
Using visual encounter data to improve

capture-recapture abundance estimates

Maxwell B. Joseph∗ Roland A. Knapp†

Abstract

Capture-recapture studies are widely used in ecology to estimate population sizes

and demographic rates. In some capture-recapture studies, individuals may be visually

encountered but not identified. For example, if individual identification is only possible

upon capture and individuals escape capture, visual encounters can result in failed

captures where individual identities are unknown. In such cases, the data consist of

capture histories with known individual identities, and counts of failed captures for

individuals with unknown identities. These failed captures are ignored in traditional

capture-recapture analyses that require known individual identities. Here we show

that if animals can be encountered at most once per sampling occasion, failed captures

provide lower bounds on population size that can increase the precision of abundance

estimates. Analytical results and simulations indicate that visual encounter data

improve abundance estimates when capture probabilities are low, and when there are

few repeat surveys. We present a hierarchical Bayesian approach for integrating failed

captures and auxiliary encounter data in statistical capture-recapture models. This

approach can be integrated with existing capture-recapture models, and may prove

particularly useful for hard to capture species in data-limited settings.
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Introduction1

Capture-recapture studies are widely used for estimating abundance and demographic2

rates, using information about the identities of captured individuals (Jolly 1965). This3

paper examines the case where individual identification requires capture, and identities4

of animals that are visually encountered but not captured are unknown. In such cases,5

“capture” is synonymous with “identification”. This often applies in capture-recapture studies6

of amphibians, where individual identification is only possible with the animal in hand.7

We also assume that if an individual escapes capture, it is not encountered again in the8

sampling occasion because it is hiding or otherwise inaccessible (Bailey and Nichols 2010,9

Joseph and Knapp 2018). Under these conditions, encounters leading to failed captures10

provide information about abundance, but this information is not readily used in traditional11

capture-recapture models.12

When individuals can be encountered at most once on a survey, encounter and capture data13

both provide lower bounds on the total number of individuals in the population. Total14

abundance must be greater than or equal to the number of animals encountered in a survey.15

Similarly, total abundance must be greater than or equal to the number of unique individuals16

identified in the capture data. Capture data differ however, in that information accumulates17

over multiple surveys (Pollock 1982). For example, if two surveys occur on consecutive days18

in a closed population, then the total number of unique individuals captured across both19

surveys provides a lower bound on abundance.20

Here, we show how visual encounter data can improve abundance estimates in21

capture-recapture studies for study designs where 1) individual identification requires capture,22

2) a subset of encountered individuals are captured, and 3) individuals can be encountered23

at most once per sampling occasion. We develop a modified capture-recapture observation24

model, and investigate conditions under which encounter data improve abundance estimates.25

The methods presented here accommodate both failed captures and counts of animals26
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collected separately from capture-recapture surveys, and can be integrated with existing27

capture-recapture models.28

Methods29

Model description30

We adopt a hierarchical Bayesian approach in which an observation model depends on a state31

model, and both depend on some parameters (Berliner 1996). The state model describes the32

presence or absence of individuals in a population, and the observation model describes the33

visual encounter and capture process. The parameter model represents prior distributions for34

all remaining unknowns.35

State model36

Abundance can be estimated from capture-recapture data in a Bayesian framework using37

parameter-expanded data augmentation (Royle and Dorazio 2012). Here, N∗ unique38

individuals are observed, but M > N∗ individuals are modeled, augmenting the observed39

data with M − N∗ additional capture histories of animals that were never captured. The40

assumption is that the true abundance N is less than M , but greater than the number of41

observed individuals N∗.42

Individuals i = 1, ...,M are either “in the population” (zi = 1) or not (zi = 0), where the43

parameters z1, ..., zM are state parameters to be estimated, and abundance is N = ∑
i zi.44

These states can be modeled as conditionally independent Bernoulli random variables with45

probability parameter ω, where ω is the probability of an individual being in the population:46

zi ∼ Bernoulli(ω).
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Observation model47

On surveys k = 1, ..., K an observer searches for individuals, encountering each individual48

with probability η. We assume individuals can only be encountered once at most. If an animal49

is encountered, it is captured with probability κ. Because individuals must be captured to be50

identified, encounter data are observed for captured individuals, but not for failed captures.51

