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 2 

Abstract 22 

The neural crest is a stem cell population that gives rise to sympathetic ganglia, the cell type of 23 

origin of neuroblastoma. Hypoxia Inducible Factor (HIF)-2a is associated with high risk 24 

neuroblastoma, however, little is known about its role in normal neural crest development. To 25 

address this important question, here we show that HIF-2a is expressed in trunk neural crest 26 

cells of human, murine and avian embryos. Modulating HIF-2a in vivo not only causes 27 

developmental delays but also induces proliferation and stemness of neural crest cells while 28 

altering the number of cells migrating ventrally to sympathoadrenal sites. Transcriptome 29 

changes after loss of HIF-2a reflect the in vivo phenotype. The results suggest that expression 30 

levels of HIF-2a must be strictly controlled and abnormal levels increase stemness and may 31 

promote metastasis. Our findings help elucidate the role of HIF-2a during normal development 32 

with implications also in tumor initiation at the onset of neuroblastoma. 33 

 34 

Key words: Neural crest, trunk neural crest, neuroblastoma, hypoxia inducible factor-2, HIF, 35 
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 3 

Introduction 38 

The neural crest is a multipotent stem cell population that is unique to vertebrate embryos. 39 

Originating from the ectodermal germ layer, premigratory neural crest cells arise in the dorsal 40 

neural tube during neurulation and are characterized by expression of transcription factors like 41 

FOXD3, TFAP2 and SOXE (Khudyakov & Bronner-Fraser, 2009). Neural crest cells 42 

subsequently undergo an epithelial-to-mesenchymal transition (EMT) to delaminate from the 43 

neuroepithelium, then migrate extensively throughout the embryo, populating distant sites. 44 

Upon reaching their final destinations, neural crest cells form a large variety of cell types, as 45 

diverse as elements of the craniofacial skeleton, melanocytes of the skin, adrenal chromaffin 46 

cells and sympathetic neurons and glia (Ayer-Le Lievre & Le Douarin, 1982; Bittencourt, da 47 

Costa, Calloni, Alvarez-Silva, & Trentin, 2013; Bronner-Fraser & Fraser, 1988; Vega-Lopez, 48 

Cerrizuela, Tribulo, & Aybar, 2018). 49 

 50 

The stem cell properties and migratory nature of the neural crest are highly reminiscent of tumor 51 

cells. Indeed, many of the genes involved in neural crest EMT are redeployed in metastatic 52 

cancers including many types of neural crest-derived cancers. Thus, neural crest cells represent 53 

an excellent model for studying the origin of neural crest-derived tumors including pediatric 54 

neuroblastoma, a tumor of infancy responsible for 15% of all cancer-related deaths in children 55 

(Maris, 2010). Neuroblastoma patients are very young, with some tumors detected in newborns. 56 

It is well accepted that neuroblastoma derives from sympathetic neuroblasts that originate from 57 

trunk neural crest cells (De Preter et al., 2006; Hoehner et al., 1996). 58 

 59 

High risk neuroblastoma correlates with the presence of cells in perivascular niches (Pietras et 60 

al., 2008) that express high levels of Hypoxia Inducible Factor (HIF)-2a together with 61 

numerous neural crest markers (Holmquist-Mengelbier et al., 2006; Pietras et al., 2008; Pietras 62 
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et al., 2009). Under normal conditions, HIF-2a is stabilized at low oxygen levels and responds 63 

to hypoxia by initiating a transcriptional program for cellular adaptation to changes in metabolic 64 

demand. In neuroblastoma, however, HIF-2a becomes abnormally stabilized at physiological 65 

oxygen tensions (~5% O2) (Holmquist-Mengelbier et al., 2006). This, together with the 66 

presence of neural crest markers in neuroblastoma tumors, raises the intriguing possibility that 67 

HIF-2a expressing neural crest cells in the early embryo might reflect the cell type of origin in 68 

tumor initiation. 69 

 70 

Here, we explore this possibility by examining the role of HIF-2a, encoded by the gene EPAS1, 71 

during normal neural crest development and possible correlations with neuroblastoma. We 72 

show that HIF-2a is expressed in migrating trunk neural crest and sympathetic neuroblasts in 73 

human, murine and avian embryos. RNA sequencing of trunk neural crest cells with 74 

dysregulated HIF-2a levels demonstrates a shift in the global transcriptional program, resulting 75 

in enrichment in genes associated with processes connected to tumor morphology, invasion, 76 

EMT and arrested embryo growth. Perturbation experiments in chick embryos in vivo result in 77 

a delay in embryonic growth, altered expression of trunk neural crest genes, and disrupted trunk 78 

neural crest cell migration. Consistent with this, in vitro crestospheres display increased 79 

proliferation and self-renewal capacity. The results suggest that expression levels of HIF-2a 80 

must be tightly regulated. These findings enhance our understanding of how genes dysregulated 81 

in normal development may result in onset of neuroblastoma. 82 

 83 
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Results 85 

HIF-2a is expressed in migratory trunk neural crest cells in chick embryos 86 

The presence of neuroblastoma cells expressing hypoxia inducible factor (HIF)-2a in 87 

perivascular tumor niches indicates poor prognosis in this tumor form. That these cells express 88 

stem cell- and neural crest associated proteins raises the intriguing possibility that they may 89 

constitute a tumor-initiating subpopulation of cells that resembles embryonic neural crest cells. 90 

HIF-2a is a transcription factor that localizes to the nucleus but also is found in the cytoplasm 91 

(Holmquist-Mengelbier et al., 2006; Mohlin, Hamidian, & Pahlman, 2013), though its role in 92 

the cytoplasm remains unknown. Consistent with this dual localization, Western blots of stage 93 

HH18 wild type chick embryos revealed expression of HIF-2a in both the nuclear and 94 

cytoplasmic fractions (Figure 1A), similar to what has been observed in oxygenated 95 

neuroblastoma cells (Holmquist-Mengelbier et al., 2006).  96 

As a first step in exploring the role of HIF-2a in the embryo, we examined its spatiotemporal 97 

expression during normal neural crest development.  To this end, RNA was extracted from 98 

whole chick embryos from stages HH4 to HH27, reflecting stages from gastrulation to mid-99 

gestation. The results revealed continuous expression of HIF-2a (encoded by the gene EPAS1) 100 

over the time course analyzed, with a peak at HH18 which reflects the time of active trunk 101 

neural crest migration (Figure 1B). Next, we performed immunocytochemistry with an 102 

antibody against HIF-2a in transverse sections through the trunk region of stage HH11, HH13 103 

and HH18 embryos. We detected HIF-2a protein in scattered neural crest cells within the neural 104 

tube of HH11 and HH13 embryos, stages when trunk neural crest cells are still premigratory 105 

(Figure 1C-D, respectively). We further detected HIF-2a in trunk neural crest cells that had 106 

delaminated from the neural tube and initiated migration (Figure 1E-F). Possible non-specific 107 

binding by the primary antibody was ruled out by secondary antibody only staining 108 
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(Supplementary Figure S1A).  109 

 110 

HIF-2a is canonically induced at low oxygen levels. To understand variations in oxygen 111 

consumption during the developmental stages of interest, we measured O2 saturation in real-112 

time in the developing chick embryo utilizing a microsensor technique (Figure 1G). Within the 113 

trunk neural tube, oxygen saturation starts out high (up to 85% ± 5 SEM O2 saturation) at 114 

premigratory to migratory stages of neural crest development (HH10 – HH16) and gradually 115 

decreases (Figure 1G). At the time when the majority of trunk neural crest cells have 116 

delaminated from the tube (HH18), oxygen saturation is low (23% ± 10 SEM O2 saturation), 117 

only to rise at later time points (Figure 1G). Together with the expression data above, the 118 

results suggest that HIF-2a is independent of oxygen availability in the developing embryo 119 

(Figure 1C-G and Figure 2). 120 

 121 

HIF-2a is expressed in sympathetic neuroblasts in human and mouse embryos 122 

EPAS1 knockout mice have severe abnormalities in the sympathetic nervous system (Tian, 123 

Hammer, Matsumoto, Russell, & McKnight, 1998); consistent with this, there is some, albeit 124 

limited, data suggesting that HIF-2a is expressed in sympathetic chain ganglia up to murine 125 

day E11.5 (corresponding to human embryonic week 5). Moreover, mice lacking PHD3 (HIF 126 

prolyl hydroxylase), a gene critical for regulation of HIF-2a, display reduced sympathetic 127 

nervous system (SNS) function that is rescued by crossing these mutants with EPAS1+/- mice 128 

(Bishop et al., 2008). 129 

 130 
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 7 

 We have previously shown that HIF-2a is expressed in sympathetic ganglia of human embryos 131 

at embryonic week 6.5 (~E12.5 in mice) but that expression is lost in these cells at later stages 132 

(fetal week 8) (Mohlin et al., 2013). Here, we confirmed expression of HIF-2a in sympathetic 133 

ganglia in mouse embryos at E12.5 by staining adjacent sections with HIF-2a (Figure 2A) and 134 

TH (Figure 2B) antibodies, with the latter indicating the location of sympathetic ganglia. 135 

Demonstrating antibody specificity, HIF-2a expression was only observed in conventional 136 

neuroblastoma SK-N-BE(2)c cells cultured at hypoxia (1% O2) but not normoxia (21% O2) 137 

(Supplementary Figure S1B). In sections, we detected HIF-2a positive cells specifically in 138 

the dorsal neural tube, as well as in early neural crest migratory streams in sections through the 139 

trunk region of a human embryo of embryonic week ew5 (Carnegie stage 13; Figure 2C-D). 140 

In contrast, there were virtually no HIF-2a positive cells left within the neural tube at 141 

embryonic week ew6 (Carnegie stage 16).  Rather, positive cells could be detected migrating 142 

along the ventral pathway followed by sympathoadrenal precursors (Figure 2E). Consistent 143 

with our biochemical analysis in the chick (Figure 1A), human HIF-2a expression was noted 144 

in both the nucleus and cytoplasm (Figure 2E). 145 

 146 

Knockdown of HIF-2a delays embryogenesis, alters gene expression and affects cell numbers 147 

along the ventral neural crest migratory pathway 148 

To examine the role of HIF-2a in vivo, we performed loss-of-function experiments in chick 149 

embryos using both morpholino-mediated knock-down as well as CRISPR/Cas9 knock-out 150 

using three different gRNAs.  We then let the embryos develop for an additional one (for gene 151 

expression) or two (for staging and migration) days and analyzed several potentially affected 152 

biological processes. Surprisingly, we noticed that HIF-2a knockdown embryos were 153 
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 8 

developmentally delayed compared with their control counterparts (Figure 3A-D). The stages 154 

of embryos following CRISPR/Cas9- or morpholino mediated loss of HIF-2a were determined 155 

by their Hamburger and Hamilton developmental stage in ovo (Figure 3A-B) and by counting 156 

somites ex ovo (Figure 3C-D).  157 

 158 

Electroporation efficiency was confirmed by analyzing EGFP expression (Supplementary 159 

