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Abstract

“Control and conquer” - this is the philosophy behind adaptive therapy, which seeks to

exploit intra-tumoural competition to avoid, or at least, delay the emergence of therapy

resistance in cancer. Motivated by promising results from theoretical, experimental and,

most recently, a clinical study in prostate cancer, there is an increasing interest in extending

this approach to other cancers. As such, it is urgent to understand the characteristics

of a cancer which determine whether it will respond well to adaptive therapy, or not. A

plausible candidate for such a selection criterion is the fitness cost of resistance. In this
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paper, we study a simple competition model between sensitive & resistant cell populations

to investigate whether the presence of a cost is a necessary condition for adaptive therapy

to extend the time to progression beyond that of a standard-of-care continuous therapy. We

find that for tumours close to their environmental carrying capacity such a cost of resistance

is not required. However, for tumours growing far from carrying capacity, a cost may be

required to see meaningful gains. Notably, we show that in such cases it is important to

consider the cell turnover in the tumour and we discuss its role in modulating the impact of

a cost of resistance. Overall, our work helps to clarify under which circumstances adaptive

therapy may be beneficial, and suggests that turnover may play an unexpectedly important

role in the decision making process.

Introduction

The evolution of drug resistance is one of the biggest challenges in cancer therapy. In 1947,

Farber et al [1] for the first time reported that children suffering from acute leukaemia, a

hitherto untreatable disease, showed “significant improvements” [1] upon treatment with

a chemical agent, 4-amino-pteroylglutamic acid. However, they also also noted that these

remissions were temporary [1]. This pattern still holds true today for many patients, and

applies to both chemo- as well as targeted therapies.

Research aiming to combat drug-resistance has traditionally focussed on developing

drugs which target either the resistance mechanism or kill the cell through a different route.

As an alternative to this molecular approach, a number of authors (most notably Gatenby

and colleagues [2, 3, 4, 5], but also [6], [7] and [8]) have proposed that resistance could be

delayed, if not averted, through changes in drug-scheduling. The design principle behind

current treatment schedules is to maximise cell kill by treating at the maximum tolerated

dose (MTD) in as continuous a fashion as toxicity permits. However, if drug-resistant cells

are present a priori or develop during treatment, such aggressive treatment releases these

cells from the competition for space and resources and facilitates their growth, a process

known as “competitive release” [2, 3, 7]. Inspired by approaches used in the management

of invasive species and agricultural pests, Gatenby et al [2, 3] proposed adaptive therapy

which aims not to eradicate the tumour, but to control it. Therapy is applied to reduce

tumour burden to a tolerable level but is subsequently modulated or withdrawn to main-
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tain a pool of drug-sensitive cancer cells. Over the past ten years, a number of studies

have shown that adaptive therapy can extend time to progression (TTP) in vivo, in ovarian

cancer [3], breast cancer [9], and most recently in melanoma [10]. Moreover, the interim

analysis of the first human trial of adaptive therapy, applied to the treatment of metastatic,

castrate-resistant prostate cancer with androgen-deprivation therapy, reported an increase

in TTP of at least 10 months and a reduction in cumulative drug usage of 53% [11]. While

it is challenging to prove that competition is the mechanism through which adaptive ther-

apy extends TTP, and not, for example, synergistic effects on vasculature or the immune

system, some evidence exists. Bacevic et al [12] showed that low dose treatment was able to

minimise the frequency of resistant cells for longer than high dose treatment in a spheroid

model of cyclin-dependent kinase inhibitor treatment in colorectal cancer, which has neither

vasculature nor an immune system. Moreover, they found that this was not true if they

repeated the experiment in a 2-D cell-culture model in which cells compete less strongly

[12]. Furthermore, Smalley et al [10] observed that in both mouse and human samples of

melanoma there was an enrichment for cells with a drug-sensitive transcriptional signature

if the tumours had previously experienced a drug holiday, as would be predicted by the

competitive control hypothesis.

The success in prostate cancer has spurred interest in extending adaptive therapy to other

cancers such as thyroid cancer and melanoma (clinicaltrials.gov identifiers NCT03630120

and NCT03543969, respectively). As such, it is urgent to understand the characteristics of

a cancer that determine whether it will respond well to adaptive therapy, or not. Bacevic

et al [12] showed through in vitro experiments and an agent-based computational model

that it is important that cells are spatially constrained, as otherwise the competition is

too weak to effectively control the growth of resistant cells. Furthermore, through ODE

modelling they found that the fitness of the resistant population when the population is

rare is a key determinant of the benefit derived from adaptive therapy [12]. These results

were corroborated by Gallaher et al [13] who compared two adaptive therapy strategies on

an agent-based model which modelled resistance as a continuous trait. They found that the

initial abundance of resistance, the rate of spatial mixing through migration, and the rate of

acquisition of resistance through mutation, were the key factors in determining the benefit

from adaptive therapy, and which adaptive therapy strategy was most effective. Using a non-