Thus, encounter histories are partly observed. We assume the number of failed captures on52

each survey is observed.53

Let y∗
i,k represent the categorical outcome for individual i on survey k. There are three54

possibilities (Figure 1):55

1. The individual was not encountered (y∗
i,k = 1), with probability zi(1− η) + 1− zi.56

2. The individual was encountered but not captured (y∗
i,k = 2), with probability ziη(1−κ).57

3. The individual was captured (y∗
i,k = 3), with probability ziηκ.58

The first two outcomes are not observed. We observe a binary record of whether individual i59

was captured on survey k: yi,k, so that yi,k = I(y∗
i,k = 3), where I is an indicator function60

that is equal to one if the condition inside the parentheses is satisfied, otherwise it equals61

zero. In other words, y∗
i,k is observed only if y∗

i,k = 3. Additionally, the observed number62

of failed captures fk corresponds to the sum fk = ∑
i I(y∗

i,k = 2). The observation model63

consists of two parts: one for the capture data:64

[yi,k | y∗
i,k] = Bernoulli(I(y∗

i,k = 3)),

and another for the failed capture counts:65

[fk | y∗
1,k, ..., y

∗
M,k] = I(fk =

∑
i

I(y∗
i,k = 2)),
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where square brackets denote a probability function. Alternatively, a “soft” constraint can be66

imposed as an approximation or to account for uncertainty in the number of failed captures:67

[fk | y∗
1,k, ..., y

∗
M,k] = Normal(fk |

∑
i

I(y∗
i,k = 2), σ),

with σ set to some small fixed value.68

Parameter model69

The hierarchical model specification is completed by specifying prior distributions for70

remaining unknowns. Here, we use independent Uniform(0, 1) priors for all probabilities. This71

prior over the inclusion probability ω implies a discrete uniform prior for the true abundance72

from 0 to M .73

Posterior distribution74

The parameters consist of states z1, ..., zM , outcomes y∗
1,1, ..., y

∗
M,K , and the probabilities of75

inclusion (ω), encounter (η), and capture (κ). The data consist of the capture histories76

y1,1, ..., yM,K , and counts of failed captures from each survey f1, ..., fK . The posterior77

distribution of parameters given data, [z1, ..., zM , y
∗
1,1, ..., y

∗
M,K , ω, η, κ | y1,1, ..., yM,K , f1, ..., fK ],78

is proportional to:79

Captures︷ ︸︸ ︷∏
i

∏
k

[yi,k | y∗
i,k]×

Failed captures︷ ︸︸ ︷∏
k

[fk | y∗
1,k, ..., y

∗
M,k]×

Encounter model︷ ︸︸ ︷∏
i

∏
k

[y∗
i,k | zi, η, κ]×

State model︷ ︸︸ ︷∏
i

[zi | ω]×
Priors︷ ︸︸ ︷

[ω][η][κ] .

This model can be implemented in the popular BUGS language (Lunn et al. 2009), and we80

provide example specifications in Appendix S1.81
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Auxiliary encounter data82

In some cases, auxiliary encounter data are collected, such as during visual encounter surveys83

where individuals are counted on surveys, but no captures are attempted (Crump and Scott84

Jr 1994). Let ak represent the number of unique individuals that were encountered on85

survey k. If encounters of individuals are conditionally independent, a binomial observation86

model provides a reasonable choice, where the number of trials is the population abundance87

N = ∑
i zi and the probability of success is the encounter probability η:88

[ak | η, z1, ..., zM ] = Binomial(η,
∑

i

zi),

for surveys k = 1, ..., K. This is the observation model used in N-mixture models (Royle89

2004). In addition to potentially providing a higher lower bound on abundance, auxiliary90

encounters also provide additional information about encounter probabilities, because the91

encounter data are conditionally independent from encounters leading to captures. When92

combined with the capture-recapture model outlined above, the joint model of captures,93

failed captures, and auxiliary encounters comprise an integrated population model (Besbeas94

et al. 2002, Abadi et al. 2010). The posterior distribution is proportional to:95

Captures︷ ︸︸ ︷∏
i

∏
k

[yi,k | y∗
i,k]×

Failed captures︷ ︸︸ ︷∏
k

[fk | y∗
1,k, ..., y

∗
M,k]×

Auxiliary encounters︷ ︸︸ ︷∏
k

[ak |
∑

i

zi, η]×

Encounter model︷ ︸︸ ︷∏
i

∏
k

[y∗
i,k | zi, η, κ]×

State model︷ ︸︸ ︷∏
i

[zi | ω]×
Priors︷ ︸︸ ︷

[ω][η][κ] .