Figure S2A-B). Knockdown of HIF-2a, either by morpholino or CRISPR/Cas9, led to 160 

decreased expression levels of genes representative of early and migrating neural crest as well 161 

as trunk neural crest cells in particular (Frith et al., 2018; Murko, Vieceli, & Bronner, 2018) 162 

(Figure 3E-G, respectively, and Supplementary Figure S2C-D). In contrast, the cranial 163 

neural crest associated gene HOXA2 was not affected (Figure 3F, H). 164 

 165 

One of the most important features of neural crest cells is their migratory ability. Trunk neural 166 

crest cells destined to form the sympathetic chain ganglia migrate ventrally. After HIF-2a loss 167 

of function using either morpholinos or CRISPR/Cas9, HNK1 positive migratory neural crest 168 

cells were detected on the control side in all embryos (Figure 4A-D) as well as on the side 169 

electroporated with non-targeting gRNA CTRL and control 5’-mismatch morpholino (Figure 170 

4A and 4C, respectively). In contrast, loss of HIF-2a profoundly reduced the numbers of 171 

HNK1 positive cells migrating to ventral regions of the embryo (CRISPR/Cas9, Figure 4B; 172 

morpholino, Figure 4D).  173 

 174 

SOX9, a member of the SoxE family of transcription factors, is important for neural crest fate.  175 

It is expressed in premigratory neural crest cells at all axial levels and promotes their lineage 176 
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progression. Importantly, transverse sections through the trunk of embryos electroporated with 177 

control or two different EPAS1 targeting gRNA constructs showed no differences in SOX9 178 

expression (Supplementary Figure S3A-C), suggesting that neural crest lineage specification 179 

was unaffected by loss of HIF-2a. 180 

 181 

Over-expression of HIF-2a has similar effects as loss-of-function 182 

Similar to the loss-of-function experiments, overexpression of HIF-2a led to delayed 183 

embryonic development (Figure 5A) and perturbed migration as visualized by HNK1 staining 184 

(Figure 5B). Expression of neural crest- and trunk specific genes was slightly suppressed 185 

(Figure 5C and Supplementary Figure S4A) whereas expression of cranial neural crest gene 186 

HOXA2 was slightly induced (Figure 5C). Overexpression of EPAS1 was confirmed by qRT-187 

PCR (Supplementary Figure S4B). 188 

 189 

Trunk neural crest cells proliferate extensively in response to dysregulated HIF-2a 190 

We next examined cell proliferation in premigratory and migrating neural crest cells after loss 191 

of HIF-2a using real-time EdU pulse chase labeling optimized for avian embryos (Warren et 192 

al., 2009). Quantifying the proportion of premigratory and early migrating neural crest cells 193 

that had incorporated EdU demonstrated a significant induction of proliferating cells with an 194 

average proportion of double positive cells of 22% and 70% in the 5’-mismatch versus EPAS1 195 

morpholino targeted embryos, respectively (p 0.029; Figure 6A-B). 196 

 197 

After over-expression of HIF-2a, real-time EdU incorporation demonstrated that cells with 198 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915199
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

increased expression of HIF-2a also became highly proliferative with an average proportion of 199 

double positive cells of 11% and 52% in the control and EPAS1 overexpressing embryos, 200 

respectively (p 0.011; Figure 6C-D). We conclude that neural crest proliferation is highly 201 

sensitive to expression levels of HIF-2a, suggesting that levels must be tightly controlled for 202 

proper development. 203 

 204 

HIF-2a downregulation enhances stem cell properties of trunk NC cells 205 

Neural crest-derived crestosphere cultures (Mohlin & Kerosuo, 2019; Mohlin, Kunttas, et al., 206 

2019) enable studies on stemness properties of these cells in vitro. Therefore, we examined 207 

EPAS1 expression in crestosphere cultures, in which multipotent neural crest cells can be 208 

maintained in a stem cell-like state in vitro (Kerosuo et al., 2015; Mohlin, Kunttas, et al., 2019).  209 

When comparing crestosphere cultures derived from trunk versus cranial axial levels, we noted 210 

that EPAS1 was enriched in trunk crestospheres (Figure 6E). In situ hybridization further 211 

revealed two separate patterns of EPAS1 expression in trunk crestospheres: equal distribution 212 

throughout the spheres or concentration in cells at the edges of the spheres (Figure 6F). 213 

 214 

Next, we established trunk crestospheres from embryos electroporated with a control gRNA 215 

construct or two different gRNAs targeting EPAS1. Primary sphere assays demonstrated that 216 

cells with dysregulated HIF-2a levels had an increased ability to form new spheres when seeded 217 

as single cells (1 cell/well; Figure 6G-H). In addition, crestosphere cultures derived from 218 

embryos electroporated with the EPAS1 targeting construct formed larger spheres compared to 219 

their control counterparts (Figure 6H). 220 

 221 
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RNA-seq after loss of HIF-2a in neural crest cells identifies downstream genes associated with 222 

invasion, growth arrest and developmental regulation 223 

To investigate gene expression changes after loss of HIF-2a, we performed loss of function 224 

experiments at premigratory stages of neural crest development (HH10+/HH11 in avian 225 

embryos) using a splice targeting morpholino as above. Neural tubes from trunk region were 226 

dissected 24 hours post-electroporation (at stage ~HH16) and subsequently analyzed by RNA 227 

sequencing. Correlation plot of all genes from the dataset demonstrated that trunk neural crest 228 

cells after knockdown of HIF-2a indeed differ from those injected with control scrambled 229 

morpholino (spearman p>0.96; Figure 7A). Setting a cut-off at p<0.005 and removing all hits 230 

that were not annotated (NA), we identified 97 genes of interest (Figure 7B). The top ten genes 231 

down- and upregulated (assessed by log2 fold differences in expression) by knockdown of HIF-232 

2a are summarized in Figure 7C, while the complete list of these 97 genes can be found in 233 

Supplementary Table S1. 234 

 235 

Gene set enrichment analysis (GSEA) on the RNA sequencing data described above 236 

demonstrated that two out of the top five processes connected to disease were cancer and tumor 237 

morphology (with 29 and 8 out of 97 molecules, respectively; Figure 7D). Deeper analysis of 238 

tumor morphology showed that genes associated with invasion of tumor cells and size and 239 

volume of tumor were particularly enriched, i.e. these associated genes linked to specific 240 

disease categories are not due to random chance but are statistically significant (p<0.05) 241 

(Figure 7E). Consistent with in vivo data, we identified cellular movement as one of the top 242 

molecular and cellular functions affected, with invasion as well as migration of tumor cells and 243 

epithelial-to-mesenchymal transition as predicted downstream pathways (Figure 7E). GSEA 244 

also revealed enrichment of genes associated with arrest in embryo growth (Figure 7D-E). We 245 
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conclude that the predicted cellular functions derived from our RNA sequencing experiment 246 

overlap with in vivo data (cf. Figures 3-6). Top networks from the RNA sequencing data 247 

showed enrichment of two signaling pathways, the ephrin receptor- and phosphatidylinositol 248 

3-kinase (PI3K) signaling pathways (Figure 7F and Supplementary Figure S5A, with full list 249 

of gene ontology enriched processes in Supplementary Table S2). 250 

 251 

Dividing the hits from RNA sequencing data that overlap with genes enriched for migration of 252 

tumor cells revealed a large subset of genes that encode for plasma membrane associated- or 253 

are secreted proteins (Supplementary Figure S5B). Several of these overlapping genes were 254 

among the 97 significantly differentially expressed (with cut-off p<0.005), suggesting a close 255 

regulatory relationship between HIF-2a and migration at least during these time points of 256 

development.  257 

 258 

Given the effects we observed on embryonic development in vivo, we mapped potential 259 

upstream regulators of arrest in embryo growth. As expected, most genes were transcription 260 

factors, including EPAS1 itself (Figure 7G). Among the predicted upstream regulators of 261 

arrested growth, genes associated with stem cells, BMP signaling and EMT were highly 262 

enriched (Table 1 and Supplementary Table S3).  263 

 264 

Two other predicted genes upstream of arrested embryo growth were CDX2 and HNF1B, also 265 

among the 97 significantly (cut-off p<0.005) differentially expressed in the RNA sequencing 266 

data. Deeper analysis of these genes revealed autocrine signaling as well as an interconnected 267 

regulation between the two (Supplementary Figure S5C). EMT related genes ZEB2 and 268 
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SNAI1 are negatively regulated by both of these genes (Supplementary Figure S5C). In 269 

addition, CDX2 was predicted to regulate MYCN, a transcription factor commonly amplified in 270 

aggressive neuroblastoma (Supplementary Figure S5C). Of the significantly (cut-off 271 

p<0.005) differentially expressed genes, CDX2 and HNF1B were predicted to be upstream 272 

regulators of EPAS1. The majority of predicted EPAS1 upstream regulators were transcription 273 

factors, and we observed an enrichment for stem cell associated genes (Supplementary Table 274 

S4). 275 

 276 

Trunk neural crest associated genes are enriched in neuroblastoma 277 

Neuroblastoma has long been recognized as derived from sympathetic neuroblasts of trunk 278 

neural crest based on marker expression and tumor localization (De Preter et al., 2006; Hoehner 279 

et al., 1996). However, recent studies from Adameyko and colleagues (Furlan et al., 2017; 280 

Kastriti et al., 2019; Soldatov et al., 2019) have raised questions regarding the origin of 281 

chromaffin cells as well as neuroblasts during embryonic development. While chromaffin cells 282 

mainly derive from Schwann cell precursors (Furlan et al., 2017), sympathetic neuroblasts are 283 

derived from sympathoadrenal precursor cells (Kastriti et al., 2019).  Using a recently published 284 

dataset of migratory trunk neural crest enriched genes (Murko et al., 2018) as well as established 285 

neural crest and developmental markers, we examined connections between neuroblastoma and 286 

trunk neural crest cells. We compared expression of early neural crest marker TFAP2B as well 287 

as trunk neural crest markers RASL11B, TAGLN3, NRCAM, AGPAT4, FMN2, HES5, HES6 288 

(Murko et al., 2018) and HOXC9 (Frith et al., 2018) in cancer cell lines of different origins 289 

