in green. 741 

The main bifurcation events are identified with vertical 742 

lines. “SN” stands for saddle-node bifurcation. (B) 743 

Period of the oscillations along the limit cycle.  744 
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Figure 1—figure supplement 2: Two-enhancer model for Tribolium segmentation. 745 

(A) Schematic of the gene regulatory networks encoded by the dynamic term (dotted line) and the static 746 

term (solid line). (B) Weights of the dynamic (dotted line) and static (solid line) enhancers. (C) Kymograph 747 

showing the dynamics of the concentration of morphogen caudal (cad) used in the simulated embryo. (D) 748 

Kymographs showing the dynamics of the concentration of proteins hunchback (hb) and Krüppel (Kr). (E) 749 

Final pattern of protein expression. The vertical lines identify the positions of the two cells whose trajectories 750 

are shown on the bottom subpanels of panel F. (F) Flow in the phase space defined by hb and Kr for 751 

different concentrations of morphogen cad. The green disk represents the stable fixed point corresponding 752 

to the fate with high concentration of hb. (Top subpanels) Projection of the trajectories of all cells in the hb-753 

Kr phase space. The trajectories of cells that end up with high hb, Kr, and X concentrations are represented 754 

with transparent blue, red and black lines, respectively. (Bottom subpanels) Projection of the trajectories of 755 

the two cells identified on panel E. For a given cell, the part of the trajectory that is shown is from the initial 756 

time point until the time point when cad reaches the concentration used to compute the flow. (G) Speed in 757 

phase space of all cells as a function of the time since the formation of the fixed point. The top, middle, and 758 

bottom subpanels show the speed of the cells that end up with high hb, Kr, and X concentrations at the end 759 

of the simulation, respectively. The thick blue and red lines correspond to the speed of cells 1 and 2, 760 

respectively.  761 
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Figure 2—figure supplement 1: 3-gene 762 

models for pattern formation with Hill 763 

functions for the weights. (A) Schematic of the 764 

gene regulatory networks encoded by the dynamic 765 

term (dotted line) and the static term (solid line). (B) 766 

Kymograph showing the dynamics of parameter 𝑔 767 

used in the simulated embryos for both Models 3 and 768 

4. (C-H) Simulation results for Model 3. (C) Weights of 769 

the dynamic (dotted line) and static (solid line) 770 

enhancers as a function of parameter 𝑔 . (D) Gene 771 

concentration and value of parameter 𝑔  inside a 772 

representative simulated cell as a function of time. (E) 773 

Kymograph showing the dynamics of gene expression 774 

in the simulated embryo. (F) Schematic of the final 775 

pattern. (G) Bifurcation diagram showing the types of 776 

dynamics available to the simulated embryo as a 777 

function of parameter 𝑔 . (H) Period (grey line) and 778 

amplitude (red line) of the oscillations along the stable 779 

limit cycle. (I-N) Simulation results for Model 4.  780 
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Figure 2—figure supplement 2: Peak-to-781 

peak frequency in the 3-gene models.      782 

The red and black dots represent the normalized peak-783 

to-peak frequency as a function of the position along 784 

the antero-posterior (AP) axis for Models 1 and 2, 785 

respectively. The transparent red and black lines are 786 

the theoretical normalized frequencies of Models 1 and 787 

2, respectively, obtained via bifurcation analysis.  788 
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Figure 2—figure supplement 2: Peak-to-781 

peak frequency in the 3-gene models.      782 

The red and black dots represent the normalized peak-783 

to-peak frequency as a function of the position along 784 

the antero-posterior (AP) axis for Models 1 and 2, 785 

respectively. These data points were computed 786 

numerically by using equation 2 of (Giudicelli et al., 787 

2007). The transparent red and black lines are the 788 

theoretical normalized frequencies of Models 1 and 2, 789 

respectively, obtained via bifurcation analysis. Note 790 

that after the Hopf bifurcation in Model 1, the system 791 

performs damped oscillations. It is therefore possible to 792 

extract a numerical peak-to-peak frequency even after 793 

the stable oscillations die during the Hopf bifurcation.  794 
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Figure 3—figure supplement 1: Stochastic 789 

