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SUMMARY 
The human immune system varies extensively between individuals, but variation 

within individuals over time has not been well characterized. Systems-level 

analyses allow for simultaneous quantification of many interacting immune 

system components, and the inference of global regulatory principles. Here we 

present a longitudinal, systems-level analysis in 99 healthy adults, 50 to 65 years 

of age and sampled every 3rd month during one year. We describe the structure 

of inter-individual variation and characterize extreme phenotypes along a 

principal curve. From coordinated measurement fluctuations, we infer 

relationships between 115 immune cell populations and 750 plasma proteins 

constituting the blood immune system. While most individuals have stable 

immune systems, the degree of longitudinal variability is an individual feature. 

The most variable individuals, in the absence of overt infections, exhibited 

markers of poor metabolic health suggestive of a functional link between 

metabolic and immunologic homeostatic regulation. 
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HIGHLIGHTS 
Longitudinal variation in immune cell composition during one year 

 

Inter-individual variation can be described along a principal curve 

 

Immune cell and protein relationships are inferred 

 

Variability over time is an individual feature correlating with markers of poor 

metabolic health 

 
INTRODUCTION 
A well functioning immune system is vital to our health, due to its importance in 

protecting us from microbial infections, and its dysregulation in many 

autoimmune and allergic diseases is important. The immune system’s ability to 

fight cancer has inspired a strong focus on immunotherapy of cancer (Davis and 

Brodin, 2018). Understanding the composition and function of the human 

immune system has been challenging due to the high number of inter-dependent 

cell populations, their complex regulation and the enormous range of variation 

observed between individuals (Brodin and Davis, 2016). We have learned that 

immune systems vary as a consequence of both heritable and non heritable 

influences, the latter exerts a stronger influence on the innate branch of immunity 

than in the adaptive immune system (Casanova and Abel, 2015; Patin et al., 

2018). HLA-genes are exceptions to this rule and provide strong heritable 

associations with many immune mediated diseases, probably as a consequence 

of its interactions both with antigen-specific T-cells and innate NK-cells (Horowitz 

et al., 2013; Matzaraki et al., 2017). Overall, across all cell poulations and plasma 

proteins, the fraction of variance explained by heritable factors is in the range of 

20-40% with a few exceptional cell populations and plama proteins almost entirily 

explained by heritable traits (Brodin et al., 2015). With the advent of systems-

level analyses of many simultaneous cell populations, proteins and mRNA 

molecules measured in the same sample, the composition and functional 
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potential of human immune systems are becoming more predictable. Examples 

involve responses to vaccination (Furman et al., 2013; Nakaya et al., 2011; 

Querec et al., 2008; Sobolev et al., 2016; Tsang et al., 2014), the efficacy of 

cancer immunotherapy (Krieg et al., 2018), and autoimmune disease processes, 

which can now be described in more comprehensive ways (Damond et al., 2019; 

Rao et al., 2017). 

 

The composition of cells in the blood is an individual feature that has been 

reported to be stable within healthy adults over the course of weeks to months 

(Carr et al., 2016; Shen-Orr et al., 2016; Tsang et al., 2014). In contrast, very 

early in life, cell composition changes drastically in response to environmental 

exposures, suggesting a critical period of development when an individual’s 

unique cell composition is formed (Olin et al., 2018). In contrast to these reports 

of stability of adult immune systems, specific cell populations have been reported 

to change with yearly seasons (Aguirre-Gamboa et al., 2016), and other cell 

frequencies inferred from blood gene expression patterns, have also been 

reported to change with the season (Dopico et al., 2015). The overall picture 

remains unclear. At the same time, the variation in blood cell composition is an 

important issue to understand given that this is a baseline feature that is 

predictive of a range of functional responses (Kaczorowski et al., 2017) in vitro, 

but also in vivo (Tsang et al., 2014). Thus, immune cell composition is a potential 

useful metric of immunological health. To contribute more data and help settle 

these uncertainties in human immunology, we report on a longitudinal systems-

level analysis performed in 99 healthy individuals, aged 50-65 years, and profiled 

longitudinally during the course of one year. These individuals are part of the 

Swedish SciLifeLab SCAPIS Wellness Program (S3WP), and selected from a 

larger population study, SCAPIS aimed at identifying biomarkers of 

cardiovascular disease risk among 30,000 Swedes. In these individuals, we find 

a broad range of variation in immune cell composition which can be effectively 

visualized along a principal curve with extreme phenotypes readily identified. We 

find that fluctuations over time occur, that cannot be explained by season, but 
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can be used to infer cell and protein relationships from co-regulated features. At 

the global level, over-time immune variation is an individual feature with the most 

variable individuals also exhibiting markers of poor metabolic health suggestive 

of a loss of homeostatic regulation. 

 

 
 
RESULTS 
Longitudinal profiling of healthy adults during one year 
Within the national cohort study SCAPIS, 30,000 clinically healthy and middle 

age Swedes are enrolled and subject to deep cardiovascular phenotyping. From 

this cohort, a 101 individual subset was enrolled to undergo deep molecular 

phenotyping within the S3WP program at the Science for Life Laboratory (Figure 

1A). 99 of these 101 individuals returned for all four visits during the course of 

one year (Figure 1B), viable peripheral blood mononuclear cells (PBMCs) and 
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plasma samples were frozen and stored until analysis. We analyzed around 

200,000 cells per sample, and 78,891,056 cells in total by mass cytometry using 

a 38-parameter panel targeting all mononuclear immune cell populations. In 

plasma samples, 11-panels of Olink assays were applied, capturing 978 proteins 

in total. Out of these, 750 plasma proteins with highest confidence of detection 

was retained for downstream analyses (Experimental Procedures). The 101 

subjects enrolled, were 53 women and 48 men, aged 50-65 years (Figure 1C), 

with variable in body-mass index and blood pressure levels (Figure 1D-E). 