(Cancer Cell Line Encyclopedia (CCLE) containing >600 cell lines; cancer types with n³4 cell 290 

lines were selected for further analysis (R2; http://hgserver1.amc.nl)) demonstrating enriched 291 

expression for the majority of these genes in neuroblastoma cells as compared to other cancer 292 
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types (Figure 8A and Supplementary Figure S6A-C). Cranial neural crest marker HOXA2 293 

was on the other hand not enriched in neuroblastoma as compared to other cancer types 294 

(Supplementary Figure S6D). Neuroblastoma patient-derived xenograft (PDX) cells have 295 

been established from mouse models of orthotopic implantation of patient-derived tumor pieces 296 

(Braekeveldt et al., 2015; Persson et al., 2017). These PDX cells retain characteristics of their 297 

respective patient tumor and metastasize to clinically relevant sites in vivo. Real-time 298 

quantitative PCR analyses demonstrated significant enrichment of neural crest (TFAP2B, 299 

SOX10) and trunk neural crest (RASL11B, FMN2, TAGLN3, NRCAM, HES6, HES5, AGPAT4) 300 

gene expression in neuroblastoma PDX cells as compared to cells from renal cell carcinoma 301 

(RCC-4 and 786-0) and liver cancer cell lines (Hep3b) (Figure 8B-C and Supplementary 302 

Figure S6E). 303 

  304 
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Discussion 305 

It has long been assumed that the childhood tumor form of neuroblastoma derives from 306 

sympathoadrenal neuroblasts. These assumptions have been based on the expression of proteins 307 

in neuroblastoma that are also expressed by embryonic sympathetic neurons during normal 308 

development, as well as the location where these tumors arise (i.e. along the sympathetic 309 

ganglia).  HIF-2a has been implicated in tumor growth and is expressed in cancer stem cells of 310 

several tumors including neuroblastoma. However, little has been known about its expression 311 

and function during normal development. Here, we show that the HIF-2a protein is expressed 312 

in trunk neural crest cells and sympathetic neuroblasts during normal embryogenesis in three 313 

different species: human, mouse and avian and examine its function using the chick embryo as 314 

a model amenable to experimental manipulation. Comparable data across human, mouse and 315 

avian tissue suggest that cross-species interpretation of further results is valid. 316 

 317 

Either knock-down or overexpression of HIF-2a in premigratory chick trunk neural crest 318 

affects several important functions. Not only do embryos with dysregulated HIF-2a have 319 

developmental delays compared to controls, but they also exhibit altered neural crest gene 320 

expression profiles. Consistent with observed in vivo effects, RNA sequencing demonstrates a 321 

global genome level change after loss of HIF-2a, with upregulation of genes involved in 322 

invasive behavior and growth arrest. Furthermore, we observed altered trunk neural crest 323 

migratory patterns as well as enhanced proliferative capacity of trunk neural crest cells in vivo, 324 

as well as in our RNA sequencing data. 325 

 326 

Despite extensive proliferation of trunk neural crest cells with dysregulated HIF-2a expression, 327 
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the embryos as a whole develop at a slower pace than their control counterparts. In general, cell 328 

division of trunk neural crest cells is limited during their active migratory phase. We speculate 329 

that the observed embryonic delays relative to increased trunk neural crest cell proliferation 330 

may be the result of a skewed cell division to migration ratio, with increased proliferation 331 

perhaps causing a failure in cell migration. 332 

 333 

The capacity to self-renew is an important feature of stem-like cells. Our data suggest that 334 

EPAS1 knockout cells exhibit enhanced self-renewal, in line with observations in 335 

neuroblastoma cells with aberrant HIF-2a expression which are more immature and neural 336 

crest-like (Pietras et al., 2008). In addition, crestospheres formed by HIF-2a dysregulated single 337 

cells were larger, a sign of enhanced proliferative capacity in agreement with our EdU results.  338 

 339 

The RNA sequencing data revealed enrichment of two signaling pathways, the ephrin receptor- 340 

and PI3K pathways. This suggests that environmental cues may be influencing trunk neural 341 

crest behavior. Of note, we have recently identified that PI3K-mTORC2 regulates HIF-2a 342 

expression and functions as a valid treatment target in neuroblastoma (Mohlin et al., 2015; 343 

Mohlin, Hansson, et al., 2019). Genes associated with migration of tumor cells mainly encode 344 

for plasma membrane and secreted proteins, including several members of the matrix 345 

metalloproteinase (MMP) family. MMPs promote invasion and migration by degrading 346 

components of the extracellular matrix and have been shown to be regulated by HIF-2a in 347 

several different tumor forms (Koh, Lemos, Liu, & Powis, 2011; Petrella, Lohi, & Brinckerhoff, 348 

2005), further reinforcing a possible connection between HIF-2a, trunk neural crest cells and 349 

invasive behavior. 350 
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 351 

The stem cell gene POU5F1, more commonly known as Oct4, is driven by HIF-2a in immature 352 

cells during development (Covello et al., 2006). We found that Oct4 is predicted to be upstream 353 

of arrested embryo growth, but also an upstream regulator of EPAS1 itself. One of the EPAS1 354 

target molecules connecting Oct4 and HIF-2a is CDX2, which in turn is upstream of EPAS1 as 355 

well as arrested embryo growth (Supplementary Figure S5C). CDX2 is indeed one of the 356 

major players involved in mediating the HIF-2a driven effects on embryonic development and 357 

considering that CDX2 is an early trunk neural crest marker (Frith et al., 2018), a possible 358 

explanation for delayed embryonic development might be halted trunk neural crest 359 

commitment. 360 

 361 

These findings contribute to understanding of a complex regulatory network involved in 362 

mediating trunk neural crest development.  We posit that the cancer associated protein HIF-2a 363 

may play a central role in embryonic growth, global gene expression, migration, proliferation 364 

and stem cell features of neural crest cells within this network (Figure 8D).  Moreover, our 365 

results highlight the importance of careful regulation of HIF-2a levels for maintenance of 366 

normal embryonic growth and differentiation. 367 

  368 
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Materials and Methods 369 

Chick embryo tissue 370 

According to Swedish regulations (Jordbruksverkets föreskrift L150, §5) work on chick 371 

embryos younger than embryonic day 13 do not require Institutional Animal Care and Use 372 

Committee oversight. 373 

 374 

Human and mouse fetal tissue 375 

Human fetal tissue (ethical approval Dnr 6.1.8-2887/2017, Lund University, Sweden) was 376 

obtained from elective abortions. Tissue samples were dissected in custom-made hibernation 377 

medium (Life Technologies) and fixed in 4% formaldehyde overnight. Following a sucrose 378 

gradient, embryos were embedded in gelatin for transverse sectioning at 12μm (ew5) or 7μm 379 

(ew6) using a cryostat. 380 

 381 

Embryos and perturbations 382 

Chick embryos were acquired from commercially purchased fertilized eggs and incubated at 383 

37.5°C until desired developmental Hamburger Hamilton (HH) stages were reached 384 

(Hamburger & Hamilton, 1951). Optimal conditions for high transfection efficiency applying 385 

one-sided electroporation in ovo were determined to 5 pulses of 30ms each at 22V. Ringer’s 386 

balanced salt solution (Solution-1: 144g NaCl, 4.5g CaCl•2H2O, 7.4g KCl, ddH2O to 500ml; 387 

Solution-2: 4.35g Na2HPO4•7H2O, 0.4g KH2PO4, ddH2O to 500ml (adjust final pH to 7.4)) 388 

containing 1% penicillin/streptomycin was used in all experiments. Morpholinos used were 389 

from GeneTools with the following sequences; splice targeting EPAS1 oligo (5’-390 

GAAAGTGTGAGGGAACAAGTTACCT-3’) and a corresponding 5’-mispair oligo (5’-391 

GAtAcTGTcAGGcAACAAcTTACCT-3’). Morpholinos were injected at a concentration of 392 

1mM and co-electroporated with a GFP tagged empty control vector (1 ug/ul). RFP-tagged 393 
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EPAS1 overexpression construct and corresponding empty control vector were electroporated 394 

at a concentration of 2.5 ug/ul. CRISPR constructs with gRNA non-targeting control (#99140, 395 

Addgene) or gRNAs targeting EPAS1 (EPAS1.1.gRNA Top oligo – 5’ 396 

ggatgGCTCAGAACTGCTCctacc 3’, Bot oligo – 5’ aaacggtagGAGCAGTTCTGAGCc 3’; 397 

EPAS1.2.gRNA Top oligo – 5’ ggatgAAGGCATCCATAATGCGCC 3’, Bot oligo – 5’ 398 

aaacGGCGCATTATGGATGCCTTc; 3’; EPAS1.3.gRNA Top oligo – 5’ 399 

ggatgAAATACATGGGTCTCACCC 3’, Bot oligo – 5’ aaacGGGTGAGACCCATGTATTTc 400 

3’) were cloned into U6.3>gRNA.f+e (#99139, Addgene) and electroporated at a concentration 401 

of 1.5 ug/ul, and accompanying Cas9 (#99138, Addgene) at 2 ug/ul (Gandhi, Haeussler, Razy-402 

Krajka, Christiaen, & Stolfi, 2017). Embryos were allowed to sit at room temperature for 8 – 403 

10 hours in order to allow the Cas9 protein to fold before further incubation of the embryos at 404 

37.5°C. 405 

 406 

For harvesting of trunk neural crest cells for RNA extraction, embryos were incubated at 37.5°C 407 

for 24 (morpholinos and overexpression vectors) or 36 (CRISPR/Cas9) hours post-408 

electroporation. Embryos were incubated for 24 to 48 hours post-electroporation before 409 

dissecting whole embryos for fixation and embedding. 410 

 411 

Cloning 412 

To overexpress HIF-2a, the gallus gallus EPAS1 coding sequence was amplified using the 413 

following primers; Fwd:  414 

5’AAACTCGAGGCCACCATGGACTACAAAGACGATGACGACAAGGCAGGTATGAC415 

AGCTGACAAGGAGAAG-3’, Rev 5’-AAAGCTAGCTCAGGTTGCCTGGTCCAG-3’ and 416 

cloned into the pCI H2B-RFP vector (Addgene plasmid #92398). For CRISPR/Cas9 targeting, 417 

oligos designed to target EPAS1 at three different locations (EPAS1.1, EPAS1.2 and EPAS1.3) 418 
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were annealed pairwise at a concentration of 100 µM per oligo using T4 DNA Ligase Buffer in 419 

dH2O by heating to 95°C for 5 minutes. The annealed oligo reactions were cooled to room 420 

temperature and diluted. The U6.3>gRNA.f+e (#99139, Addgene) vector was digested over 421 

night with BsaI-HF enzyme (New England Biolabs) and gel extracted. gRNAs were cloned into 422 

the digested U6.3>gRNA.f+e vector using T4 DNA Ligase (New England Biolabs) at room 423 

temperature for 20 minutes. Successful inserts were identified by colony PCR using U6 424 

sequencing primer and gRNA reverse oligo specific to each EPAS1 gRNA. 425 

 426 

Cell culture 427 

The human neuroblastoma cell line SK-N-BE(2)c (ATCC; Manassas, VA, US) and 428 

hepatocellular carcinoma cell line Hep3b (ATCC; Manassas, VA, US) were cultured in MEM 429 

while renal cell carcinoma RCC4 and 786-O cell lines were cultured in DMEM, supplemented 430 

with 10% fetal bovine serum and 100 units penicillin and 10µg/mL streptomycin. As part of 431 

our laboratory routines, all cells were maintained in culture for no more than 30 continuous 432 

passages and regularly screened for mycoplasma. SK-N-BE(2)c cells were authenticated by 433 