simulations of the 3-gene models with Hill 790 

functions for the weights. (A-D) Kymographs 791 

showing the stochastic dynamics of gene expression in 792 

simulated embryos. The concentration of the three 793 

genes at the last simulated time point is shown 794 

schematically in the lower part of each panel. (E) 795 

Mutual information as a function of typical 796 

concentration : for Model 1 (red lines) and Model 2 797 

(black lines). Paler colors correspond to lower values 798 

of the diffusion constant D. The thick horizontal black 799 

line indicates the ideal mutual information for three 800 

mutually exclusive genes.  801 
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Figure 4—figure supplement 1: Hopf 802 

scenario in the 2D gene-free model.             803 

(A) Schematic of the flow encoded by the dynamic, 804 

static and intermediate terms. (B) Weights of the 805 

dynamic (dotted black line), static (solid black line) and 806 

intermediate (solid red line) enhancers as a function of 807 

parameter 𝑔 . (C) Values of geometric coordinates 𝑦 808 

and 𝑧 , and of parameter 𝑔  in a simulated cell as a 809 

function of time. (D) Kymograph showing the dynamics 810 

of parameter 𝑔  used in the simulated embryo. (E) 811 

Kymograph showing the dynamics of geometric 812 

coordinate 𝑦 . (F) Schematic of the final pattern. (G) 813 

Bifurcation diagram showing the types of dynamics 814 

available to the simulated embryo as a function of 815 

parameter 𝑔. (H) Period (grey line) and amplitude (red 816 

line) of the oscillations. (I) Flow in phase space for 817 

different values of parameter 𝑔. The limit cycles are 818 

represented by thick grey lines. Positions along the limit 819 

cycle at time points separated by a fixed time interval 820 

are indicated with black dots, such that the (absence of) 821 

variations of the speed along the limit cycles can be 822 

visualized. The yellow and orange lines represent the 823 

𝑦 and 𝑧 nullclines, respectively. The green and red dots 824 

represent stable and unstable fixed points, respectively.  825 
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Figure 4—figure supplement 2: Stochastic 826 

simulations of the gene-free models.         827 

(A-B) Kymographs showing the stochastic dynamics of 828 

variable 𝑦 in simulated embryos. The specific value of 829 

parameter Ω used to generate each kymograph is 830 

indicated on the panels. (C) Mutual information as a 831 

function of typical concentration Ω for Model 1 (red line) 832 

and Model 2 (black line). The thick horizontal black line 833 

indicates the ideal mutual information for a pattern with 834 

two symmetric regions.  835 
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Figure 5—figure supplement 1: Perturbations of the morphogen gradient 836 

steepness in strongly asymmetric 3-gene models. (A) Schematic of the gene regulatory 837 

networks encoded by the dynamic (dotted line) and static (solid line) terms. For each interaction, the color 838 

indicates the strength of the repression, with darker shades of red corresponding to weaker repression. (B-839 

C) Bifurcation diagram showing the types of dynamics available in Models 1 and 2. “SN” stands for saddle-840 

node bifurcation. (D-F) Simulation results for a steep gradient of parameter 𝑔. (D) Kymograph showing the 841 

dynamics of parameter 𝑔 used in the simulated embryos of both Models 1 and 2. (E) Kymograph showing 842 

the dynamics of gene expression in the simulated embryos of Model 1. The concentration of the three 843 

genes at the last simulated time point is shown schematically in the lower part of the panel. (F) Kymograph 844 

showing the dynamics of gene expression in the simulated embryos of Model 2. (G-I) Simulation results for 845 

a shallow gradient of parameter 𝑔.  846 
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Figure 4—figure supplement 2: Stochastic 826 
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(A-B) Kymographs showing the stochastic dynamics of 828 

variable 𝑦 in simulated embryos. The specific value of 829 

parameter Ω used to generate each kymograph is 830 
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Figure 5—figure supplement 2: Perturbations of the morphogen gradient 847 

steepness in randomly asymmetric 3-gene models. (A) Schematic of the gene regulatory 848 

networks encoded by the dynamic (dotted line) and static (solid line) terms. For each interaction, the color 849 

indicates the strength of the repression, with darker shades of red corresponding to weaker repression.   850 

(B-C) Bifurcation diagram showing the types of dynamics available in Models 1 and 2. “SN” stands for 851 

saddle-node bifurcation. (D-F) Simulation results for a steep gradient of parameter 𝑔. (D) Kymograph 852 

showing the dynamics of parameter 𝑔  used in the simulated embryos of both Models 1 and 2. (E) 853 