spatial game theory model, West et al [14] showed that from a mathematical perspective the
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Figure 1 (previous page): Resistance costs in theory and in practice. A-C) The three main

experimental designs used to test for a cost of resistance (all done in drug-free conditions). A) Mono-

culture experiments test for changes in growth rate, size, migration rate etc of the resistant strain in

isolation. B) Competition experiments compare the abundance of sensitive and resistant cells in co-

culture over time. C) Reversal experiments examine the rate at which drug resistance is lost, if the

drug is withdrawn. To do so, the resistant population is cultured in a drug-free environment, and its

drug response is tested at regular time intervals. D-G) In vitro spheroid experiments comparing the

growth of doxorubicin-sensitive and resistant MCF7 cells in mono-culture. Sensitive and resistant

cells were GFP and RFP tagged, respectively. D) In normal medium, resistant cells grow faster

than sensitive cells, showing that resistance does not necessarily have to be costly (3 replicates per

group). E) Under glucose starvation this advantage is lost (3 replicates per group). This shows that

the environmental context has to be considered when studying fitness costs. F & G) Example images

of the initial (0d) and final time points (14d) from D & E showing the fluorescent signal overlayed

on the bright-field image. For experimental details see Section S1 in the Supplementary Data.

benefit of adaptive therapy is determined by the relative position of the initial tumour to the

zero-growth isocline of the resistant population in the state space of cell type frequencies.

Biologically, this means that the stronger the selection against resistance in the absence

of drug, the longer adaptive therapy can be expected to extend TTP. Finally, while not

directly focussed on cancer, Hansen et al [8] present a general argument for how to decide

when treatment should aim to control and when it should aim to eradicate a pathogen.

They derive quantitative expressions for the levels of initial resistance above or below which

a management strategy such as adaptive therapy would perform better than an eradication

strategy [8].

However, a factor which is still poorly understood is the role of the cost of resistance.

“Cost of resistance” means that a resistance adaptation confers a fitness advantage under

drug exposure, but it comes at a fitness cost in a treatment-free environment [2, 15]. It is

a phenomenon which has been widely studied in agricultural pests and antibiotic resistance

[16, 17] and is typically experimentally measured in one of three ways: i) Mono-culture

experiments, which measure the growth rate of the resistant population in the absence of

drug in isolation, ii) Competition experiments, which study the relative frequency of sensitive

and resistant cells over time when cultured together, and iii) Reversal experiments, which
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explore how long it takes for resistant cells to lose their resistance mechanism if grown

in the absence of drug (Figure 1A-C). For example, Gallaher et al [13] report that the

doubling time of doxorubicin-resistant MCF7Dox breast cancer cells is decreased by 50%

compared to their sensitive counterparts, and that in competition experiments the sensitive

cells outcompete the resistant cells in the absence of the drug. This is likely because these

cells use P-Glycoprotein-related efflux pumps to resist treatment, for which they have to

divert energy away from proliferation towards running of the pumps [13, 18]. Bacevic et al

[12] make similar observations for CDKi resistant cells and a number of further examples

can be found in the literature (e.g. [19, 20, 21, 22, 23]). In their original work on adaptive

therapy, Gatenby et al [2, 3] used the cost of resistance to motivate adaptive therapy, and

most theoretical studies since have made this assumption [12, 13, 14]. However, not all

resistance mechanisms come at a cost. Behrens et al [24] find that A2780 cisplatin-resistant

ovarian cancer cells have a shorter doubling time than the sensitive parental line (22.1h

compared to 25.3h). Similar observations have been made for certain colorectal cancer cell

lines [21], and Kaznatcheev et al [23] report that even though their resistant cells grow

more slowly in mono-culture, their growth is supported by the presence of sensitive cells in

co-culture [23]. In addition, the impact of a cost is context dependent. When we repeat the

experiments by Gallaher et al [13] in 3-D spheroids, we find that drug-resistant MCF7 cells

now grow faster than their sensitive counterparts (Figure 1D). However, when we reduce

the glucose concentration in the culture medium, this advantage is lost, a finding also made

by Silva et al [4] in 2-D culture (Figure 1E). Given this wide range of possibilities for how

a resistant population might, or might not, differ from their sensitive counterparts, it is

important to clarify the relationship between cost of resistance and the success of adaptive

therapy.

The aim of this paper is to investigate the impact of a cost of resistance on adaptive

therapy. We use a simple mathematical model in which we divide the tumour into drug-

sensitive and drug-resistant cells and model their growth with two ordinary differential

equations (ODEs). We compare the TTP under standard-of-care continuous therapy with

that of the adaptive therapy algorithm used in the clinical trial by Zhang et al [11], first in

the absence, and subsequently in the presence, of a cost of resistance. We will show how

increased tumour density and small levels of pre-existing resistance maximise competition

between sensitive and resistant cell populations within the tumour, making adaptive therapy
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rS rR

dTdT

dD

K
S R

D
Figure 2: The mathematical model. Drug-sensitive (S) and resistant cells (R) proliferate at rates,

rS and rR, respectively, and die at rate dT . Proliferating sensitive cells die at a rate dD when

exposed to drug, D. Finally, both populations compete for resources, where K denotes the total

(shared) environmental carrying capacity.

superior to continuous therapy. Subsequently, we will demonstrate that high cell turnover

is a key factor to consider, not only to understand the impact of a cost of resistance, but

also to assess the ability to control a tumour with adaptive therapy more generally.