SNP profiling (Multiplexion, Germany). 434 

 435 

Neural tube dissection 436 

Neural tubes from respective axial levels were carefully dissected out from embryos at 437 

designated somite stages. For cranial-derived cultures, the very anterior tip was excluded, and 438 

the neural tube was dissected until the first somite level as previously described (Kerosuo, Nie, 439 

Bajpai, & Bronner, 2015). For trunk-derived cultures, the neural tube was dissected between 440 

somite 10-15 as previously described (Mohlin & Kerosuo, 2019; Mohlin, Kunttas, et al., 2019). 441 

Pools of neural tubes from 4 - 6 embryos were used for each culture. 442 
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 443 

Crestosphere cell culture 444 

Neural tube derived cells were cultured in NC medium (DMEM with 4.5g/L glucose (Corning), 445 

7.5% chick embryo extract (MP Biomedicals; Santa Ana, CA, USA), 1X B27 (Life 446 

Technologies; Carlsbad, CA, US), basic fibroblast growth factor (bFGF, 20 ng/ml) (Peprotech; 447 

Stockholm, Sweden), insulin growth factor -I (IGF-I, 20 ng/ml) (Sigma Aldrich; Darmstadt, 448 

Germany), retinoic acid (RA; 60nM for cranial and 180nM for trunk, respectively) (Sigma 449 

Aldrich; Darmstadt, Germany), and 25 ng/ml BMP-4 (for trunk) (Peprotech; Stockholm, 450 

Sweden)) in low-adherence T25 tissue culture flasks as described previously (Mohlin & 451 

Kerosuo, 2019; Mohlin, Kunttas, et al., 2019).  452 

 453 

Self-renewal assay 454 

Chick embryos at developmental HH stage 10+ were injected and electroporated with 455 

CRISPR/Cas9 constructs and allowed to develop at 37.5°C to reach HH stage 13/14. 456 

Crestosphere cultures were established from embryos electroporated with control, EPAS1.1 or 457 

EPAS1.2 constructs, respectively. Crestospheres were dissociated into single cells using 458 

Accutase (Sigma Aldrich; incubation at 37 °C for 40 min with one minute of pipetting every 459 

10 min), and individual cells were manually picked using a p10 pipette tip under the 460 

microscope. Single cells were transferred to 96-well plates prepared with 100 μl of NC medium 461 

supplemented with retinoic acid and BMP-4 (Mohlin, Kunttas, et al., 2019). The absolute 462 

number of spheres formed in each well was quantified manually under the microscope. Five 463 

wells were analyzed per crestosphere culture. Sphere diameter was manually measured using 464 

the ImageJ software (spheres measured n=33 and n=27 for CTRL and EPAS1.2, respectively). 465 
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 466 

EdU pulse chase labelling  467 

Proliferation was measured using the Click-iTTM EdU Cell Proliferation kit (Invitrogen 468 

#C10337) according to the manufacturer’s recommendations with optimizations from Warren 469 

et al (Warren, Puskarczyk, & Chapman, 2009). Chick embryos at developmental HH stage 10+ 470 

were injected and electroporated with morpholino or overexpression constructs and allowed to 471 

develop for additional 24 hours at 37.5°C. Eggs were then re-opened and EdU solution (500µM 472 

in PBS-DEPC) was added. Eggs were re-sealed and incubated at 37.5°C for another 4 hours 473 

before embryos were dissected in Ringer’s solution and fixed in 4% paraformaldehyde 474 

overnight. Embryos were washed in PBS-DEPC, H2O and 3% BSA in PBS-DEPC before 475 

permeabilization in 0.5% Triton-X. Embryos were hybridized in reaction cocktail (Click-iT 476 

Reaction buffer, CuSO4, Alexa Fluor 488 Azide and reaction buffer additive), washed and then 477 

DAPI stained. Embryos were after another round of washing processed through a sucrose 478 

gradient and embedded in gelatin. 479 

 480 

RNA sequencing 481 

Chick embryos of stage HH10+ were injected with EPAS1 targeting or corresponding 5’-482 

mispair morpholinos in the lumen of the neural tube and subsequently electroporated for 483 

construct uptake. Following 24 hours of incubation at 37.5°C, embryos were removed from the 484 

eggs in Ringer’s solution. Neural tubes from the trunk axial level of individual embryos were 485 

carefully dissected, removing surrounding mesodermal tissue, and transferred to Eppendorf 486 

tubes (neural tube tissue from one embryo per Eppendorf) that were snap frozen. RNA was 487 

extracted from each neural tube (5 samples per condition (EPAS1 and 5’-mispair, respectively)) 488 

using the RNAqueous Micro Kit (Ambion, #AM1931). Sequencing was performed using 489 

NextSeq 500 (Illumina). Alignment of reads was performed using the HISAT2 software and 490 
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the reference genome was from the Ensemble database (Gallus gallus 5.0). Expression counts 491 

were performed using the StringTie software and differentially expressed genes (DEG) analysis 492 

was performed using DESeq2. To obtain a relevant working list out of the 1105 significantly 493 

DEGs, we set a cut-off at p<0.005 and removed all hits that were not annotated (NA), ending 494 

up with 97 genes. Significance (p values) were DESeq2 derived (Love, Huber, & Anders, 495 

2014). RNA sequencing data have been deposited in NCBI's Gene Expression Omnibus(Edgar, 496 

Domrachev, & Lash, 2002) and are accessible through GEO Series accession number 497 

GSE140319. 498 

 499 

Bioinformatics 500 

Gene Set Enrichment Analysis (GSEA) for gene ontology, network and functional analyses 501 

were generated through the use of Panther database (analyses performed autumn 2018; 502 

(http://pantherdb.org/) (Thomas et al., 2003) together with the Ingenuity Pathway Analysis 503 

(IPA) software(Kramer, Green, Pollard, & Tugendreich, 2014) (QIAGEN Inc., 504 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). The use of the 505 

two databases/software contributed to an added biological value in terms of knowledge. For a 506 

hypothesis-free/exploratory analysis of the 97 DEGs, IPA was used (p-value calculations using 507 

right-tailed Fisher Exact Test).  However, IPA was mainly used for deeper exploration of the 508 

data where the biological hypotheses generated for the project were further explored. Here, a 509 

hypotheses-driven approach was taken where the following categories found from the IPA 510 

analysis of the 97 DEGs were further investigated;  “Cellular Movement”, within the 511 

“Molecular and Cellular Function” result category,  “Embryonic Development” , within the 512 

category “Physiological System Development and Function”, and “Tumor Morphology” , 513 

within the “Disease and Disorders” category. These three biological networks were further 514 
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investigated within the data set at hand. The investigation for the possible overlap and 515 

connections between these networks in the context of the data were hence explored.  516 

 517 

Whole mount in situ hybridization of crestospheres 518 

For whole mount in situ hybridization, crestospheres were fixed in 4% PFA for 30 minutes at 519 

RT and washed in DEPC-PBT. Samples were gradually dehydrated by bringing them to 100% 520 

MeOH and kept at -20°C until use. In situ hybridization was performed as previously described 521 

(Acloque, Wilkinson, & Nieto, 2008). Crestospheres were rehydrated back to 100% PBT, 522 

treated with Proteinase K/PBT, washed in 2 mg/ml glycine/PBT and post-fixed in 4% 523 

paraformaldehyde / 0.2% glutaraldehyde for 20 minutes. Crestospheres were then 524 

prehybridized in hybridization buffer for 2 hours at 70°C and hybridized with Digoxigenin 525 

(DIG)-labeled EPAS1 probe overnight at 70°C. Crestospheres were washed in Wash solution I 526 

and II (50% formamide, 1% SDS [Sodium Dodecyl Sulfate] and 5X SSC [NaCl and Na citrate] 527 

or 2X SSC, respectively), and blocked in 10% Sheep Serum for 2 hours followed by incubation 528 

with an anti-DIG antibody (1:2000) (Roche) in TBST / 1% sheep serum overnight at 4°C. On 529 

day 3, embryos were washed in TBST throughout the day and overnight. Crestospheres were 530 

washed in Alkaline phosphatase buffer (NTMT; 100mM NaCl, 100mM Tris-Cl (pH 9.5), 531 

50mM MgCl2, 1%Tween-20) before visualizing the signal using 1-StepTM NBT/BCIP 532 

Substrate Solution (ThermoFisher #34042). Stained crestospheres were fixed in 4% PFA for 20 533 

minutes when they reached the desired state and dehydrated in MeOH to be stored at -20°C. 534 

Embryos were embedded in blocks of gelatin for transverse sectioning at 20 µm using a 535 

cryostat. Hybridization probe for avian EPAS1 was prepared by using the following primers 536 

(Forward 5’- CAAGGAGAAGAAGAGGAGCA -3’; Reverse 5’- 537 

AAAGTGTGAGGAGGGCAAG -3’) and chick embryo cDNA as template. The amplified 538 
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sequence was cloned into a pGEM-T Easy Vector before digestion and DIG RNA labeling 539 

(Roche #11277073910). 540 

 541 

Cryosections 542 

Fixed embryos and crestospheres were incubated in a sucrose gradient (5% sucrose for 10 543 

minutes and 15% sucrose for 10 minutes up to several hours) followed by incubation in 7.5% 544 

gelatin over night at 37°C. Embedded samples were cryosectioned at 7, 10, 12 or 20 µm.  545 

 546 

Immunohistochemistry and immunofluorescence 547 

Immunohistochemistry on human (antigen retrieval by Target Retrieval Solution pH6.0 548 

(DAKO #S1699)) and mouse fetal tissue was performed using Autostainer (Dako) and sections 549 

were counterstained with hematoxylin. Detection of HIF-2a by immunofluorescence was 550 

performed by incubation of embryo sections in ice cold acetone followed by 0.3% Triton-X in 551 

PBS. After washing in PBS, slides were blocked in DAKO serum-free ready-to-use block 552 