 
Describing immune variation along a principal curve 
A comprehensive analysis of immune system variation requires the simultaneous 

analysis of many cell populations. Because each of these vary substantially 

among individuals, their collective frequencies are better metrics for accurately 

describing immune variation than each of the cell frequencies individually 

(Kaczorowski et al., 2017). We manually gated 115 immune cell populations in 

each sample, but because these are hierarchical in nature, we only included 53 

non-redundant populations for compositional analyses. In this dataset all cell 

population frequencies have a sum equal to 1. To describe variation among 396 

samples from 99 individuals with four samples each, we calculated an Aitchison’s 

distance matrix (Templ et al., 2011), and visualize samples by multidimensional 

scaling (MDS) (Figure 2A). Here, each sample is positioned based on its pairwise 

distances to all other samples. The distribution of individual samples is 

continuous, without any evidence for discrete “immunotypes” within the cohort 

(Kaczorowski et al., 2017) (Figure 2A). 

 

To summarize the range of variation using a simpler metric, we fit a principal 

curve that best explain the variation in immune cell composition (Experimental 

Procedures)(Figure 2B). This Principal curve is the smooth curve that pass 

through the middle of the data cloud and is used as a simplified representation of 

the variation in the data (Hastie and Stuetzle, 1989). Each individual sample is 
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later projected onto this principal curve, and their location along this line is  

denoted by a parameter lambda (Figure 2B). In this way, lambda serves as a 

simplified metric of variation in immune cell composition. The main benefit of 

using such a measure of variation is that investigations of individual cell 

populations along this range of variation, and investigations of extreme 

phenotypes at the ends of the lambda spectrum are made possible (Figure 2B). 

We calculated correlations (Spearman) between individual cell frequencies and 

the lambda metric and found 38 immune cell populations correlated with lambda 

(p<0.05). The strongest positive correlations was seen for CD4+ effector memory 

and CD8+ T-EMRA populations (Figure 2C), and class-switched and un-switched 

memory B-cell populations that were negatively correlated with lambda (Figure 

2D). We conclude that a principal curve can describe global immune variation 

and reveal relationships such as the opposing relationship between effector T- 

and memory B-cell populations in healthy adults. By projecting additional 

samples onto the principal curve, immune system differences among individuals 

with different clinical outcomes or therapeutic responses will be possible in the 

future. 

 

In the analysis above, only immune cell frequencies are considered when 

defining the lambda metric, but this value can also be used to assess 

relationships between global immune cell composition and plasma protein 

concentrations. To this end, we correlated abundances of 750 plasma proteins 

measured by Olink assays (Olink AB, Uppsala)(Experimental Procedures) to 

lambda. This resulted in 23 significant correlations (p<0.05) with Granzyme H, 

and A, KLRD1, SELPLG and GUSB being the strongest positive ones (Figure 

2E), and GPC5, CLEC4A, XPNPEP2, MUC16 and CD207 as the strongest 

negatively correlated proteins along lambda (Figure 2F). The correlation 

(Spearman) coefficients with lambda for all cell populations and plasma proteins 

is also available online (Supplementary Table 1). These results suggest that 

global immune cell composition can be predicted from a smaller number of 

plasma protein biomarkers, although this will need to be validated further. We 
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conclude that immune variation in humans is not random, but determined by 

specific cell and protein relationships that can be described by a simplified metric 

allowing systems-level comparisons among patients, conditions and in relation to 

therapeutic interventions to be made. 

 

 
Sex-differences in global immune cell composition 
Autoimmune diseases segregate largely by sex, but the reasons for these 

differences are poorly understood (Ngo et al., 2014). We compared global 

immune cell compositions among the 49 men and 52 women in our cohort 
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plotted pairwise Aitchison’s distances among samples by MDS (Figure 3A). We 

calculate differences between the sexes using a permutation analysis of variance 

(Permanova) (Templ et al., 2011), which show a significant difference between 

male and female sample distributions (p<0.001), but a limited amount of variance 

explained (sums of squares). Sex explained only 2.39% of the total variance in 

cell composition (Figure 3A). The most differing cell populations between men 

and women were naïve CD4+ T-cells, higher in females while activated and 

antigen experienced CD8+ T-cells were more abundant in male subjects (Figure 

3B). We conclude that global cell composition, like some individual cell 

populations reported previously (Aguirre-Gamboa et al., 2016; Carr et al., 2016; 

Patin et al., 2018), differ between men and women, but explaining only a minor 

fraction of the overall variance (Aguirre-Gamboa et al., 2016; Carr et al., 2016; 

Patin et al., 2018). 

 

Global immune cell composition is stable over the seasons 
Another important factor previously shown to influence individual immune cell 

populations (Aguirre-Gamboa et al., 2016) and gene expression (Dopico et al., 

2015) is seasonality. Based on the lambda metric of global immune cell 

composition shown in Figure 2B for each sample, the overall observation is that 

global immune cell composition is stable over the course of the 12 months of a 

year (Figure 4A). In fact there were no significant shifts in global immune cell 

composition between any of these months, suggesting that overall immune 

variance is not strongly influenced by season (Figure 4A). 