Methods

Mathematical model

Tumours are heterogeneous populations of cells with differential responses to drug, indicating

a degree of pre-existing resistance in most tumours [25, 26, 27]. To model this heterogeneity,

we assume two competing cell types: drug-sensitive cells, S(t), and fully resistant cells, R(t),

modelled via the following equations:
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dS

dt
= rS

󰀕
1− S +R

K

󰀖󰀕
1− 2dD

DMax
D(t)

󰀖
S − dTS, (1)

dR

dt
= rR

󰀕
1− R+ S

K

󰀖
R− dTR, (2)

N(t) = S(t) +R(t), (3)

with initial conditions:

N(0) = N0, S(0) = S0, and R(0) = R0,

where N0 = S0 +R0. The model is derived based on the following assumptions:

• In isolation each population grows logistically with proliferation rates rS and rR, where

the fraction of dividing cells decays linearly from 1 to 0 as the population approaches its

environmental carrying capacity, K. Furthermore, cells die at a density-independent

rate dT , where for simplicity we assume that this turnover rate is the same for both

populations.

• Cells compete for resources and space according to the Lotka-Volterra competition

model. This means that the presence of the competitor reduces a population’s growth

rate in a fashion that is linearly proportional to the competitor’s population density.

For simplicity we will assume that inter- and intra-species competition coefficients are

identical, and equal to one.

• Only actively dividing cells are killed by the drug. Many chemotherapies induce DNA

damage or inhibit the cell division machinery, which induces apoptosis only in cells

that attempt to divide [28]. We will adopt the classical Norton-Simon model [29]

which assumes that cell kill increases proportionally with the fraction of dividing cells

and linearly with the drug dose, D(t), so that at MTD a fraction dD of dividing cells

are killed.

• To facilitate our analysis, we make the simplifying assumption that the cost of resis-

tance manifests itself solely in the growth rate rR. This is also the most common way

in which the cost is modelled (e.g. [12, 13, 26]).
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Table 1: Mathematical model parameters and their ranges.

Parameter Description Value Reference

s = S/K Sensitive cell density

(normalised)

0.0 - 1.0

r = R/K Resistant cell density

(normalised)

0.0 - 1.0

rS Sensitive cell prolifer-

ation rate and model

time scale

0.027d−1 Adopted from [11].

r̂R := rR
rS

Resistant cell prolifera-

tion rate (normalised)

0.5 - 1.0 Lower limit: [13];

Upper limit: assump-

tion of no cost

d̂T := dT

rS
Cell turnover rate

(normalised)

0.0 - 0.5 Lower limit: assump-

tion of no turnover;

Upper limit: see Sec-

tion S3.

d̂D := 2dD Drug-induced cell kill

factor (see text for fur-

ther explanation)

1.5 Adopted from [30].

n0 := N0

K Initial tumour cell den-

sity (normalised)

0.1 - 0.75 Parameter sweep; val-

ues within this range

reported by [31].

fR := R0

N0
Initial resistant cell

fraction

0.001 - 0.1 Parameter sweep; val-

ues within this range

reported by [27].

fS := S0

N0
Initial sensitive cell

fraction

0.9 - 0.999 Determined by 1− fR.
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Note that the factor of 2 in the drug response accounts for the fact that if a cell dies during

mitosis not only the potential daughter but also the mother are lost. The curious reader

may refer to the Supplementary Data for a mathematical discussion of the steady states of

this system, (see Section S4) and a discussion of the implications of other manifestations of

a cost of resistance (see Section S6).

We will consider two treatment schedules:

1. Continuous therapy at the MTD, DMax: D(t) = DMax∀ t.

2. Adaptive therapy which withdraws treatment once a 50% decrease from the initial

tumour size is achieved, and reinstates it once the original tumour size (N0) is reached:

D(t) =

󰀻
󰁁󰀿

󰁁󰀽

DMax, until N(t) < 50%N0

0, until N(t) = N0

(4)

In order to facilitate numerical simulation of the model, we non-dimensionalise Equations

(1) - (3) using rS as a time scale, and K as a scale for the cell densities (Table 1). For

details of the non-dimensionalisation and the numerical methods, see Section S2 of the

Supplementary Data.

Parameterising the model

Given the key role which prostate cancer has played in the development of adaptive therapy

we parametrise our model according to this disease. As such, we adopt the proliferation

rate for sensitive cells given in [11] (rS = 0.027d−1) as our time scale and the drug kill

parameter d̂D = 1.5 from [30]. For the other parameters we perform parameter sweeps

within their biologically realistic ranges. All parameters, their definitions and their ranges

are summarised in Table 1.