Abundance lower bounds from encounter and capture data96

The total population size is bounded from below by the number animals encountered on97

any one survey, assuming each animal can be encountered once at most (i.e., individuals98

are not double-counted). If nk is the number of unique animals encountered on survey k,99
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the lower bound on abundance from encounter data nmin = max(n1, ..., nK) is the maximum100

of K independent binomial random variables with sample size N and probability η. The101

probability mass function of this lower bound is thus given by:102

Pr(nmin = n) = F (n)K − F (n− 1)K ,

where F (n) is the cumulative distribution function of a binomial random variable.103

Population size must also be greater than or equal to the number of unique captured104

individuals. A probability mass function for the lower bound on abundance from capture data105

(cmin: the number of unique captured individuals) can be derived with a binomial distribution.106

The binomial sample size is the true population size (N), and the probability of success is107

the probability of being captured one or more times: 1− (1− ηκ)K . The probability mass108

function for cmin, the abundance lower bound derived from the capture data, is:109

Pr(cmin = n) = Binomial(n | 1− (1− ηκ)K , N).

When the expected lower bound from encounter data exceeds the expected lower bound from110

capture data (E(nmin) > E(cmin)), encounter data are expected to increase the precision of111

abundance estimates.112

Simulations113

We empirically verified our theoretical results about the expected lower bounds on abundance114

provided by encounter and capture data using Monte Carlo simulation. We generated115

five replicate encounter-capture-recapture data sets for each parameter combination of116

N = 10, 50, 100, K = 3, 6, 9, and η and κ ranging from 0.01 to 0.99 in increments of 0.01,117

resulting in 441,045 unique data sets. For each parameter combination, we computed the118
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empirical mean lower bounds from encounter and capture data, averaging over the five119

replicate iterations, and compared the results to the theoretical expectations generated from120

the probability mass functions for nmin and cmin.121

To understand the implications of bounding abundance for other parameters, we used a122

simulation study with known parameters across a range of repeat surveys (K = 3, K = 6,123

and K = 9). We visualized the joint posterior distribution of abundance and the probability124

of being encountered and captured, and compared these results to a simpler model: M0125

- a capture-recapture model of a closed population with identical detection probabilities126

p1 = ... = pK = p, which ignores encounters that do not lead to captures (Royle and Dorazio127

2008). This model can only estimate the marginal probability of capture p = ηκ. The128

observation model is yi,k ∼ Bernoulli(zip) for individuals i = 1, ...,M on survey k = 1, ..., K.129

The state model for z is unchanged, and uniform priors over (0, 1) were assigned to ω and p.130

Draws from the posterior distributions of all models were simulated using JAGS, with131

six parallel Markov chain Monte Carlo chains, and 400,000 iterations per chain with an132

adaptation period of 200,000, a burn-in period of 40,000, and posterior thinning by 400 to133

reduce memory usage (Plummer and others 2003). Convergence was assessed using visual134

inspection of traceplots, and the potential scale reduction factor (R̂) statistic (Gelman et135

al. 1992). All code to replicate the analyses is available in a research compendium at136

https://github.com/mbjoseph/secmr.137

Results138

Across a range of abundances, encounter data are expected to provide a higher lower bound139

on abundance when capture probabilities are low, and when there are few repeat surveys140

(Figure 2). The boundary in the bivariate encounter-capture parameter space delineating141

the region where E(cmin − nmin) < 0 shifts toward lower capture probabilities as the number142
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of repeat surveys increases, and as abundance increases. Empirical average bounds from143

simulated capture-recapture data were in agreement with the theoretical expectations derived144

from the probability mass functions of nmin and cmin (Figure 3).145

When the lower bound on abundance is greater for encounter data than capture data, the joint146

model of encounters and captures produces a more precise estimate of abundance because147

there is zero probability mass below the lower bound on abundance. Furthermore, if there is148

posterior correlation between abundance and another parameter, encounter data can also149

increase the precision of the correlated parameter. For example, the marginal probability of150

capture and abundance are correlated in the posterior, so that increased posterior precision151

for abundance implies increased posterior precision of marginal capture probability (Figure152