 

One important limitation of previous analyses of seasonal variation in immunity is 

that these involved comparisons across different individuals, each sampled at 

different months of the year, rather than analyses within the same individuals 

sampled longitudinally. Here we have taken advantage of the longitudinal 

samples collected every three months during the course of one year. To 
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investigate seasonal changes involving specific subpopulations of cells, self-

organizing maps were used to cluster subpopulations of cells, within the major 

CD4+ T-, CD8+  T-, B-, and NK-cell lineages, as well as Monocytes, and a 

remaining lineage negative population (Figure 4B). This clustering approach 

allows for previously undefined subpopulations with possible seasonal 

fluctuations to be identified, while manual gating of known populations might miss 

such seasonal populations. To allow comparisons among individuals, even when 

the individuals are sampled at slightly different months of the year, we grouped 

samples according to the four weather seasons in Sweden; Winter (Dec-Feb), 

Spring (March-May), Summer (June-August), and Autumn (September-

November). To verify that these seasons capture known changes during the year 

in Sweden, we show 1.25-dihydroxy Vitamin D-levels for 83 individuals with such 

a measurement taken once in every season (Figure 4C). We find higher 

concentrations of vitamin D in most individuals during the summer and autumn 

due to the longer days and increased exposure to sunlight during these seasons 

in Sweden (Klingberg et al., 2015). In the cohort, 81 individuals also had one 

immune cell measurement by mass cytometry performed during each of these 

four seasons, allowing us to investigate seasonal fluctuations in cluster 

abundances (Figure 4D). We find large inter-individual variation in clusters 

abundances, and for some clusters also some strong variation over time in 

selected individuals, but this longitudinal variation did not follow seasonal 

patterns shared by many individuals (Figure 4D).  

 

Cell and protein relationships inferred from coordinated fluctuations over 
time 
Although no reproducible seasonal patterns were seen here, we decided to 

investigate the longitudinal variability of immune cell abundances further. In 

particular, we were interested to take advantage of fluctuations in cells and 

plasma proteins, to identify co-regulated immune system components, and in 

particular dependencies between plasma proteins and cell frequencies (Figure 

5A). The 750 most reliably detected plasma proteins, and 115 manually gated 
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immune cell populations represent an enormous number of possible  

associations. To be able to interpret such associations, a more manageable 

number of features is required. We therefore focused on 32 canonical immune 

cell populations, and the 378 proteins that best represents the overall variance in 

the plasma protein dataset (Experimental procedures). Using a Bayesian variable 

selection method, sets of proteins are selected randomly as predictors of a given 

cell population’s abundance in a regression model (Carbonetto and Stephens, 

2012). When performed iteratively, the posterior probability of inclusion (ppi) 

represents a measure for the likelihood of association between a protein and cell 

population (Experimental procedures). By thresholding associations from this 

iterative variable selection procedure (Supplementary Figure 1), resulted in a 

network model of the 226 significant associations (FDR = 0.01), out of 12,096 

possible associations (Supplementary Table 2). Out of these 106 were positive 

associations (positive beta coefficient), and 120 negative associations (negative 

beta coefficients). The 50 strongest positive, and 50 strongest negative 

associations are shown in Figure 5B. 

 

Some examples involve the chemokines CCL20 signaling via the CCR6 receptor 

(Schutyser et al., 2000), and CCL22 binding CCR4 (Vulcano et al., 2001), both  

negatively associated with central memory and effector memory population 

frequencies, in both CD4+ and CD8+ T-cell lineages (Figure 5C). These negative 

associations are driven by extreme phenotypes because subjects with very high 

levels of these cell populations are always low in plasma CCL20 and CCL22, and 

vice versa (Figure 5D).  

 

Another example involves the lesser known cytokine IL-16 which signals directly 

via the CD4 receptor on T-cells, and potentially on other cells expressing this 

receptor. IL-16 has also has been shown to influence the interaction of CD4+ T-

cells with B-cells, DCs and importantly other T-cell populations, suggesting a 

more broad modulatory role (Skundric et al., 2015). We found strong negative 

associations between plasma IL-16 levels and central memory T-cells, both CD4+ 
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and CD8+, as well as cytotoxic CD56dim NK cells, cells that are known to express 

CD4 when activated (Bernstein et al., 2006)(Figure 5E). 

 

In contrast to the shared protein associations for central memory T-cells, the 

three main monocyte populations are associated with different plasma proteins, 

suggesting that modulation of specific subpopulations might be possible (Figure 

5F). These examples highlight novel hypotheses that can be generated from 

longitudinal analyses of co-regulated immune cells and proteins. Finally, we 

wanted to assess how much of the total variance in cell population abundance, 

that could be attributed to specific plasma proteins. We found that nearly 80% of 

the variance in central memory T-cell abundance across samples could be 

explained by the concentration of 21 plasma proteins, while a more marginal set 

of only 4 proteins associated with CD56+ T-cells, explained >20% of its variance 

(Figure 5G). Specific plasma proteins were more informative than others, such as 

Granzyme H, (GZMH) found to be associated with 8 of the 20 most predictable 

populations (>20% of variance explained)(Figure 5G). This analysis would enable 

smaller sets of highly informative measurements to be validated in larger cohorts 

and possibly making human immune systems more predictable in the future. 