Results

In advanced cancers, curative approaches rarely show durable complete response. Instead,

treatment success is often defined by how long therapy can prevent the tumour from pro-

gressing beyond a certain size (i.e. TTP). Herein we compare the model-predicted TTP
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Figure 3: Adaptive therapy (AT) can extend TTP compared to continuous therapy even in the

absence of a cost of resistance. For simplicity, we are assuming no turnover here (d̂T = 0). A)

Simulations of adaptive therapy for a cohort of tumours with different initial compositions. Vertical

dashed lines indicate the time of progression of continuous (yellow) and adaptive therapy (blue),

respectively. B) Gain in TTP by adaptive compared to continuous therapy as a function of initial

proximity to K and abundance of resistance. C) dr/dτ as a function of s and r, together with

treatment trajectories for Tumours 1 ((n0, fR) = (25%, 0.1%)) & 4 ((n0, fR) = (75%, 0.1%)) from

A. Crosses indicate progression. This shows how adaptive therapy extends TTP by minimising dr/dτ

via competition, and demonstrates that for certain tumours adaptive therapy can extend TTP even

if no cost of resistance is present. 11
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for both adaptive (TTPAT ) and continuous therapy (TTPCT ), respectively, using RECIST

criteria (20% increase in tumour size from the pre-treatment baseline). We show that time

gained by adaptive therapy depends on the following tumour characteristics: initial tumour

density (n0; see Figure 3), initial levels of pre-existing resistance (fR; see Figure 3), cost of

resistance (rR < rS ; see Figure 4), and the density-independent cell turnover rate (dT ; see

Figure 5).

Adaptive therapy extends TTP even without a resistance cost

In the absence of a resistance cost, adaptive therapy still results in significant improvements

in TTP over continuous therapy. Figure 3A shows how these gains are modulated by tumour

density (plots, left to right), and pre-existing resistance (top to bottom). Each subpanel

shows sensitive (red lines), resistant (green) and total (blue) populations over time under

adaptive therapy dosing. Treatment administration is illustrated by black bars at the top

of the graphs. Figure 3A clearly shows how the TTP of adaptive therapy (vertical blue

dashed lines) outlasts the TTP of continuous therapy (vertical yellow) for the combination

of low resistance and high tumour density (top right panel). Figure 3B quantifies time

gained (TTPAT - TTPCT ) for a range of tumour density and resistance values. For our

parameter sweep, we find that adaptive therapy can extend TTP by between 3 and 104

days when the initial resistance fraction is fR = 1%, and by between 19 and 211 days when

fR = 0.1%. We also note that in the worst case scenario (fR = 10%), adaptive therapy

becomes indistinguishable from continuous therapy, so that while there is no benefit, the

patient has also not progressed faster than under standard-of-care (bottom row in Figure

3A and Figure 3B).

Adaptive therapy treatment vacations provide a benefit only if intra-

tumoural competition is strong

Moreover, we find that each of the two characteristics of the tumour’s initial composition

has a distinct impact on the treatment dynamics. As we increase the initial abundance of

resistant cells from 0.1% to 10%, we decrease the number of completed adaptive therapy

cycles (Figure 3A). In the most extreme case, at 10% initial resistance, treatment can not

decrease the tumour burden sufficiently to trigger any treatment withdrawal in the three
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tumours. In contrast, increasing the initial tumour density, which biologically corresponds

to greater competition of resources, does not alter the adaptive therapy cycle number, but

does increase the benefit delivered by each cycle. For example, even though all tumours

with 1% initial resistance complete one adaptive therapy cycle, a meaningful benefit in

TTP is only achieved in the case when the tumour is 75% saturated (Figure 3A). The

reason for this is that the competition exerted by sensitive cells only has significant impact

on the growth of the resistant cells if the tumour is close to K. In summary, for adaptive

therapy to provide a benefit the tumour burden must undergo a sufficient decline to allow for

treatment withdrawal (small fR), and competition within the tumour must be sufficiently

strong to noticeably slow the expansion of the resistant population (proximity to K).

Adaptive therapy extends TTP by minimising the resistant popula-

tion growth rate

How can we explain the benefit of adaptive over continuous therapy in the absence of

a cost of resistance? We apply the framework by Hansen et al [8] to derive the following

explanation. Progression is primarily driven by the expansion of the resistant population, as

drug-sensitive cells are easily depleted by additional treatment. Thus, the more a treatment

strategy can inhibit the resistant population growth rate, dR/dt, whilst also maintaining

control of the tumour size overall, the longer TTP. To illustrate this, we plot dr/dτ (the

non-dimensional form of dR/dt) as a function of the tumour composition in Figure 3C. In

this representation a tumour lesion is seen as a point in a two dimensional space, where its

x-position represents the current relative density of sensitive cells, s(τ), and its y-position

the current density of resistant cells, r(τ). Each point is coloured according to the resistant

population growth rate. This representation clearly illustrates how high tumour densities