4).153

Discussion154

Failed captures and auxiliary encounters are likely to be most useful in capture-recapture155

studies when animals are hard to capture and the number of surveys is small. This expectation156

holds across a range of population abundance and encounter probabilities. In such cases,157

encounter data increase the precision of population abundance estimates by increasing the158

lower bound on abundance. Such data are essentially “free” in encounter-capture-recapture159

study designs, and can be included by modifying the likelihood function (and not the160

underlying state model) of capture-recapture models.161

In addition to increasing the precision of abundance estimates, encounter data can increase162

the precision of parameter estimates for parameters that are correlated with abundance in the163

posterior distribution. For the simple model presented here, this includes the detection and164

inclusion probabilities. For more complex models that allow state evolution through time,165

this might include survival and recruitment probabilities. Thus, we expect that encounter166
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data in general might provide information about abundance, and parameters relating to167

abundance and the measurement process.168

These results are consistent with related findings for mark-resight studies where marked169

individuals are subject to incomplete identification. In such studies, accounting for failed170

identifications of marked individuals – analogous to failed captures – is most advantageous171

when identification probabilities are low – analogous to capture probabilities being low172

(McClintock et al. 2014b). However, in the encounter-capture-recapture scenario considered173

here, whether an animal is marked or not is unknown until it is captured, as would be the case174

for subdermal passive integrated transponder tags in an amphibian (Gibbons and Andrews175

2004).176

Here we assumed that individuals could be encountered at most once per sampling occasion.177

In other words, there is no double counting: each failed capture corresponds to one unique178

individual. The observation model developed here is not robust to violations of this assumption,179

because the total number of encounters sets a lower bound on the true population size. As a180

consequence, if individuals escape capture multiple times in the sampling sampling occasion,181

it is possible that the posterior for abundance might be misleadingly precise (i.e., the lower182

bound on population size would be too high). Therefore, we do not recommend this approach183

if individuals might be encountered multiple times on the same sampling occasion. This184

assumption is likely to hold for example in capture-recapture studies of amphibians in high185

elevation lakes, where individual animals that escape capture hide afterwards, e.g., underwater186

where they cannot be seen or captured (Joseph and Knapp 2018). If individuals are captured187

multiple times in the same sampling occasion, then it will be clear that the assumption of at188

most one encounter has been violated. In such cases, alternative encounter models may be189

necessary, e.g., a Poisson model that allows repeat encounters on a sampling occasion (Royle190

et al. 2009).191

The model developed here relates to other approaches for handling imperfect individual192
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identification in capture-recapture studies including misidentification (Link et al. 2010,193

McClintock et al. 2014a, Schofield and Bonner 2015) and partial identification (Augustine et194

al. 2018), and also to approaches that account for latent encounter histories with observed195

summary counts (Chandler et al. 2013). In particular, this approach might be viewed as an196

aspatial analog of the spatial model presented in Chandler et al. (2013) in which a subset of197

individual identities are available, with a Bernoulli (instead of a Poisson) encounter model,198

and a stochastic second stage “identification upon encounter” component. This approach199

can also be seen as a degenerate case of a partial identification model, in which there are no200

spatial (Augustine et al. 2018) or genetic data (Wright et al. 2009) available to inform the201

identities of individuals that have escaped capture.202

Looking ahead, there are opportunities to build upon this approach. First, in terms of203

implementation, marginalization over the discrete latent variables might allow more efficient204

sampling from the posterior distribution. Second, because this model includes separate205

parameters for encounter and capture probabilities, covariates can be included separately206

for each of these components. This could be useful for example to account for predator207

avoidance behavior that might influence capture probabilities, and weather conditions that208

might influence encounter probabilities. Observer effects provide an additional use case: some209

observers might be better than others at finding or capturing individual animals.210

In this paper, we presented a motivation for including encounter data in capture-recapture211

studies based on abundance lower bounds from encounter and capture data. Given that212

encounter data are included via a modified likelihood and not a modified state model, this213

approach can be readily integrated with a variety of capture-recapture models, and may be214

useful for hard to capture species in data-limited settings.215
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Figure legends279

Figure 1280

Conceptual diagram to represent the data model for individuals i = 1, ...,M and sampling281

occasions or surveys k = 1, ..., K. Each individual is either in the population (zi = 1) or not282

(zi = 0). Those that are not are never encountered. Those that are may be encountered on283

occasion k or not, and encountered individuals may or may not be captured and identified (we284

assume that identification requires capture, so that capture and identification are synonymous).285

Each path leads to a value of the partly observed quantity y∗
i,k, where y∗

i,k = 1 when animals286

are not encountered, y∗
i,k = 2 when animals are encountered but not identified, and y∗

i,k = 3287

when animals are encountered and identified.288

Figure 2289

Expectations for the difference in abundance lower bounds provided by capture and encounter290

data as a function of the number of surveys K, abundance N , the encounter probability291