 

Immune variation over time is an individual feature 
Next we wanted to investigate the degree of variation over time, not at the level 

of individual immune system components, but at the level of the global cell 

composition. Such profiles have previously been reported to be stable in healthy 

adults over the course of weeks to months (Carr et al., 2016; Shen-Orr et al., 

2016; Tsang et al., 2014), while young children change drastically, before an 

individual’s stable phenotype has been established (Olin et al., 2018). In our 

cohort, we found that samples from the same individual were more similar 

(Aitchison’s distance), as compared to samples from different individuals (Figure 

6A). Using the same distance metric, comparing global cell composition between 

two samples, we calculated the total and mean distances travelled across all four 
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study visits (Figure 6B-C). This metric can be used to compare individuals with  

respect to their overall variability during the year of study. A few individuals 

reported infections between visits and this was typically associated with 

individual visits differing largely from the mean in a few subjects but did not affect 

the overall variability across all four visits (Figure 6C). The general pattern 

however was that most individuals had stable immune cell composition over time, 

but with a degree of variability that is an individual feature, not clearly explained 

by reported infectious disease events, but rather a feature of their immune 

systems giving rise to larger shifts in phenotype between every timepoint during 

the year (Figure 6C). 

 
High-variability is associated with markers of poor metabolic health 
We next wanted to understand what mediates this individual degree of variation, 

expressed as a different mean distance travelled between samplings. There was 

no link between time in-between visits and degree of variation (Data not shown). 

There were also no significant correlations (Spearman, FDR< 1%), between 

plasma proteins and variability. We then investigated relationships between 

clinical chemistry measurements at each visit and the degree of variability. As 

shown in Figure 6D, we found a positive correlation between multiple markers of 

poor metabolic health, such as plasma Apo-B, Triglycerides (TG), and LDL 

cholesterol, and conversely a negative association between over-time immune 

variability (mean Aitchison’s distance), and markers of metabolic health, such as 

HDL, and Apo-A1 (Figure 6D). Also, highly-sensitive Troponin T, a heart muscle 

leakage protein and a marker of cardiovascular disease, was positively 

correlated with immune variability (Figure 6D). Moreover, the total white blood 

cell count, red blood cell count, RBC and neutrophil count were also positively 

associated with high immune variability over time (Figure 6D). When looking at 

plasma proteins correlated with over-time cell variability, CCL18 was one of the 

top hits and this chemokine has previously been shown to be strongly expressed 

by macrophages within atherosclerotic lesions (Hägg et al., 2009) and correlated 
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with the extent of coronary artery disease in human patients (Versteylen et al., 

2016).  

 

These findings suggest that immune system variability is an individual feature, 

not explained by overt responses to infections, but instead associated with 

markers of poor metabolic health. Although, such associations must be validated 

in additional cohorts and follow-up in mechanistic analyses these data suggest 

that over time variability is an important feature to consider in human 

immunology. Longitudinal, systems-level data thereby allowed for a more precise 

description of inter-individual variation, the inference of biological associations 

between cells and proteins and a proposal for variability as a novel feature, 

indicative of immune system health and regulation, and associated with 

metabolic and cardiovascular health and homeostasis. 

 

DISCUSSION 
In this manuscript we have performed a longitudinal analysis of clinically healthy 

middle-aged individuals over the course of one year. We find that variation can 

be described along a principal curve and a lambda parameter defined which can 

then more easily be analyzed in relation to disease manifestations, metadata or 

other parameters of interest. We also show the potential of using longitudinal 

data in humans as a means of learning inter-dependencies among hundreds of 

immune system components. We also assessed the variability over time in 

relation to season without finding any cell populations that were strongly 

associated with season. This finding contrasts some previous analyses which 

have suggested such seasonal changes (Aguirre-Gamboa et al., 2016; Dopico et 

al., 2015). Our study differs from these in that we assessed seasonal changes 

from longitudinal samples within a given individual, while these previous analyses 

involved different individuals sampled once at different time-points during the 

year. We believe our study design is more appropriate for directly assessing 

seasonal changes, although having multiple samples across multiple consecutive 

years would have been even stronger for detecting seasonal changes 
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reoccurring over consecutive years. Given our previous work on immune 

variation in monozygotic twins (Brodin et al., 2015), one possibility would be to 

monitor and compare such MZ twins longitudinally across seasons to further 

dissect possible seasonal changes occurring in a reproducible fashion in co-

twins. 

 

In a previous report we showed that newborn immune systems change 

drastically in their cell composition, as a response to environmental exposures 

after birth (Olin et al., 2018). In contrast, adult immune systems have previously 

been shown to be stable over the course of weeks, months and even a few years 

(Shen-Orr et al., 2016). At the same time, immune system composition in older 

individuals is more heterogeneous as compared to younger individuals 

(Kaczorowski et al., 2017) and a recent analysis even use such variability to 

estimate immunological age that is predictive of all-cause mortality and 

cardiovascular health (Alpert et al., 2019). Monozygotic twins diverge over time, 

suggesting a cumulative influence of environmental factors over the course of life 

shaping human immune systems. Here we show that variability over time in 

middle-aged individuals is actually an individual feature, even in the absence of 

overt infections or inflammatory conditions. The finding that high variability is 

associated with markers of cardiovascular disease risk and poor metabolic 

health, suggests that over time variability might be also be an interesting 

biomarker of poor immunological health that should be studied in relation to 

disease. One particular condition that comes to mind here is “inflammaging”, a 

chronic inflammatory state in some individuals in older age, with increased 

mortality, and sharing many features with the inflammation seen in obesity and 

nutrient excess (Franceschi et al., 2018). Perhaps, increased immune variability 

and loss of immune homeostasis is a feature of both such chronic inflammatory 

states. 

 

One limitation of the current study is that the population studied is relatively small 

and not representative of all human populations. For example the HLA-diversity 
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of human populations cannot be accounted for using a population of this size. 