(see inset grey arrow) are generally associated with lower resistant growth rates. Re-writing

Equation (2) as:

dR

dt
(S,R, t) = (rR − dT )R󰁿 󰁾󰁽 󰂀

Growth

− rRR

K
R

󰁿 󰁾󰁽 󰂀
Intra-Specific
Competition

− rRS

K
R

󰁿 󰁾󰁽 󰂀
Inter-Specific
Competition

(5)

shows that this slow-down occurs due to intra- and inter-specific competition. Importantly,

while a cost in rR modulates the strength of growth inhibition through competition, it is

not required (as also illustrated in Figure 3C).
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During therapy, the composition of a tumour changes, so that treatment corresponds to a

trajectory through the S−R space. In Figure 3C we show trajectories of continuous (yellow)

and adaptive therapy (blue) for two tumours corresponding to Tumours 1 & 4 in Figure 3A.

As can be seen, continuous therapy trajectories tend to traverse regions of high resistant

growth (dark green shading). In contrast, these same regions are avoided under adaptive

therapy regimens, especially for Tumour 4. Again we can formalise this using Equation (2):

If SCT (t) and SAT (t) denote the density of sensitive cells after t subsequent days of treatment

under continuous and adaptive therapy, respectively, then we have that SCT (t) ≤ SAT (t)

because continuous therapy does not provide sensitive cells with an opportunity to recover.

Assuming that the tumour is still far from progression (R << S) so that the resistant cells

primarily compete with sensitive cells, the resistant growth rate is greater for continuous

(dRdt
󰀏󰀏
CT

) than for adaptive therapy (dRdt
󰀏󰀏
AT

):

dR

dt

󰀏󰀏󰀏󰀏
CT

≈ (rR − dT )R− rRSCT

K
R

≥ (rR − dT )R− rRSAT

K
R ≈ dR

dt

󰀏󰀏󰀏󰀏
AT

,

This implies that adaptive therapy can provide a benefit even in the absence of a cost

of resistance. This benefit increases with increased tumour density as SAT /K can be main-

tained large for longer. In addition, this implies that the most effective adaptive therapy

would maintain the tumour at its original size for as long as possible in order to maximise

the effects of inter-specific competition.

In the absence of turnover, cost of resistance increases time gained

by adaptive therapy only when resistant cells are initially rare

Next, we examine the role of a resistance cost. Figure 4 compares low density tumours

(Tumour 1 and 2, repeated from Figure 3) with high density tumours (Tumour 3 and 4). As

expected, TTPAT (blue line) increases with a cost of resistance in all four cases (Figure 4A).

However, an increase of the benefit of adaptive over continuous therapy is only seen when

tumours are close to K and resistant cells are rare, as in Tumours 1 and 4. In contrast, in

highly resistant tumours, a cost of resistance increases the TTP in roughly equal terms for

continuous and adaptive therapy. This effect is consistent for a wide range of resistance cost

values (Figure 4B).
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Figure 4: In the absence of turnover (d̂T = 0) a cost of resistance enhances adaptive therapy only

when resistance is rare and tumours are close to carrying capacity. A) Simulations of Tumours

1-4 from Figure 3A with and without a 30% cost of resistance (r̂R = 70%; Tumours 1 & 4 given

in Figure 3; Tumour 2: (n0, fR) = (25%, 10%); Tumour 3: (n0, fR) = (25%, 10%)). B) Gain in

TTP by adaptive therapy compared to continuous therapy for different levels of cost of resistance

for Tumours 1-4.

Turnover mediates the impact of a cost of resistance

So far we have assumed that the turnover of tumour cells is negligible. However, tumours

are subject to resource starvation and immune predation, resulting in continuous tumour

turnover. In Figure 5A we show how such turnover modulates the impact of a cost of

resistance on the competition between sensitive and resistant cells in the absence of drug.

Increasing the cost of resistance (dashed lines) leads to lower levels of resistance in untreated

populations. Importantly, while a cost of resistance reduces the number of resistant cells,

these cells never go extinct (Figure 5A). In contrast, if we introduce intrinsic cellular turnover

(d̂T > 0), Figure 5A shows that resistant cells go extinct over time. We conclude that

selection against resistance depends not only on the cost of resistance but also the turnover

rate.