(DAKO, #X0909) for 1 hour before incubation with primary antibody (in DAKO antibody 553 

diluent with background reducing components (DAKO, #S3022)) overnight. Slides were 554 

washed in PBS and incubated with rabbit linker (DAKO, #K8019) followed by secondary 555 

antibody in 1% BSA/PBS. Detection of HNK1 and SOX9 by immunofluorescence was 556 

performed by blocking (10% goat serum and 0.3% Triton-X in TBST) of embryo sections 557 

followed by incubation with primary antibodies over night at +4°C. Slides were washed and 558 

incubated with secondary antibodies and DAPI for nuclear staining for 1 hour at RT before 559 

washing and mounting. Fluorescent images were acquired using an Olympus BX63 560 

microscope, DP80 camera, and cellSens Dimension v 1.12 software (Olympus Cooperation). 561 

Detailed information on antibodies can be found in Supplemental Table S5. 562 

 563 
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RNA extraction and quantitative real-time PCR 564 

Total RNA was extracted using the RNAqueous Micro Kit (Ambion, #AM1931). Wild type 565 

whole embryos were carefully mechanically dissociated before lysis, pooling 2 to 4 embryos 566 

for each developmental stage. cDNA synthesis using random primers and qRT-PCR was 567 

performed as previously described (Mohlin et al., 2015). Relative mRNA levels were 568 

normalized to expression of two (avian; 18S, 28S) or three (human; UBC, SDHA, YWHAZ) 569 

reference genes using the comparative Ct method (Vandesompele et al., 2002). Detailed 570 

information of primer sequences can be found in Supplementary Table S6. 571 

 572 

Fractionation and western blot 573 

Cytoplasmic and nuclear extraction of proteins was performed using the NE-PER Nuclear and 574 

Cytoplasmic Extraction Reagents (Thermo Scientific). Proteins were separated by SDS-PAGE 575 

and transferred to HyBond-C-Extra nitrocellulose membranes. Detailed information on 576 

antibodies can be found in Supplemental Table S5. 577 

 578 

Oxygen sensing 579 

Oxygen concentrations were measured through the trunk region of developing chick embryos 580 

ex ovo using microsensors in a flow system of MQ water. Microprofiles were measured in 50 581 

embryos in developmental stages HH10 to HH24. Embryos were removed from the egg using 582 

filter paper as described in Mohlin and Kerosuo (Mohlin & Kerosuo, 2019), submerged in a 583 

plate with constant flow of newly shaken MQ of room temperature, and immediately measured. 584 

Oxygen microsensors were constructed and calibrated as described by Revsbech and Andersen 585 

(Revsbech & Andersen, 1989), mounted on a micromanipulator. The microsensor was 586 
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manually probing the trunk region and data logged every second. Within the microprofile, ten 587 

consecutive data points of the lowest oxygen concentrations were averaged and set as 588 

representing the trunk neural tube. A two-point calibration was performed using the newly 589 

shaken MQ (100% oxygen saturation) and by adding sodium dithionite to non-flowing MQ in 590 

the plate after measurements (0% oxygen saturation). Salinity of the tissue was determined 591 

using a conductivity meter (WTW 3110) and room temperature noted. The tissue is considered 592 

a liquid, where full oxygen saturation at 5 ‰ salinity and 25°C corresponds to 250 µm/l, 160 593 

mmHg or 21% atmospheric O2. Data was averaged for each HH stage including one 594 

measurement of the previous and subsequent HH stages. Replicates vary from three to ten 595 

biologically independent data points. Data is presented as percent of maximum saturation in the 596 

solution of the specific temperature and salinity. 597 

 598 

Quantifications 599 

Embryonic development was quantified in two ways; by determining the HH stage of embryos 600 

in ovo using head and tail morphology or by counting the number of somites of dissected 601 

embryos ex ovo. The number of embryos (n) for each group is denoted in respective figure 602 

legend. The fraction of proliferating EdU+ cells was determined by quantifying the number of 603 

GFP+ proliferating cells as well as RFP+ construct targeted cells and divide the number of 604 

double positive cells with the number of RFP+ cells. Only neural crest cells were included 605 

(distinguished by the dotted line in figures).   606 

 607 

Statistical methods and data sets 608 

One-way ANOVA or two-sided student’s unpaired t test was used for statistical analyses. 609 

Publicly available dataset Cancer Cell Line Encyclopedia (CCLE) (R2: microarray analysis and 610 

visualization platform (http://r2.amc.nl)) was used to analyze gene expression across cell lines 611 
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from different cancer types. For downstream analysis on the 97 DEGs where the software IPA 612 

was used, the statistical tests considered were p-value calculations using right-tailed Fisher 613 

Exact Test.   614 

  615 
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Figure Legends  768 

 769 

Fig. 1. HIF-2a is expressed in trunk neural crest cells. A. Western blot of fractionated wild 770 

type HH18 chick embryos show HIF-2a protein expression in cytoplasmic and nuclear 771 

compartments (cf. panel C-F). Blot shown is a representative of multiple experiments. SDHA 772 

was used as loading control. B. Relative mRNA expression over developmental time (HH4 to 773 

HH27) in whole wild type chick embryos. EPAS1 expression was measured using qRT-PCR 774 

and is presented as mean of n=2 biological replicates. Error bars represent SEM. C-D. 775 

Immunostaining of HIF-2a in sections from trunk axial level of wild type chick embryos at 776 

premigratory HH11 (C) and HH13 (D) stages. Arrows denote scattered HIF-2a positive cells 777 

within the dorsal neural tube. E. Immunostaining of HIF-2a in sections from trunk axial level 778 

of wild type chick embryos at migratory HH18 stage. Arrows denote ventrally migrating HIF-779 

2a positive cells. F. A different section from embryo in (E) with magnification (dashed square). 780 

G. Oxygen saturation (%) in the trunk of chick embryos during development measured ex ovo 781 

using microsensor technique. Error bars represent SEM.  782 

 783 

Fig. 2. HIF-2a is expressed in human and mouse trunk neural crest cells. A. 784 

Immunohistochemical staining of HIF-2a in sections from a mouse embryo at embryonic day 785 

E12.5. B. Immunohistochemical staining of TH in adjacent section to (A) to locate sympathetic 786 

ganglia. A-B. Asterisk in left panels locate HIF-2a+ and TH+ cells within sympathetic ganglia. 787 

Asterisk also indicate magnified area in middle panels and dashed square indicates 788 

magnification area in right panels. C. Immunohistochemical staining of HIF-2a in sections 789 

from trunk axial level of a human embryo at embryonic week ew5. Arrowhead represents 790 

magnification in upper right panel. Asterisk represents magnification in lower left panel and 791 

dashed square represent magnified area in lower right panel. (A-C) Sections are counterstained 792 
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with hematoxylin to visualize tissue structure and nuclei. D-E. Immunostaining of HIF-2a in 793 

sections from trunk axial level of human embryos at embryonic week ew5 (D) and embryonic 794 

week ew6 (E). Arrow denotes HIF-2a positive migrating cells. ew, embryonic week; NC, 795 

neural crest. DAPI was used to stain nuclei. 796 

 797 

Fig. 3. Knockdown of HIF-2a delays embryogenesis. A. Hamburger Hamilton (HH) staging of 798 

embryos 36 hours post-electroporation with a non-targeting (CTRL) gRNA compared to three 799 

different gRNAs targeting EPAS1 (EPAS1.1, EPAS1.2, EPAS1.3) by head- and tail 800 

morphology. Number of embryos analyzed were n=14 (CTRL), n=10 (EPAS1.1), n=14 801 

(EPAS1.2) and n=14 (EPAS1.3). Statistical significance was determined by one-way ANOVA 802 

comparing non-targeting CTRL with each individual EPAS1 gRNA. B. Hamburger Hamilton 803 

(HH) staging of embryos 44 hours post-electroporation with 5’-mispair or EPAS1 targeting 804 

morpholinos by head- and tail morphology. Number of embryos analyzed were n=20 (5’-805 

mispair), n=16 (EPAS1). Statistical significance was determined by one-way ANOVA. C. 806 

Determination of embryonic age by number of somites 36 hours post-electroporation. Number 807 

of embryos analyzed were n=8 (CTRL), n=13 (EPAS1.1) and n=14 (EPAS1.3). Statistical 808 

significance was determined by one-way ANOVA comparing non-targeting CTRL with each 809 

individual EPAS1 gRNA. D. Determination of embryonic age by number of somites 44 hours 810 

post-electroporation. Number of embryos analyzed were n=17 (5’-mispair), n=15 (EPAS1). 811 

Statistical significance was determined by one-way ANOVA. E-F. Relative mRNA expression 812 

of /trunk/ neural crest (E) and cranial neural crest (F) associated genes in trunk neural crest 813 

cells derived from embryos electroporated with 5’-mispair or EPAS1 morpholinos, measured 814 

by qRT-PCR 24 hours post-electroporation. G-H. Relative mRNA expression of trunk neural 815 

crest (G) and cranial neural crest (H) associated genes in trunk neural crest cells derived from 816 

embryos electroporated with non-targeting CTRL or three EPAS1 gRNAs, measured by qRT-817 
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PCR 24 hours post-electroporation. E-H. Data presented as mean of n=2 biologically 818 

independent repeats, error bars denote SEM. Statistical significance was determined by two-819 

sided student’s t-test (E-H), comparing non-targeting CTRL with each individual EPAS1 820 

gRNA in G-H. 821 

 822 

 823 

Fig. 4. Knockdown of HIF-2a affects migration of trunk neural crest cells. A-D. 824 

Immunostaining of HNK1 (red) marking migrating crest cells in one-sided electroporated 825 

embryos (right side). Electroporated cells (non-targeting CTRL gRNA (A), gRNA #2 targeting 826 

EPAS1 (EPAS1.2; B), 5’-mispair morpholino (C) or EPAS1 morpholino (D)) are seen in green. 827 

DAPI was used to counterstain nuclei. Embryo sections from trunk axial level are from 48 hours 828 

(A-B) or 44 hours (C-D) post-electroporation. 829 

 830 

Fig. 5. Controlled expression of HIF-2a is required to maintain embryonic homeostasis. A. 831 

Hamburger Hamilton (HH) staging of embryos 24 hours post-electroporation with a control 832 

(pCI-CTRL) or EPAS1 overexpression construct (pCI-EPAS1), determined by head- and tail 833 

morphology. Number of embryos analyzed were n=16 (CTRL), n=20 (EPAS1). Statistical 834 

significance was determined by one-way ANOVA. B. Immunostaining of HNK1 (green) 835 

marking migrating crest cells in one-sided electroporated embryos (right side). Electroporated 836 

cells (CTRL or EPAS1) are seen in red. DAPI was used to counterstain nuclei. Embryo sections 837 

from trunk axial level are taken 48 hours post- electroporation. C.  Relative mRNA expression 838 

of /trunk/ neural crest and cranial neural crest genes in trunk neural crest cells derived from 839 

embryos electroporated with CTRL or EPAS1 vectors, measured by qRT-PCR 24 hours post-840 

electroporation. Data presented as mean of n=2 biologically independent repeats, error bars 841 

denote SEM. Statistical significance was determined by two-sided student’s t-test. 842 
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 843 