Also, in a different population living in a different environmental condition, and 

facing a different disease panorama a different pattern of variability over time 

might be seen. In a parallel study involving this same S3WP consortium the 

longitudinal variability of the gut microbiome has been assessed, but we found no 

correlation between immune system variability and gut microbiome variability 

(Data not shown). This is interesting given that the variation in gut microbiome 

composition has previously been reported to also be an individual feature (Flores 

et al., 2014), but presumably under the influence of other factors as compared to 

the immune cell composition described herein. One important factor not 

accounted for here is Cytomegalovirus, (CMV) previously shown to affect 

immune systems broadly (Brodin et al., 2015; Kaczorowski et al., 2017; Piasecka 

et al., 2018), but due to ethical permit limitations not available for study in the 

S3WP cohort. 
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FIGURE LEGENDS 
Figure 1. 101 healthy adults, profiled longitudinally during one year. (A) 
Samples collected approximately every third month during one year were 

analyzed by Olink assays (978 Plasma proteins), and Mass cytometry (PBMC 

cell populations). (B) individuals (rows) and their respective sampling times 
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during 2015 and 2016 are shown. (C) Age, (D) Body Mass Index, BMI, and (E) 
blood pressure distributions for female (n=53) and male (n=48) subjects in the 

cohort respectively. 

 

Figure 2. Describing variation in global immune cell composition along a 
principal curve. (A) Pairwise distances (Aitchison’s) based on relative 

abundances of 53 non-overlapping immune cell populations. (B) A principal 

curve is shown that captures the variance in immune cell composition (of 53 non-

redundant cell populations) in 396 samples obtained from 99 individuals. Each 

dot represents each individual sample. (C) Two of the most positively correlated 

cell populations increasing along the principal curve. (D) Three of the most 

negatively correlated cell populations decreasing along the principal curve. (E) 
Five of the most positively correlated plasma proteins, increasing along the 

principal curve. (F) Five of the most negatively correlated plasma proteins 

decreasing along the principal curve. 

 

Figure 3. Sex-differences in cell composition. (A) Pairwise distances 

(Aitchison’s) based on relative abundances of 53 non-overlapping immune cell 

populations visualized by MDS in 396 samples from 53 women and 48 men. (B) 
48 non-zero immune cell population frequencies as log2 ratios (Female/Male). 

 

Figure 4. Stable immune cell frequencies across seasons. (A) Lambda 

values as shown in Figure 2, for samples collected at the indicated month. (B) 

Immune cell clusters defined within the indicated cell lineages using Self-

organizing map, SOM clustering. Clusters in columns and their respective marker 

expression in rows. (C) Serum levels of 1.25-OH Vitamin D across individuals 

(n=82), with one sample taken per season; Winter (Dec-Feb), Spring (March - 

May), Summer (June - August), and Autumn (September - November). Grey 

lines show individual level data and black line represent mean concentration. (D) 

Immune cell cluster abundances within individuals sampled every season (n=81), 

Winter (Dec-Feb), Spring (March - May), Summer (June - August), and Autumn 
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(September - November). Grey lines show individual level data and black line 

represent mean abundance of the indicated cell cluster. 

 
Figure 5. Inference of cell - protein relationships. (A) Coordinated changes in 

individual cell populations and plasma protein levels allow for inference of inter-

dependencies using a Bayesian variable selection method. (B) Top 50 positive 

(blue) and the 50 strongest negative (red) associations, between 32 core cell 

populations and 378 proteins explaining most of the variance. Node size is 

proportional to the number of associations. (C) Highlight of associations between 

chemokines CCL20 and CCL22 and 5 related T-cell subsets. (D) Dot plot 

showing individual sample measurements of CCL20, CCL22 vs. CD8+ Tcm and 

CD8+ Tem respectively. (E) Negative association between the cytokine IL-16 and 

central memory T-cells and CD56dim NK cells. (F) Different protein associations 

for different monocyte subpopulations. (G) variance in abundance of each 

indicated cell population (columns), collectively explained by the indicated 

plasma proteins (rows). 

 

Figure 6. Over-time variability is an individual feature associated with poor 
metabolic health. (A) Aitchison’s distances calculated between samples taking 

all collective cell frequencies into account. Distances between multiple samples 

within an individual (Orange) and distances between samples from different 

individuals (Purple) shown as separate bar charts. (B) Illustration of distances 

travelled by one individual across 4 time-points in MDS space. (C) Intra-individual 

distances (Aitchison’s) shown for all individuals ordered from low to high mean 

distance travelled. Grey line indicate Aitchison’s distances across technical 

replicates and time-lines on the right indicate self-reported infections; UTI: 

Urinary Tract Infection, RTI: Respiratory Tract Infection, GE: Gastroenteritis. (D) 
Volcano plot of clinical measurements (mean values) positively and negatively 

correlated (Spearman) with over-time variability in immune cell composition. 

Significantly correlated features (p<0.05) are labeled. (E) Plasma proteins ranked 
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by their correlation (Spearman), with over-time variability. Proteins with rho > 0.3 

or < 0.3 are indicated. 
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Suppl. Fig 1. Distribution of posterior probabilities of inclusion and 

the threshold for inclusion in the analysis (red line).  