How does this insight affect adaptive therapy? In Figure 5B we show TTPAT as a

function of turnover and cost for Tumour 1. If turnover is low, a large cost of resistance

results only in small gains for adaptive therapy, as seen by comparing Cases i and ii in Figures

5B & C. In contrast, if turnover is high, adaptive therapy provides significant benefits even

if the resistance cost is small, or completely absent (Case i vs iii in Figures 5B & C). We
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Figure 5 (previous page): Turnover as a driver of adaptive therapy. A: Simulation of a competition

experiment (no drug; n0 = 10%, fR = 50%). In the absence of turnover, even a significant cost

does not result in the elimination of the resistant cells. In contrast, in its presence, cells paying a

resistance cost are eventually outcompeted by sensitive cells. B: TTP gained by adaptive therapy as

a function of cost and turnover for Tumour 1. Turnover increases the benefit of adaptive therapy

and amplifies the effect of a cost. C: Simulations of the treatment dynamics for four combinations

of cost and turnover corresponding to the four case studies highlighted in B. D: Turnover increases

TTP gained by adaptive therapy (TTPAT-TTPCT) both in the presence and absence of a resistance

cost for a range of different tumour compositions (Tumours 1 and 2 as in Figure 3A; Tumour

3*: (n0, fR) = (50%, 10%); Tumour 4*: (n0, fR) = (50%, 0.1%); above a cost of 30% Tumours

3* and 4* become indefinitely controllable and so no TTP can be obtained). E: Improving tumour

control by increasing competition with a second drug which either reduces K (e.g. anti-angiogenic

drug) or increases dT /rR (e.g. low dose chemotherapy; for corresponding values of the intensity

of competition see Figure S4). Inset numbers give TTP gained by adaptive therapy. Single drug

adaptive therapy: n0 = 40%, fR = 1%, d̂T = 0.1; Anti-angiogenic Tx changes n0 to 55%; Secondary

drug increases d̂T to 0.25.

also observe in Case iv that once turnover increases beyond a threshold of (1 − 1.2n0)r̂R

the tumour becomes indefinitely controllable in the model, so that continuous and adaptive

therapy maintain the tumour below the size for progression forever (see Section S5 for further

discussion).

Next, we examine how this result generalises as we change the initial tumour density

and resistance fraction. We repeat the cost-gain relationship analysis from Figure 4B with a

turnover rate of d̂T = 25%. As Tumours 3 & 4 are indefinitely controllable in this parameter

regime (see Figure S3C), we replace them by tumours with a slightly lower initial density

(n0 = 50%), denoted by Tumours 3* & 4*, respectively. We find that all but the less

dense and highly resistant tumour (Tumour 2) benefit from adaptive therapy even in the

absence of a resistance cost (Figure 5D). Interestingly, Tumour 3* did not benefit from

adaptive therapy in the absence of turnover (Figure 3A; bottom row, centre panel), but

with turnover, adaptive therapy becomes superior to continuous therapy. Moreover, in all

cases a cost of resistance now increases the time gained with adaptive therapy. This shows

that turnover increases the gains of adaptive therapy and amplifies the effect of a cost of
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resistance, thereby relaxing the need for the tumour to be close to carrying capacity for

effective adaptive therapy. The initial resistance fraction, however, remains an important

determinant of TTPAT.

Resource availability, turnover and cost combine to determine com-

petition in the tumour

Why does turnover increase the benefit of adaptive therapy? In Figure 3A we showed that

the closer the tumour is to its carrying capacity at the start of treatment, the greater the

benefit of adaptive therapy. This is because a larger value of N0/K corresponds to greater

resource limitation and competition. To investigate the impact of turnover on competition,

we rewrite Equation (2) as:

dR

dt
= (rR − dT )

󰀕
1− 1

(1− dT /rR)

S +R

K󰁿 󰁾󰁽 󰂀
C(S,R,K, dT , rR)

󰀖
R,

where C(S,R,K, dT , rR) describes the growth inhibition of the resistant population through

intra- and inter-specific competition. A value of C = 0 corresponds to no inhibition, whereas

a value of C = 1 results in the complete growth arrest of the resistant population. We see

that the strength of competition is determined by three factors: i) The available resources,

K; ii) the density of cells, S + R; and iii) the ratio of turnover to proliferation, dT /rR,

known as the cell replacement rate. Thus, an increased cell replacement rate - due to

either increased turnover or a proliferative cost - results in stronger competition (see also

Figure S4). Alternatively, one can say that the resistant population’s growth is limited not

by the environmental carrying capacity, K, but by the effective carrying capacity KEff =

(1− dT /rR)K.

Improving adaptive therapy by amplifying competition

Based on our results we hypothesise that one may improve the efficacy of adaptive therapy

through administration of additional treatments to increase cellular competition in one of

two ways. Firstly, one may reduce the environmental carrying capacity, K, for example, by

administering an anti-angiogenic drug. Secondly, one may increase the cell replacement rate,

dT /rR. For example, if the primary drug which is given adaptively is a targeted therapy,
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Turnover Cost
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Figure 6: The interplay between cost of resistance and turnover in adaptive therapy. Sensitive

cells slow the growth of resistant cells through competition, but are killed by treatment. A cost

of resistance reduces the resistant growth rate. Turnover amplifies the impact of both a cost of

resistance and the strength competition.

this secondary drug could be a low dose chemotherapy. In Figure 5E we illustrate how these

additional therapies can increase competition and consequently significantly extend tumour

control under adaptive therapy.