Fig. 6. Knockdown of HIF-2a affects proliferation and stemness of trunk neural crest cells. A-844 

D. Embryo sections from trunk axial level after real-time EdU labeling. Proliferating EdU+ cells 845 

are seen in green and electroporated cells (5’-mispair and EPAS1 morpholinos (A); pCI-CTRL 846 

and pCI-EPAS1 (C)) are seen in red. DAPI was used to counterstain nuclei. Quantification of 847 

proliferating cells was performed by manual counting of RFP+ only as well as double positive 848 

cells. Only construct targeted trunk neural crest cells (above dotted line) were included. Number 849 

of cells analyzed were n=82 (5’-mispair morpholino) and n=303 (EPAS1 morpholino) (B); 850 

n=211 (pCI-CTRL) and n=139 (pCI-EPAS1) (D). E. Relative mRNA expression of EPAS1 in 851 

wild type HH10 embryos (blue bar) and crestosphere cells established from the cranial axial 852 

level (green bar) or trunk axial level (yellow bar) measured by qRT-PCR. Expression is 853 

presented as mean of n=4 (cranial) or n=3 (trunk) biological replicates and error bars represent 854 

SEM. Expression difference between cranial and trunk crestospheres, p=0.056, as determined 855 

by two-sided student’s t test. Expression in wild type HH10 embryos is presented as mean of 856 

n=3 technical replicates. F. In situ detection of EPAS1 mRNA in trunk derived crestospheres. 857 

G. Primary sphere assay, i.e. quantification of self-renewal from crestospheres established from 858 

dissociated trunk neural tubes of HH13+/14- embryos previously electroporated in ovo at 859 

HH10+/HH11 with non-targeting gRNA (CTRL) or gRNA targeting EPAS1 (EPAS1.1). One 860 

cell/well (n=10 wells per group) were seeded at T= 0 days. Number of spheres were manually 861 

counted in each well after T= 1 week. Statistical significance was determined by one-way 862 

ANOVA. H. Quantification of self-renewal (as described in G.) and sphere size from 863 

crestospheres established from dissociated trunk neural tubes of HH13+/14- embryos 864 

electroporated with non-targeting gRNA (CTRL) or gRNA targeting EPAS1 (EPAS1.2). 865 

Sphere size by manual measurements converted to factual unit (µm). Statistical significance 866 

was determined by one-way ANOVA. 867 
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 868 

Fig. 7. Gene set enrichment analysis identifies HIF-2a downstream affected processes. A-B. 869 

Hierarchical clustering of significantly Differentially Expressed Genes (DEGs;cut-off p<0.005) 870 

identified from RNA sequencing comparing 5’-mispair and EPAS1 morpholino samples. C. 871 

List of the top ten upregulated and top ten downregulated genes from the RNA sequencing data. 872 

D. Hypothesis-free/exploratory analysis of the 97 DEGs using IPA (Fishers Exact Test for the 873 

range of p-value calculation) revealed a series of top five hits (p<0.05) in the respective 874 

categories “Disease and Disorders”, “Molecular and Cellular Functions” and “Physiological 875 

System Development and Function” downstream processes. E. Deeper analysis of processes 876 

identified in (D). F. Selected list of enriched cellular processes from Panther analyses. 877 

Complete list can be found in Supplemental Table S2. G. Deeper analysis of potential 878 

upstream regulators of the “arrest in embryo growth” process identified in E. The shape of 879 

molecules and their meaning, i.e. correspondence to protein family etc., is found here: 880 

http://qiagen.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5rTCAS. As 881 

an example, the diamond shaped molecules correspond to enzymes, oval standing shapes 882 

should be read as transmembrane receptors and lying oval shapes are transcription regulators. 883 

Green nodes indicate down-regulated molecules. The intensity of the color reveals the strength 884 

of the expression i.e. the stronger the color the more significant. 885 

 886 

Fig. 8. Trunk neural crest associated genes are enriched in neuroblastoma. A. Trunk neural 887 

crest (RASL11B, TAGLN3 and NRCAM) gene expression in cancer types of different tissue 888 

origins. Data from the Cancer Cell Line Encyclopedia (CCLE) dataset, tissue origin with 889 

samples n>3 were chosen for further analysis. Number in brackets represents the number of cell 890 

lines from each tissue origin. Arrows highlight neuroblastoma. B-C. Relative mRNA 891 

expression of neural crest (TFAP2B, (B)) and trunk neural crest (RASL11B, FMN2, TAGLN3 892 
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and NRCAM (C)) genes measured by qRT-PCR. Expression in LU-NB-3 neuroblastoma (NB) 893 

patient-derived xenograft cells were compared to liver cancer (Li) Hep3B and clear cell renal 894 

cell carcinoma (ccRCC) RCC-4 and 786-0 cell lines. Data are presented as mean of n=3 895 

biologically independent replicates and error bars represent SEM. Statistical significance 896 

comparing Hep3B, RCC-4 or 786-0 individually to LU-NB-3 was tested using two-sided 897 

students t test. D. Schematic summary of developmental effects following dysregulated HIF-898 

2a expression levels in trunk neural crest cells. 899 

 900 

Table 1. Selected genes identified as potential upstream regulators of arrested embryo growth. 901 

Genes associated with stem cells (A), BMP signaling (B) and EMT (C) were particularly 902 

enriched. 903 

 904 

Supplemental Fig. S1. Specificity control of antibodies. A. Sections of HH13 wild type embryo 905 

immunostained with DAPI for visualization of nuclei and secondary antibody only (donkey 906 

anti-rabbit Alexa Fluor-546). B. Immunohistochemical staining for HIF-2a in sections of SK-907 

N-BE(2)c neuroblastoma cells cultured at normoxia (21% O2) or hypoxia (1% O2). HIF-2a 908 

positive cells are as expected detected at hypoxia and demonstrate nuclear and cytoplasmic 909 

expression. 910 

 911 

Supplemental Fig. S2. Electroporation of knockdown constructs is efficient. A-B. Relative 912 

mRNA expression of EGFP in embryos electroporated with morpholinos (cf. Figure 3E-F) 913 

(A) or CRISPR constructs (cf. Figure 3G-H) (B) measured by qRT-PCR. Expression of EGFP 914 

in electroporated embryos was compared to expression in wild type HH18 embryos. C-D. 915 

Neural crest (C) and early or late/migratory neural crest (D) genes in trunk neural crest cells 916 

derived from embryos electroporated with non-targeting (CTRL) or three EPAS1 gRNAs, 917 
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measured by qRT-PCR 24 hours post-electroporation. Data are presented as mean of n=2 918 

biologically independent replicates and error bars represent SEM. Statistical significance 919 

comparing each individual EPAS1 targeting gRNA to control (CTRL), respectively, was 920 

determined by two-sided student’s t-test. 921 

 922 

Supplemental Fig. S3. SOX9 expression is not affected by HIF-2a knockdown. A-C. 923 

Immunostaining of SOX9 (red) in one-sided electroporated embryos (right side). 924 

Electroporated cells (non-targeting gRNA (CTRL), (A)) or gRNA #1 (EPAS1.1, (B)) and #3 925 

(EPAS1.3, (C)) targeting EPAS1) are seen in green. DAPI was used to counterstain nuclei. 926 

Embryo sections from trunk axial level are from 48 hours post-electroporation. 927 

 928 

Supplemental Fig. S4. Electroporation of overexpression constructs is efficient A. Relative 929 

mRNA expression of neural crest associated genes in trunk neural crest cells derived from 930 

embryos electroporated with pCI-CTRL or pCI-EPAS1 vectors, measured by qRT-PCR 24 931 

hours post-electroporation. Data presented as mean of n=2 biologically independent repeats, 932 

error bars denote SEM. Statistical significance was determined by two-sided student’s t-test. B. 933 

Relative mRNA expression of EPAS1 in embryos electroporated with pCI-CTRL or pCI-934 

EPAS1 for overexpression of HIF-2a (cf. Figure 5). Data are presented as mean of n=2 935 

biologically independent replicates and error bars represent SEM. 936 

 937 

Supplemental Fig. S5. Gene set enrichment analysis identifies key molecules. A. Top network 938 

composed by analyzing significantly Differentially Expressed Genes from RNA sequencing 939 

data. B. Deeper analysis of overlap of genes involved in downstream process “migration of 940 

tumor cells” and genes from RNA sequencing data. A-B. The shape of molecules and their 941 

meaning, i.e. correspondence to protein family etc., is found here: 942 
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http://qiagen.force.com/KnowledgeBase/KnowledgeIPAPage?id=kA41i000000L5rTCAS. As 943 

an example, the diamond shaped molecules correspond to enzymes, oval standing shapes 944 

should be read as transmembrane receptors and lying oval shapes are transcription regulators. 945 

Green nodes indicate down-regulated molecules. The intensity of the color reveals the strength 946 

of the expression i.e. the stronger the color the more significant. The dashed lines indicate an 947 

indirect interaction between molecules in the network whereas solid lines are direct interactions. 948 

The solid arrow explains the direction of the indicated interaction. A line, solid or dashed, 949 

without an arrowhead indicate an RNA-RNA interaction. C. Schematic of the gene regulatory 950 

network including EPAS1 and downstream CDX2 and HNF1B coupled to arrested embryo 951 

growth. 952 

 953 

Supplemental Fig. S6. Trunk neural crest associated genes are enriched in neuroblastoma. A-954 

D. Neural crest (TFAP2B (A)), trunk neural crest (AGPAT4, FMN2, HES6, HES5 and HOXC9 955 

(B-C)) and cranial neural crest (HOXA2 (D)) gene expression in cancer types of different tissue 956 

origins. Data from the Cancer Cell Line Encyclopedia (CCLE) dataset, tissue origin with 957 

samples n>3 were chosen for further analysis. Arrows highlight neuroblastoma. E. Relative 958 

mRNA expression of neural crest (SOX10) and trunk neural crest (HES6, AGPAT4, HES5) 959 

genes measured by qRT-PCR. Expression in LU-NB-3 neuroblastoma (NB) patient-derived 960 

xenograft cells were compared to liver cancer (Li) Hep3B and clear cell renal cell carcinoma 961 

(ccRCC) RCC-4 and 786-0 cell lines. Data are presented as mean of n=3 biologically 962 

independent replicates and error bars represent SEM. Statistical significance comparing Hep3B, 963 