Related to figure. 5.   
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
CD45 (HI30) – 89Y Fluidigm Cat# 3089003B; RRID:2661851 
CD57 (HCD57) – Purified BioLegend Cat# 322302; RRID:AB_535988 
CCR6 (11A9) – Purified  BD Cat# 559560; RID:AB_2291135 
CD19 (HIB19) – 142Nd Fluidigm Cat# 3142001B; RRID:AB_2651155 
CD5 (UCHT2) – Purified BioLegend Cat# 300602; RRID:AB_314088 
CD16 (3G8) – Purified BioLegend Cat# 302002; RRID:AB_314202 
CD4 (RPA-T4) – 145Nd Fluidigm Cat# 3145001B; RRID:AB_2661789 
CD8a (SK1) – Purified BioLegend Cat# 344702; RRID:AB_1877104 
CD11c (Bu15) – 147Sm Fluidigm Cat# 3147008B; RRID:AB_2687850 
CD31 (WM59) – Purified BioLegend Cat# 303102; RRID:AB_314328 
CD193/CCR3 (5E8) – Purified BioLegend Cat# 310702; RRID:AB_345394 
FcεRIα (AER-37) – Purified BioLegend Cat# 334602; RRID:AB_1227649  
CD123 (6H6) – Purified BioLegend Cat# 306002; RRID:AB_314576 
TCRαβ (IP26) – Purified BioLegend Cat# 306702; RRID: AB_314628 
CD3e (UCHT1) – 154Sm Fluidigm Cat# 3154003B; RRID:AB_2687853 
CD7 (CD7-6B7) – Purified BioLegend Cat# 343102; RRID:AB_1659214 
NKG2C (134591) – Purified R&D Cat# MAB138; RRID:AB_2132982 
CXCR3 (G025H7) – Purified BioLegend Cat# 353733; RRID: AB_2563724 
CD45RB (MEM-55) – Purified BioLegend Cat# 310202; RRID:AB_314805 
CD22 (HIB22) – Purified BioLegend Cat# 302502; RRID:AB_2074593 
CD14 (M5E2) – Purified BioLegend Cat# 301802; RRID:AB_314184 
CD161 (HP-3G10) – Purified BioLegend Cat# 339902; RRID:AB_2661837 
HLA-DR (L243) – Purified BioLegend Cat# 307602; RRID:AB_314680 
CD44 (BJ18) – Purified BioLegend Cat# 338802; RRID:AB_1501199 
CD127 (A019D5) – 165Ho Fluidigm Cat# 3166007B; RRID:AB_2661803 
CD24 (ML5) – Purified BioLegend Cat# 311102; RRID:AB_314851 
CD27 (L128) – 167Er Fluidigm Cat# 3167006B; RRID: AB_2687645 
CD38 (HIT2) – Purified Biolegend Cat# 303502; RRID:AB_314354 
CD45RA (HI100) – 169Tm Fluidigm Cat# 3169008B 
CD20 (2H7) – Purified BioLegend Cat# 302302; RRID:AB_314250 
CD49d (9F10) – Purified BioLegend Cat# 304302; RRID:AB_314428 
IgD (IA6-2) – Purified BioLegend Cat# 348235; RRID:AB_2563775 
CD56 (NCAM16.2) – Purified BD Cat# 559043; RRID:AB_397180 
CD185/CXCR5 (51505) – Purified R&D Cat# MAB190; RRID:2292654 
CD244/2B4 (C1.7) – Purified BioLegend Cat# 329502; RRID:1279194 
CD39 (A1) – Purified BioLegend Cat# 328202; RRID: 940438 
CD11B (Mac-1) – 209Bi Fluidigm Cat# 3209003B; RRID:AB_2687654 
Biological Samples 
Healthy subjects from S3WP University of Gothenburg N/A 
Chemicals, Peptides, and Recombinant Proteins 
RPMI 1640 medium Sigma-Aldrich Cat# R848 
FBS Sigma-Aldrich Cat# 12103C 
Penicillin-streptomycin Sigma-Aldrich Cat# P4333 
Benzonase Sigma-Aldrich Cat# E1014 
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1X PBS Rockland Cat# MB-008 
EDTA Rockland Cat# MB-014 
Sodium Azide Sigma-Aldrich Cat# 71289 
Bovine Serum Albumin Sigma-Aldrich Cat# A3059 
Paraformaldehyde Polysciences Cat# 00380-1 
Intercalator-Ir Fluidigm Cat# 201192B 
EQ Four Element Calibration Beads Fluidigm Cat# 201078 
Maxpar X8 Multimetal labeling kit Fluidigm Cat# 201300 
Metal isotopes as chloride salts Fluidigm N/A 
Dimethyl Sulfoxide Sigma-Aldrich Cat# D8418 
Cell-ID Cisplatin Fluidigm Cat# 201064 
Metal isotopes as chloride salts Trace Sciences International N/A 
Protein Stabilizer PBS Candor Bioscience GmbH Cat# 131125 
Critical Commercial Assays 
Test tube with 35 μm nylon mesh Corning Cat# 352235 
Cardiometabolic panel Olink AB N/A 
Cell Regulation panel Olink AB N/A 
Cardiovascular II panel (CVD II) Olink AB N/A 
Cardiovascular III panel (CVD III) Olink AB N/A 
Development panel Olink AB N/A 
Immune Response panel Olink AB N/A 
Immuno-Oncology panel Olink AB N/A 
Oncology II panel Olink AB N/A 
Inflammation panel Olink AB N/A 
Metabolism panel Olink AB N/A 
Neurology, and Organ Damage panel Olink AB N/A 
Deposited Data 
FCS files, Mass cytometry This paper  
Protein expression data This paper  
Software and Algorithms 

Mass Cytometry Normalizer Finck et al., 2013  https://github.com/nolanlab/bead-
normalization/releases  

CyTOF software (v. 6.0.626) - https://www.fluidigm.com/  

robCompositions 2.0.5 
Templs et al., 2011 https://cran.r-

project.org/web/packages/ 
 robCompositions/index.html 

Kohonen 3.0.2 
Wehrens and Buydens, 2007 https://cran.r-

project.org/web/packages/kohonen 
 /index.html 

dmbvs Wadsworth et al., 2017 https://github.com/duncanwadsworth/
dmbvs 

Princurve 2.1.3. 
 