Discussion

With four clinical trials of adaptive therapy already ongoing (clinicaltrials.gov identifiers:

NCT02415621; NCT03511196; NCT03543969; NCT03630120) and more in preparation, it is

important to develop criteria to identify which patients might benefit from adaptive therapy

over standard MTD approaches. Intuitively, it appears that the presence of a fitness cost of

resistance would be a great facilitator of adaptive therapy, and should be considered as an

inclusion criterion. However, as Bacevic et al [12] and Gallaher et al [13] show, the presence

of a cost does not guarantee that the resistant population can be effectively controlled.

Moreover, the experimental work which motivated the trial in prostate cancer did not find

a cost of resistance in vitro, yet adaptive therapy has extended median TTP by over 10

months [11].

The aim of this paper is to consolidate these findings and develop an understanding of

the circumstances under which the presence of a cost of resistance is required for adaptive

therapy to provide a benefit, and under which circumstances it is not. To do so, we developed
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a simple two-population Lotka-Volterra competition model and treated it according to the

adaptive therapy algorithm from [11]. We have shown that the time gained compared to

continuous therapy depends on three key aspects: i) the initial fraction of resistant cells

(fR), ii) the proximity of the tumour to environmental carrying capacity (n0), and iii) the

rate of cellular turnover (dT ). Previously it has been demonstrated that the smaller the

fraction of resistance in a tumour and the closer it is to carrying capacity, the greater the

benefit of adaptive relative to continuous therapy [8, 12, 13]. We extend these findings by

showing that for such tumours a cost of resistance is not necessary for adaptive therapy to

be beneficial. While its presence increases the time gained by adaptive therapy, our work

suggests that significant benefits may be obtained even in its absence. Some of our results

can be proven rigorously and in a broader context, at least in the absence of turnover. These

details are beyond the scope of this paper, but can be found in [32].

Since adaptive therapy aims to exploit competition between cells it makes sense that its

efficacy increases the closer the tumour is to carrying capacity. However, what is the meaning

of carrying capacity in a dynamic environment such as a tumour? Commonly, carrying

capacity, K, is interpreted as the maximum population size the environment can support

due to resource constraints and is thought of as independent of the population’s intrinsic

growth rate, r (see, for example, these three recent cancer publications in the Bulletin of

Mathematical Biology : [33, 34, 35]). However, biological populations have intrinsic turnover,

and therefore the population’s actual equilibrium will be smaller than K. Moreover, this

equilibrium is dependent on r, so that a cost in r changes not only the exponential growth

rate of the population but also its equilibrium value - the shorter the life span of a cell, the

fewer opportunities it will have to divide, and the greater will be the impact of interference

through intra- and inter-specific competition. This fact resolves a number of commonly

criticised issues of the logistic growth law and helps to translate results from ecological to

evolutionary theory [36, 37, 38].

These observations regarding turnover have implications for the success of adaptive ther-

apy (Figure 5A). When cell death is negligible, a cost of resistance at best slows the expan-

sion of resistance, but can not prevent it. In contrast, if there is significant turnover, even a

small cost of resistance may make the resistant population controllable for a long time. In

essence, turnover modulates the intensity of selection against resistance during the drug-free

intervals. As such, careful thought needs to be given to choose appropriate experimental
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model systems to test adaptive therapy. For example, Bjorkman et al [39] have shown in

bacteria that different fitness-compensating mutations are selected depending on whether

the bacteria are evolved in vitro or in vivo. In cancer, Bacevic et al [12] found that resistance

could be contained through competition in a spheroid, but not in a 2-D cell culture model.

While in vitro no resistance cost may be observed, tumour control may still be possible in

vivo or in patients as turnover, via greater nutrient deprivation, and immune suppression

will intensify competition, and amplify even small fitness differences.

What is the turnover rate of tumour cells? While this is challenging to quantify in

patients, the existing evidence paints a rather dynamic picture of growing tumours. Many

cancers exhibit areas of necrosis, a sign that conditions within a tumour often cause cell

death in certain areas. Furthermore, the doubling time expected from the fraction of dividing

cells seen in histological analyses, and the actually observed volumetric doubling time show

substantial discrepancies, suggesting the rate of cell death in tumours closely matches that

of cell production (see Section S3 for further discussion; [40, 41, 42, 43]). It is also important

to remember that in homeostatic tissue, birth and death are in fact balanced, as the tissue

continuously renews itself without changing in size [42]. We propose that the speed of

turnover in a tumour should be further quantified and, in combination with the homeostatic

turnover rate in its tissue of origin, should be investigated as selection criteria for adaptive

therapy.

While we focussed our attention on the impact of a cost in the proliferation rate, it is

clear that it may also manifest itself in other ways. For example, in the 3-D spheroids we

consider in Figure 1, there is significantly more debris around the resistant spheroids than

around their sensitive counterparts (see also S1.4). Also, the necrotic core appears enhanced

(Figure 1F & G). This suggests that the cost in this case might manifest itself in an increased

turnover rate. We also show that our analysis easily extends to costs in the turnover rate

and carrying capacity, where either costs in growth rate or costs in the carrying capacity

will have the greatest impact depending on the cell replacement rate (Section S6).