Kymograph showing the dynamics of gene expression in the simulated embryos of Model 1. The 854 

concentration of the three genes at the last simulated time point is shown schematically in the lower part of 855 

the panel. (F) Kymograph showing the dynamics of gene expression in the simulated embryos of Model 2. 856 

(G-I) Simulation results for a shallow gradient of parameter 𝑔. (J) Mutual information as a function of the 857 

steepness of the 𝑔 gradient for Models 1 (red line) and 2 (black line). The thick horizontal black line indicates 858 

the theoretical upper bound. The left, center and right subpanels show respectively the mutual information 859 

for models with a weak asymmetry in the fixed points of the static term (Fig. 5), with a strong asymmetry 860 

(Supp. Fig. 7) and with a random asymmetry (this figure).  861 
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 48 

Figure 6—figure supplement 1: Model 1 becomes a SNIC when fixed points are 862 

outside the limit cycle. (A) Flow plots showing the change of geometry of the static module. (B-C) 863 

Corresponding kymographs and final patterns for Models 1 and 2. (D) Associated bifurcations diagrams.  864 
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Figure 7—figure supplement 1: Wave pattern in different versions of the 2D gene-865 

free model. (A) Wave patterns of the gene-free Model 1 with a Hopf bifurcation. The top and bottom 866 

subpanels show the wave pattern for symmetric and asymmetric fixed points in the static term, respectively. 867 

(B) Wave patterns of the gene-free Model 2 with a SNIC bifurcation.  868 
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Supplementary Movie Legends 869 

Figure 4—movie supplement 1: Flow of the gene-free with a SNIC bifurcation. Flow 870 

in phase space as parameter 𝑔 goes from 1 to 0. The limit cycles are represented by thick 871 

grey lines. The yellow and orange lines represent the 𝑦 and 𝑧 nullclines, respectively. The 872 

green and red dots represent stable and unstable fixed points, respectively.  873 

 874 

Figure 4—movie supplement 2: Flow of the gene-free with a Hopf bifurcation. Flow 875 

in phase space as parameter 𝑔 goes from 1 to 0. The limit cycles are represented by thick 876 

grey lines. The yellow and orange lines represent the 𝑦 and 𝑧 nullclines, respectively. The 877 

green and red dots represent stable and unstable fixed points, respectively. 878 

 879 

Figure 7—movie supplement 1: Comparison of pattern formation dynamics in 880 

different models. Dynamics of the spatial wave patterns in the infinite-period scenario of 881 

Figure 1 (“Phase model with diverging period”), the symmetric gene-free Model 1 (“2D 882 

toy model with intermediate term”), the symmetric gene-free Model 2 (“Basic 2D toy model 883 

without intermediate term”) and the asymmetric gene-free Model 2 (“Basic 2D toy model 884 

with asymmetric fixed points”). 885 
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Figure 7—figure supplement 1: Wave pattern in different versions of the 2D gene-865 

free model. (A) Wave patterns of the gene-free Model 1 with a Hopf bifurcation. The top and bottom 866 

subpanels show the wave pattern for symmetric and asymmetric fixed points in the static term, respectively. 867 

(B) Wave patterns of the gene-free Model 2 with a SNIC bifurcation.  868 
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Supplementary Movie Legends 869 

Figure 4—movie supplement 1: Flow of the gene-free with a SNIC bifurcation.     870 

Flow in phase space as parameter 𝑔 goes from 1 to 0. The limit cycles are represented 871 

by thick grey lines. The yellow and orange lines represent the  𝑦  and 𝑧  nullclines, 872 

respectively. The green and red dots represent stable and unstable fixed points, 873 

respectively.  874 

 875 

Figure 4—movie supplement 2: Flow of the gene-free with a Hopf bifurcation.      876 

Flow in phase space as parameter 𝑔 goes from 1 to 0. The limit cycles are represented 877 

by thick grey lines. The yellow and orange lines represent the  𝑦  and 𝑧  nullclines, 878 

respectively. The green and red dots represent stable and unstable fixed points, 879 

respectively. 880 

 881 

Figure 7—movie supplement 1: Comparison of pattern formation dynamics in 882 

different models. Dynamics of the spatial wave patterns in four models: a phase model 883 

with diverging period similar to the infinite-period scenario of Figure 1, the symmetric 884 

gene-free Model 1, the symmetric gene-free Model 2, and the asymmetric gene-free 885 

Model 2. 886 
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