Hastie and Stuetzle, 1989 
 

https://cran.r-
project.org/web/packages/princurve/i
ndex.html 

MASS 7.3-51.1 
 
Venables and Ripley, 2002  

https://cran.r-
project.org/web/packages/MASS/ind
ex.html 

Sva 3.18.0 
 
N/A 

http://bioconductor.org/packages/rele
ase/bioc/ 
 html/sva.html 
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CONTACT FOR REAGENT AND RESOURCE SHARING 
Further information and requests for resources and reagents should be directed 

to Petter Brodin (petter.brodin@ki.se). Raw FCS files and plasma protein levels 

will be shared to anyone after certification that data will not be further 

disseminated to any third party. This mechanism is not the choice of the authors 

but the restriction imposed by the legal department, Gothenburg University who 

is responsible for data management within the SCAPIS project. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Wellness subjects  
From an ongoing Swedish SciLifeLab’s SCAPIS (Swedish CArdioPulmonary 

bioImage Study) Wellness Profiling (S3WP) program, which is a prospective 

observational study of a randomly selected 30,000 Swedish subjects aged 50-65 

years, a smaller cohort of 101 individuals were recruited for this study (named as 

‘SCAPIS’) and were followed longitudinally for one year with repeated analyses at 

three months’ intervals. The study was approved by the Ethical Review Board of 

Gothenburg, Sweden. All participants have provided a written informed consent. 

The study was performed in accordance with the declaration of Helsinki. The 

subjects had been extensively phenotyped before entering the study. 

 

Study design 
This is a non-interventional and observational study with the aim of collecting 

longitudinal data in a community-based cohort. A blood sample was collected 

every third month (+/- 2 weeks) making a total of 4 visits per subject. A selection 

of questions from the initial SCAPIS questionnaire was repeated to note any 

changes in health and lifestyle factors between each visit such as infections, 

disease, medication, perceived health, and exercise level. 
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METHOD DETAILS 
Sample preparation and storage 
Blood drawn in heparinized tubes at 4 visits from each subject was spun at 2000 

g for 10 min for collection of plasma. Following this, blood was diluted in PBS and 

PBMCs were isolated using density gradient centrifugation and were frozen at -

800C in freezing medium containing 10% DMSO and 90% FBS until analysis by 

Mass cytometry. 

 

Antibody labelling 
The panel of monoclonal antibodies used for this study are indicated in the Key 

Resources Table. Monoclonal antibodies were either purchased pre-conjugated 

from Fluidigm or in purified carrier/protein-free buffer formulation from other 

vendors. Purified antibodies were conjugated to lanthanide metals using the 

MAXPAR X8 polymer conjugation kit (Fluidigm Inc.), according to the 

manufacturer’s protocol. Antibody concentration before and after conjugation was 

measured by NanoDrop 2000 spectrometer (Thermo Fischer Scientific) at 280 nm. 

Following conjugation of antibodies, they were diluted 1:1 in Protein Stabilizer PBS 

(Candor Bioscience GmbH) prior to use in experiments. 

 

Thawing and resting of cells 
Cryopreserved PBMCs were thawed in RPMI medium supplemented with 10% 

FBS, 1% penicillin streptomycin, and benzonase (Sigma-Aldrich). Cells were 

resuspended in RPMI medium supplemented with 10% FBS and 1% penicillin 

streptomycin and rested overnight at 37oC in 5% CO2 for cells to be revitalized. 

Samples were randomized in batches to avoid systematic technical variation due 

to PBMC sample processing (Brodin et al., 2019). 

 

Mass cytometry - staining samples using automation 
Overnight rested cells were counted and checked for their viabilities. For live-dead 

discrimination, cells were stained with 2.5μM Cisplatin (Fluidigm Inc.) in RPMI 

without FBS for 5 min at room temperature, followed by quenching with RPMI 
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containing FBS. Cells were then fixed with 1% formaldehyde (Polysciences Inc.), 

washed, and resuspended in CyFACS buffer (PBS with 0.1% BSA, 0.05% sodium 

azide and 2mM EDTA). For surface marker staining, cells were incubated for 30 

min at 4°C with a 30ul cocktail of metal conjugated antibodies (Antibodies listed in 

Key Resources Table) targeting the surface antigens, washed with CyFACS and 

fixed with 4% paraformaldehyde, all of which performed using a custom built liquid 

handling robotic platform (Mikes et al., 2019).   

 

Mass cytometry - sample acquisition 
Cells fixed in 4% paraformaldehyde were stained with Iridium-labelled DNA 

intercalator at a final concentration of 0.125 μM (MaxPar® Intercalator-Ir, Fluidigm 

Inc.) on the day of sample acquisition. Following incubation for 20 min at room 

temperature, cells were washed with CyFACS buffer twice, once with PBS, and 

twice with milliQ water. Cells were counted and diluted to 500,000 cells/ml in milliQ 

water containing 10% EQ Four Element Calibration Beads (Fluidigm Inc.) and 

filtered through a 35µm nylon mesh (Lakshmikanth and Brodin, 2019). Samples 

were acquired on one of two CyTOF2 mass cytometers (Fluidigm Inc.) using 

CyTOF software version 6.0.626 with noise reduction, a lower convolution 

threshold of 200, event length limits of 10-150 pushes, a sigma value of 3, and flow 

rate of 0.045 ml/min. 