RCC-4 or 786-0 to LU-NB-3, respectively, was tested using two-sided students t test. 964 

 965 

Supplemental Table S1. Full list of the 97 significantly (p<0.005) DEGs between 5’-mispair 966 

and EPAS1 morpholino samples identified by RNA sequencing. Relates to Fig. 7A-B. 967 
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 968 

Supplemental Table S2. Full list of processes identified by PANTHER analysis. Relates to 969 

Fig. 7F. 970 

 971 

Supplemental Table S3. Full list of genes identified as potential upstream regulators of “arrest 972 

in embryo growth”. Relates to Table 1. 973 

 974 

Supplemental Table S4. Full list of genes identified as potential upstream regulators of HIF-975 

2a from RNA sequencing data. Target molecules are among the 97 significantly (p<0.005) 976 

DEGs between 5’-mispair and EPAS1 morpholino samples identified by RNA sequencing. 977 

 978 

Supplemental Table S5. Details of antibodies. 979 

 980 

Supplemental Table S6. List of primer sequences used for qRT-PCR analyses. 981 
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A

5’-mispair EPAS1

Gene_name log2FoldChange
DLX3 -5,237610938
TSPAN8 -3,77045907
TFAP2E -3,18357506
DCDC2 -3,035920312
SLC12A3 -2,700635689
OVAL -2,685319715
CDX2 -2,4394251
HNF1B -2,281631746
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Figure 7

Fold Enrichment p value
regulation of multicellular organismal development (GO:2000026) 3.01 1.48E-05
regulation of developmental process (GO:0050793) 2.57 4.79E-05
anatomical structure development (GO:0048856) 2.04 2.70E-05
multicellular organism development (GO:0007275) 2.03 8.99E-05
developmental process (GO:0032502) 1.98 3.99E-05

regulation of cell differentiation (GO:0045595) 3.43 2.27E-06

positive regulation of cellular protein localization (GO:1903829) 7.55 4.91E-05
regulation of cellular protein localization (GO:1903827) 7.09 5.64E-07
regulation of cellular localization (GO:0060341) 4.52 1.54E-05
regulation of protein localization (GO:0032880) 3.98 1.11E-04
maintenance of mitochondrion location (GO:0051659)  > 100 1.44E-04

cell migration (GO:0016477) 4.37 2.16E-05
cell motility (GO:0048870) 3.94 5.84E-05

positive regulation of phosphatidylinositol 3-kinase signaling (GO:0014068) 17.17 1.16E-04
ephrin receptor signaling pathway (GO:0048013) 26.03 2.58E-05
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Gene_stable_ID Gene_name log2FoldChange p value
ENSGALG00000035219 ALB -1.117182632 0.004326406
ENSGALG00000007599 AMER1 -0.405238741 0.000373362
ENSGALG00000002723 ANKS1A -0.620471912 0.002221987
ENSGALG00000020876 AOX2 -1.096918485 0.00085007
ENSGALG00000000220 APC -0.47416616 0.000273889
ENSGALG00000026364 ASAH1 0.421872055 0.002627088
ENSGALG00000002558 ASL1 -2.269756179 0.000254935
ENSGALG00000014234 ATXN10 0.477982264 0.001858816
ENSGALG00000009642 AVEN 0.319184758 0.002524998
ENSGALG00000039595 BTBD11 1.074785502 0.000312368
ENSGALG00000040463 CABP7 -1.850580177 0.003025143
ENSGALG00000012095 CCDC198 -1.657954928 0.00269933
ENSGALG00000006787 CCDC71 -0.470629203 0.002673943
ENSGALG00000015395 CD200L -2.132229985 0.000154209
ENSGALG00000000608 CDH1 -1.307331812 0.000773978
ENSGALG00000034983 CDX2 -2.4394251 8.25E-05
ENSGALG00000004687 CENPP 0.424109009 0.000169658
ENSGALG00000037504 CFAP36 0.393170817 0.00331114
ENSGALG00000004903 CHST8 2.680876707 0.004291268
ENSGALG00000026862 CLDN1 -1.995178284 0.00010847
ENSGALG00000007025 CPNE8 1.148105385 0.004533116
ENSGALG00000001169 CRB2 -0.810451518 0.001196479
ENSGALG00000005657 CRHR2 -0.937081004 0.004656735
ENSGALG00000042454 DCDC2 -3.035920312 0.003127781
ENSGALG00000011274 DCN 0.981364002 0.002209936
ENSGALG00000014700 DHX29 -0.444692933 0.003215344
ENSGALG00000032937 DLGAP2 1.296643213 0.003793901
ENSGALG00000040529 DLX3 -5.237610938 0.001107996
ENSGALG00000012156 DPP10 1.123811132 0.001713737
ENSGALG00000015403 EPHA3 0.860641014 0.001951451
ENSGALG00000004741 EPHB2 -0.418815561 0.001893072
ENSGALG00000003126 ERBB4 -1.15424847 0.001506512
ENSGALG00000031076 ESRP1 -1.882592181 0.001558762
ENSGALG00000008332 F2 -1.908762077 0.001551013
ENSGALG00000041153 FAM109A -1.215286589 0.004594595
ENSGALG00000013503 FAM149A 0.797519339 0.004470883
ENSGALG00000011099 FAP 1.014306518 0.00201386
ENSGALG00000008753 FBXO48 1.321581752 0.002069094
ENSGALG00000010316 FRAS1 -0.558639554 0.001060929
ENSGALG00000031487 FSTL4 1.704294412 0.004365436
ENSGALG00000007047 GAL 2.641577626 0.001941927
ENSGALG00000028191 GLCE -0.598344895 0.000897534
ENSGALG00000010350 GPATCH2L -0.487810446 7.98E-06
ENSGALG00000041556 GPATCH8 -0.317242944 0.003590909
ENSGALG00000037687 GRHL2 -1.807620277 0.003321608
ENSGALG00000016124 HADH 0.25603248 0.003556043
ENSGALG00000005504 HNF1B -2.281631746 0.00080264
ENSGALG00000012009 JKAMP 0.382527526 0.003435274
ENSGALG00000019718 KRT15 1.634804647 0.000760169
ENSGALG00000030710 L3MBTL1 -0.530953634 0.001495242
ENSGALG00000036022 LIN28A -1.38546498 0.000196313
ENSGALG00000012801 LY86 1.615548567 0.003593197
ENSGALG00000002379 MRPS17 0.239466428 0.001783389
ENSGALG00000007661 MYCBPAP -0.506429259 0.004333666
ENSGALG00000031450 MYO7A -0.679727815 0.003592535
ENSGALG00000002131 NPRL2 -0.499654709 0.003409913
ENSGALG00000004245 NUDT1 0.510897854 0.00012546
ENSGALG00000013348 OTUD7B -0.376188595 0.001170227
ENSGALG00000012869 OVAL -2.685319715 0.002991518
ENSGALG00000042645 PARD3B -0.501189766 1.96E-06
ENSGALG00000009378 PDGFC 0.796369213 0.001886551
ENSGALG00000002963 PID1 1.07251355 0.003711941
ENSGALG00000001264 PLXNA2 -0.787868279 0.002137423
ENSGALG00000006409 PODXL -0.886446619 0.004450686
ENSGALG00000026210 POMK 0.337221928 0.003042971
ENSGALG00000017046 POSTN 1.786031417 0.004588475
ENSGALG00000016702 PPP2R3B 0.391820083 0.003451236
ENSGALG00000010052 PPP2R3C 0.399540693 0.001962875
ENSGALG00000015113 PTAR1 -0.539683505 0.001225948
ENSGALG00000010053 PTPRF -0.480481292 0.003964241
ENSGALG00000007155 RMI2 1.140626082 0.001382943
ENSGALG00000031018 RNF165 -1.03414841 0.001120092
ENSGALG00000015311 RNF38 -0.537721584 0.003385081
ENSGALG00000006486 RPP30 0.342750725 0.004109447
ENSGALG00000046226 SCARB1 2.040797789 0.00121797
ENSGALG00000004424 SEC16B -1.1085265 0.000492445
ENSGALG00000037863 SEC61G 0.557099237 0.002778043
ENSGALG00000042051 SETD2 -0.308714867 0.000307483
ENSGALG00000004140 SH3BP4 -0.494833722 0.001195274
ENSGALG00000001644 SIN3A -0.319985031 0.001157216
ENSGALG00000002957 SLC12A3 -2.700635689 0.000223534
ENSGALG00000010117 SLC25A21 0.766964291 0.00238367
ENSGALG00000015846 SNAP91 1.1198235 0.000304383
ENSGALG00000034528 SNTB1 1.15258033 0.003458367
ENSGALG00000036932 SPEN -0.388461063 0.00077178
ENSGALG00000039497 TFAP2E -3.18357506 0.000779405
ENSGALG00000015184 TLE4Z1 -0.444405062 0.001437148
ENSGALG00000010896 TMEM161B -0.546018409 0.001173125
ENSGALG00000001459 TNNC1 1.720938851 0.003720707
ENSGALG00000020523 TOPORS -0.473621698 0.003381281
ENSGALG00000010152 TSPAN8 -3.77045907 0.002947966
ENSGALG00000012259 UBXN4 0.264129274 0.004330698
ENSGALG00000043106 WDR17 -1.478943795 0.001766045
ENSGALG00000016558 VEGFD 1.266960804 0.004105067
ENSGALG00000011283 ZNF385D 1.483429288 0.004653997
ENSGALG00000001518 ZNF750 -1.901269846 0.002582973
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ENSGALG00000007599 AMER1 -0.405238741 0.000373362
ENSGALG00000002723 ANKS1A -0.620471912 0.002221987
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ENSGALG00000017046 POSTN 1.786031417 0.004588475
ENSGALG00000016702 PPP2R3B 0.391820083 0.003451236
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ENSGALG00000015113 PTAR1 -0.539683505 0.001225948
ENSGALG00000010053 PTPRF -0.480481292 0.003964241
ENSGALG00000007155 RMI2 1.140626082 0.001382943
ENSGALG00000031018 RNF165 -1.03414841 0.001120092
ENSGALG00000015311 RNF38 -0.537721584 0.003385081
ENSGALG00000006486 RPP30 0.342750725 0.004109447
ENSGALG00000046226 SCARB1 2.040797789 0.00121797
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ENSGALG00000002957 SLC12A3 -2.700635689 0.000223534
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ENSGALG00000015184 TLE4Z1 -0.444405062 0.001437148
ENSGALG00000010896 TMEM161B -0.546018409 0.001173125
ENSGALG00000001459 TNNC1 1.720938851 0.003720707
ENSGALG00000020523 TOPORS -0.473621698 0.003381281
ENSGALG00000010152 TSPAN8 -3.77045907 0.002947966
ENSGALG00000012259 UBXN4 0.264129274 0.004330698
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Supplementary Table S2
Fold Enrichment p value