We make a number of simplifications in our model. Firstly, similar to [8, 12] we assume

that the tumour is not curable. However, as can be seen in Figure 5D, including a cost

of resistance and greater turnover also result in fewer cells at the nadir during continuous

therapy. This implies that the tumours in which adaptive therapy will be most effective are

those in which continuous therapy just misses being curative, an observation similar to that
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made in [7] and [13]. Thus, the very long gains predicted under adaptive therapy have to

be viewed with some scepticism, since in a proportion of these patients continuous therapy

would have cured the tumour. That being said, adaptive therapy is intended for advanced

settings in which the available treatment is rarely curative, which suggests that such cases

will be rare [2, 5]. Moreover, it seems plausible that if one finds that adaptive therapy

controls the tumour very well, one could then decide to switch to a curative approach. In

fact, adaptive therapy has been shown to have stabilising effects on tumour vasculature [9],

which suggests that a curative approach may be even more effective after an initial period

of adaptive therapy.

Furthermore, we do not consider the potential health-risks associated with the increased

tumour burden under adaptive therapy. As a result, our model predicts that the longest

TTP can be achieved by keeping the tumour as close to its initial size as possible. This

is true also for most previous studies carried out in this area ([3, 10, 12, 13]). As Hansen

et al [8] and Viossat and Noble [32] show, if one accounts for potential de novo resistance

acquisition, this high burden can generate situations in which maintaining a pool of sensitive

cells can in fact accelerate the emergence of the resistant population. Investigating the risks

associated with the higher average tumour burden under adaptive therapy is an important

area of future research.

Finally, in order to facilitate analysis we neglect the impact of space in this manuscript.

However, both [12] and [13] have previously demonstrated that in the absence of turnover the

spatial architecture of the tumour is a key determinant of the success of adaptive therapy. If

resistant cells can be “trapped” by sensitive cells in the centre of the tumour, the tumour may

be controlled for a long time [12, 13]. Going forward it would be important to assess whether

our conclusions extend to a spatial setting. While turnover will increase the selection against

resistant cells, it might also facilitate their escape by creating gaps in the layer of sensitive

cells surrounding them. Interestingly, using an extension of their model in [13], Gallaher et

al [44] have already shown that turnover mediates the proliferation-migration trade-off in

a tumour. In addition, while we define N(t) to represent tumour cell density, we treat it

effectively as a volume in determining progression. As a consequence, we have to assume

that the tumours we consider are below a certain density, so that we can still observe

progression. This both restricts us to lower tumour densities than what might be observed

in actual patients and can result in the prediction of indefinite TTP in certain parameter
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regimes. Also this issue could be addressed more accurately with a spatial model.

To conclude, we want to highlight interesting parallels and possible opportunities from

the pest and antibiotic resistance management literature, which have investigated fitness

costs of resistance since the mid-20th century (see, for example, [45] for an early review of

cost of resistance in insecticides). Firstly, we note that similar to cancer it has always been a

controversial issue. For example, Bergelson et al [46], find that out of 88 studies examining

the cost question in plants, 44 show a cost, 40 find no difference and 4 even observe a benefit

to resistance. Similar patterns can be seen for pesticide resistance [45, 47] and antibiotic

resistance [16, 17]. Whether a cost is present depends on the resistance mechanism, and

its environmental as well as genetic context [15, 17, 46]. Thus, in developing adaptive

therapy we should not assume that a cost of resistance is always present or is uniform

throughout the tumour, or that it will remain constant over time. That being said, in

line with the predictions of this paper, resistance management can be successful even if

the specific variations of the cost of resistance are uncertain or absent. For example, the

resistance management scheme for the insecticide producing Bacillus thuringensis (Bt) crop

has been successful despite inconclusive evidence regarding the presence of a resistance cost

[47, 48, 49].

In order to compensate for the fact that there is usually more than one evolutionary tra-

jectory to resistance, many pest resistance management strategies include multiple treatment

modalities [50, 51]. As such, we advocate multi-drug approaches in which one, or several

drugs, are given adaptively. Initial theoretical work on multi-drug adaptive therapy has al-

ready been carried out [5, 30, 52], and we have illustrated here how by targeting the resource

availability or turnover in a tumour with secondary drugs one can greatly enhance tumour

control. We also note that while abiraterone was given adaptively in the initial prostate

cancer adaptive therapy trial (NCT02415621), patients were concurrently receiving a con-

tinuous dose of Lupron which suppresses systemic testosterone production and reduces the

cancer’s supply of growth factors. A follow-up study now gives both Abiraterone and Lupron

in an adaptive fashion (NCT03511196). Going forward it will be important to extend this

work to develop strategies which exploit a cost of resistance, yet are robust if this cost

disappears due to environmental or genetic compensation. With better understanding of

tumour growth, resistance costs, and turnover rates, adaptive therapy can be more carefully

tailored to patients who stand to benefit from it the most.
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