 

Plasma protein quantification 

Plasma protein data was generated from a total of 101 samples using a multiplex 

proximity extension assay (Olink AB, Uppsala) as described previously (Lundberg 

et al., 2011). For analysis, 20µL of plasma from each sample was thawed and sent 

to Olink AB for analysis. In this assay, plasma proteins are dually recognized by 

pairs of antibodies coupled to a cDNA-strand that ligates when brought into 

proximity by its target, extended by a polymerase and detected using a Biomark 

HD 96 3 96 dynamic PCR array (Fluidigm Inc.). Eleven Olink panels have been 

used as indicated in Key Resources Table, capturing a total of 978 proteins in each 

plasma sample. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 
Mass Cytometry Preprocessing and Gating 
All FCS-files unrandomized using the CyTOF software (version 6.0.626) were 

transferred without any additional preprocessing. Files were normalized using our 

own in-house implementation of normalization software described previously 

(Finck et al., 2013). Cells populations were manually gated using a Brodin lab 

developed software, Cytopy. Cell frequencies were batch corrected using the 

ComBat algorithm provided in the sva R package. 

 

Self-Organizing Maps for Clustering of Mass Cytometry Data 
For each lineage, up to 10 000 cells were subsampled (n = 393 files from 99 

individuals) for clustering. Each parameter was Z-score transformed to account 

for variations in absolute intensity between channels, and the maximum intensity 

was set to the 99th percentile to remove extreme outliers. Samples were 

clustered using the som() function from the kohonen R package on a hexagonal 

20x20 grid with rlen = 100. Hierarchical subclustering was performed and a cutoff 

was set to generate a final set of 10 clusters per cell lineage. Cluster frequencies 

were batch corrected using the ComBat algorithm provided in the sva R package. 

 

Aitchison’s distances 
Aitchison distance metric was used given the compositional nature of cluster 

abundances (Aitchison, 1982). Distances among mass cytometry samples were 

calculated on the compositional vector of immune cell clusters as determined by 

Self-Organizing Maps. Distances were calculated using the aDist() function in the 

robCompostitions R package. 

 

Describing variation along a principal curve 
To describe the variation of individual’s cell composition along a trend, we first 

induce a 2-dimensional Euclidean space by applying non-metric multidimensional 

scaling (MDS) method on distance matrix computed by aDist() function as 
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described in above step. We used isoMDS() function from MASS R package. 

Each point in this 2-dimensional MDS space represents individual’ cell 

composition, and is projected to minimize the stress, the square root of the ratio 

of the sum of squared differences between the input distances. The basic idea is 

to project the variation among individual’s cell composition as captured by 

Aitchison’s distances by using distance preserving technique like MDS to 2-

dimensional Euclidean space. 

 

In the second step, we fitted a principle curve (Hastie and Stuetzle, 1989), which 

is a smooth one-dimensional curve that passes through the “middle” of a data 

provides a nonlinear summary of the data. The reason to fit a nonlinear trend to 

data is to capture the nonlinearity in compositional data distances i.e., small 

distances may have cell frequencies with large differences and continuum of 

variation among cell composition as pointed out by (Kaczorowski et al., 2017). 

We used the algorithm implemented in R package princurve. The implementation 

uses first principal component of Principal Components Analysis (PCA) as the 

initialization, then fit a smooth curve by using cubic splines and local averaging to 

determine self-consistency. 

 
Estimating immune cell – protein associations 
We performed independent run of a Bayesian Variable Selection Using 

Variational Method for each cell population from 32 cells populations as target 

variable and 378 protein variables as explanatory variables. A log linear 

regression model was fitted to find associations between a single target variable 

(cell population) and a set of explanatory protein variables. Using a Bayesian 

Variable Selection (BVS) approach (Carbonetto and Stephens, 2012), strength of 

association between target variable I.e. cell population and set of explanatory 

protein variables is estimated as the posterior probability of inclusion (PPI). 

 

A selection of the significant associations can then be made by choosing those 

associations that have PPIs greater than a specific value, for example greater 
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than 0.5 for the median probability model. We used two empirical based method 

to choose the threshold for detecting significant association among protein and 

cell populations: 1) By looking at histogram of PPI, where we set 0.99 as 

threshold to filter out most significant associations i.e., association with 1% or 

less than 1% chances of their exclusion from the model to predict the cell 

population. 2) by computing Bayesian false discovery rate (BFDR) threshold 

based on an a priori value of false discovery rate alpha. In our study, we set 

value of alpha equal to 0.01. In other words, we want a threshold on probabilities 

i.e. PPIs in such way that the probability of a type I error, or a false positive, 

should be less than 1%. We used BFDR formula implemented as part of R 

package DMBVS (Wadsworth et al., 2017). The estimated value of this BFDR is 

equal to 0.7553617 in our case. After applying BFDR threshold, we have 226 

associations having PPI greater than BFDR out of total possible 378 * 32 = 

12096 associations.  

 

DATA AND SOFTWARE AVAILABILITY 
The datasets generated in the study are available upon request through a S3WP 

data committee which will ensure compliance with GDPR regulations. All software 

and code is freely available upon request to the authors. 
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