cytolysis by symbiont of host cells (GO:0001897)  > 100 1.44E-04
hemolysis in other organism involved in symbiotic interaction (GO:0052331)  > 100 1.44E-04
cytolysis in other organism involved in symbiotic interaction (GO:0051801)  > 100 2.30E-06

maintenance of mitochondrion location (GO:0051659)  > 100 1.44E-04

trans-synaptic signaling by trans-synaptic complex, modulating synaptic transmission (GO:0099557)  > 100 1.44E-04
hemolysis in other organism (GO:0044179)  > 100 1.44E-04
hemolysis by symbiont of host erythrocytes (GO:0019836)  > 100 1.44E-04
killing of cells in other organism involved in symbiotic interaction (GO:0051883)  > 100 4.01E-06
disruption of cells of other organism involved in symbiotic interaction (GO:0051818)  > 100 4.01E-06
cytolysis in other organism (GO:0051715)  > 100 4.01E-06
multi-organism cellular process (GO:0044764) 60.51 3.21E-05
cytolysis (GO:0019835) 55.01 4.07E-05
disruption of cells of other organism (GO:0044364) 50.43 5.06E-05
killing of cells of other organism (GO:0031640) 50.43 5.06E-05
axonal fasciculation (GO:0007413) 40.34 8.99E-05
neuron projection fasciculation (GO:0106030) 40.34 8.99E-05

ephrin receptor signaling pathway (GO:0048013) 26.03 2.58E-05
positive regulation of phosphatidylinositol 3-kinase signaling (GO:0014068) 17.17 1.16E-04

positive regulation of cellular protein localization (GO:1903829) 7.55 4.91E-05
regulation of cellular protein localization (GO:1903827) 7.09 5.64E-07
regulation of cellular localization (GO:0060341) 4.52 1.54E-05

cell migration (GO:0016477) 4.37 2.16E-05
cell motility (GO:0048870) 3.98 1.11E-04

regulation of protein localization (GO:0032880) 3.94 5.84E-05

localization of cell (GO:0051674) 3.94 5.84E-05
locomotion (GO:0040011) 3.73 2.39E-05

regulation of cell differentiation (GO:0045595) 3.43 2.27E-06

regulation of response to stimulus (GO:0048583) 3.01 1.48E-05

regulation of biological process (GO:0050789) 2.61 3.94E-05
regulation of cellular component organization (GO:0051128) 2.57 4.79E-05
regulation of multicellular organismal process (GO:0051239) 2.55 1.41E-05
positive regulation of cellular process (GO:0048522) 2.33 1.37E-05
positive regulation of biological process (GO:0048518) 2.27 1.36E-05
negative regulation of cellular process (GO:0048523) 2.25 7.91E-05
negative regulation of biological process (GO:0048519) 2.09 5.55E-06
cytolysis by symbiont of host cells (GO:0001897) 2.06 2.05E-06

regulation of multicellular organismal development (GO:2000026) 2.04 2.70E-05
regulation of developmental process (GO:0050793) 2.03 8.99E-05
anatomical structure development (GO:0048856) 2.02 6.47E-05
multicellular organism development (GO:0007275) 1.98 3.99E-05
developmental process (GO:0032502) 1.97 6.32E-05

positive regulation of metabolic process (GO:0009893) 1.85 3.35E-05
regulation of metabolic process (GO:0019222) 1.47 1.21E-04
positive regulation of cellular metabolic process (GO:0031325)  > 100 1.44E-04
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IF antibodies 
Primary Antibody Species Dilution Source Product # 
HNK1 Mouse 1:5 Hybridoma bank 3H5 
HIF-2a Rabbit 1:50 Abcam ab199 
SOX9 Rabbit 1:1000 Millipore ab5535 
 
 
Secondary Antibody Species Dilution Source  
Anti-Mouse Alexa Fluor-594 Goat 1:1000 Invitrogen A-11032 
Anti-Rabbit Alexa Fluor-546 Donkey 1:1000 / 1:500 Invitrogen A-10040 
Anti-Mouse Alexa Fluor-488 Goat 1:1000 Invitrogen A-11008 

 
 

IHC antibodies 
Primary Antibody Species Dilution Source Product # 
HIF-2a Mouse 1:1000 Novus Biologicals NB100-132 
HIF-2a Rabbit 1:4000 Abcam ab199 
TH Rabbit 1:1600 Abcam ab112 

 
 

In situ antibodies 
 Species Dilution Source Product # 
Anti-dig-AP Mouse 1:2000 Roche Diagnostics 11093274910 

 
 

Nuclear staining 
 Species Dilution Source Product # 
DAPI  1:3000 Dako D3571 

 
 

Western blot antibodies 
Primary Antibody Species Dilution Source Product # 
HIF-2a Rabbit 1:200 Abcam ab199 
SDHA Mouse 1:4000 Abcam ab14715 
     
Secondary Antibody Species Dilution Source Product # 
Anti-Rabbit Monkey 1:3000 Invitrogen 65-6120 
Anti-Mouse Sheep 1:5000 Invitrogen 62-6520 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915199doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915199
http://creativecommons.org/licenses/by-nc-nd/4.0/


AVIAN HUMAN
Target gene 5' - 3' Target gene 5' - 3'
18S (Reference gene) Fwd CCATGATTAAGAGGGACGGC UBC (Reference gene) Fwd ATTTGGGTCGCGGTTCTTG

Rev TGGCAAATGCTTTCGCTTT Rev TGCCTTGACATTCTCGATGGT

28S (Reference gene) Fwd GGTATGGGCCCGACGCT YWHAZ (Reference gene) Fwd ACTTTTGGTACATTGTGGCTTCAA
Rev CCGATGCCGACGCTCAT Rev CCGCCAGGACAAACCAGTAT 

EPAS1 Fwd GGCACCAATACCATGACGA SDHA (Reference gene) Fwd TGGGAACAAGAGGGCATCTG
Rev CATGTGCGCGTAACTGTCC Rev CCACCACTGCATCAAATTCATG

SOX10 Fwd AGCCAGCAATTGAGAAGAAGG SOX10 Fwd GGGCAAGGTCAAGAAGGAG    
Rev GAGGTGCGAAGAGTTGTCC Rev ACCAGCGTCCAGTCGTAG    

B3GAT1 Fwd TTGTGGAGGTGGTGAGGA TFAP2B Fwd ACGACCCCTACTCCCTGAAC 
Rev GGCTGTAGGTGGGTGTAATG Rev TCCGAACCCACTTCTTGC 

TFAP2B Fwd CCCTCCAAAATCCGTTACTT HES6 Fwd ATGAGGACGGCTGGGAGA    
Rev GGGGACAGAGCAGAACACCT Rev GCAGGCTCTCGTTGATCC    

HOXC9 Fwd TAAGCCACGAAAACGAAGAG AGPAT4 Fwd GCTCTTCACTCTCCTCCTCTG    
Rev GAAGGAAAGTCGGCACAGTC Rev ACCACTCCAGCAGCATCAC    

HOXA2 Fwd AGGCAAGTGAAGGTCTGGTT HES5 Fwd TGGAGAAGGCCGACATCCT
Rev TCGCCGTTCTGGTTCTCC Rev GGCGACGAAGGCTTTGC

NGFR Fwd AGCAGGAGGAGGTGGAGAA RASL11B Fwd CGGTTCCTCACCAAACGA
Rev CCCGTGTGAAGCAGTCTATG Rev GGACCTGAATACCTGGAGTG 

HES6 Fwd GCTGATGGCTGATTCCAAAG FMN2 Fwd ATCCCTTCTGTGGTCTGCT 
Rev TCGCAGGTGAGGAGAAGGT Rev AGTGTTCGTGGCTGGTTTG 

AGPAT4 Fwd TGCTGGGCGTTCTAAATGG TAGLN3 Fwd GCAAATCTCCCAGTTCCTAAA 
Rev ACACTCCTGCTCATCTTCTGG Rev TGTCCTTCCCTTCCCATAGA 

HES5 Fwd GTATGCCTGGTGCCTCAAA NRCAM Fwd GCCATCCACCATACCATTTC 
Rev GCTTGTGACCTCTGGAAATG Rev ATCAAGGTCCCATCCTCTCC 

RASL11B Fwd GCTGGGCTGTGCTTTCTATG 
Rev GGTGCTGGTGGTCTGTTGTT 

FMN2 Fwd CCATCAGCCAGTCAAGAGGA 
Rev TAAAGCATCGGGAGCCAAAC 

TAGLN3 Fwd AGGCAGCATTTCCAGACC 
Rev ATGGGTTCGTTTCCCTTTG 

NRCAM Fwd TCATTCCGTGTGATTGCTGT 
Rev AAGGATTTTCATCGGGGTTT 

EGFP Fwd CCGACCACTACCAGCAGAAC 
Rev TTGGGGTCTTTGCTCAGG 
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Upstream Regulator Molecule Type p-value of overlap
SOX2 transcription regulator 3,72E-16
POU5F1 / OCT4 transcription regulator 5,29E-16
E2F4 transcription regulator 2,66E-12
KLF4 transcription regulator 2,61E-11
NANOG transcription regulator 2,81E-07
EZH2 transcription regulator 2,69E-08
GLI1 transcription regulator 1,68E-05
NOTCH1 transcription regulator 2,31E-03
KLF2 transcription regulator 3,00E-03
SALL4 transcription regulator 1,67E-02
HEY1 transcription regulator 1,97E-02
KLF6 transcription regulator 2,66E-02
HEY2 transcription regulator 3,57E-02
BMI1 transcription regulator 2,84E-04

Upstream Regulator Molecule Type p-value of overlap
BMP4 growth factor 5,74E-11
BMP2 growth factor 2,69E-03
BMP10 growth factor 5,06E-03
BMP6 growth factor 1,17E-02
SMAD2 transcription regulator 5,66E-09
SMAD7 transcription regulator 8,82E-06
SMAD4 transcription regulator 5,43E-05
SMAD3 transcription regulator 1,38E-03

Upstream Regulator Molecule Type p-value of overlap
SNAI1 transcription regulator 8,22E-04
ZEB2 transcription regulator 1,44E-03
TWIST1 transcription regulator 3,00E-03
ZEB1 transcription regulator 1,10E-02
LEF1 transcription regulator 2,03E-02
NODAL growth factor 2,13E-02

Table 1

Stem cell associated genes

A.

BMP signaling associated genes

B.

Epithelial-to-Mesenchymal Transition (EMT) associated genes

C.
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