η, and the probability of capture conditional on an encounter κ. When the surface is red,292

encounter data are expected to increase the precision of abundance estimates by increasing293

the lower bound on true abundance. The heavy black line marks the null isocline where the294

expected difference is zero. Lighter lines represent contours spaced by 2 individuals.295

Figure 3296

Empirical verification of theoretical expectations for lower bounds on abundance provided by297

encounter and capture data. Each point represents the empirical average of five replicate298

simulations across a range of parameter values, with panels separated by population size (N)299

and whether the lower bounds are derived from capture data (cmin) or encounter data (nmin).300
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Figure 4301

Samples from the posterior distribution of abundance (N, x-axis) and marginal capture302

probability p = ηκ for an individual in the population (y-axis). Each point is a sample from303

the posterior. Black points correspond to the baseline capture-recapture model M0, which304

does not include encounter data. Blue points correspond to an encounter-capture-recapture305

model that uses encounter data to bound abundance. Vertical dashed lines are shown for the306

lower bounds on abundance derived from encounter (nmin) and capture (cmin) data.307
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Figures308

Figure 1309
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Figure 2310
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Figure 3311
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Figure 4312
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Appendix S1313

This appendix includes model specifications and BUGS/JAGS code for failed capture and314

auxiliary encounter models. These models differ in the observation process, but the model of315

presence/absence states is identical. Each individual i = 1, ...,M is either in the population316

(zi = 1) or not (zi = 0), where zi ∼ Bernoulli(ω), and ω is an inclusion probability parameter.317

Abundance is the sum of these values N = ∑
i zi.318

Baseline model319

The baseline model is M0 and assumes equal detection probabilities of individuals i = 1, ...,M320

on surveys k = 1, ..., K, where yi,k = 1 represents a capture of individual i on survey k, and321

yi,k = 0 indicates no capture. If p is the capture probability, then yi,k ∼ Bernoulli(zip). The322

posterior distribution is:323

[
z1, ..., zM , ω, p | y1,1, ..., yM,K

]
∝

Captures︷ ︸︸ ︷∏
i

∏
k

[yi,k | zi, p]××
State model︷ ︸︸ ︷∏
i

[zi | ω]×
Priors︷ ︸︸ ︷
[ω][p] .

JAGS code for this model with uniform priors over ω and p is:324

model {

omega ~ dbeta(1, 1)

p ~ dbeta(1, 1)

for (i in 1:M) {

z[i] ~ dbern(omega)

for (k in 1:K) {

y[i, k] ~ dbern(z[i] * p)
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}

}

}

Baseline model with failed captures325

We add failed captures to the baseline model by introducing a categorical parameter y∗
i,k,326

which represents “not encountered” (y∗
i,k = 1), “failed capture” (y∗

i,k = 2), or “capture”327

(y∗
i,k = 3). If η is the encounter probability, κ is the probability of capture conditional on328

encounter, and fk is the number of failed captures, then as described in the main text the329

posterior is:330

[
z1, ..., zM , y

∗
1,1, ..., y

∗
M,K , ω, η, κ | y1,1, ..., yM,K , f1, ..., fK

]
∝

Captures︷ ︸︸ ︷∏
i

∏
k

[yi,k | y∗
i,k]×

Failed captures︷ ︸︸ ︷∏
k

[fk | y∗
1,k, ..., y

∗
M,k]×

Encounter model︷ ︸︸ ︷∏
i

∏
k

[y∗
i,k | zi, η, κ]×

State model︷ ︸︸ ︷∏
i

[zi | ω]×
Priors︷ ︸︸ ︷

[ω][η][κ] .

JAGS code for this model with uniform priors over ω, η, and κ is:331

model {

omega ~ dbeta(1, 1)

p_encounter ~ dbeta(1, 1)

p_capture ~ dbeta(1, 1)

p_encounter_and_capture = p_encounter * p_capture

p_failed_capture = p_encounter * (1 - p_capture)

p_not_encountered = 1 - p_encounter
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for (i in 1:M) {

z[i] ~ dbern(omega)

pi[i, 1] = z[i] * p_not_encountered + 1 - z[i]

pi[i, 2] = z[i] * p_failed_capture

pi[i, 3] = z[i] * p_encounter_and_capture

for (k in 1:K) {

y_star[i, k] ~ dcat(pi[i, ])

y[i, k] ~ dbern(y_star[i, k] == 3)

}

}

# number of failed captures (soft constraint)

for (k in 1:K) {

failures[k] ~ dnorm(sum(y_star[, k] == 2), 4)

}

}

Note that the normal distribution for failed captures imposes a “soft” constraint on the sum332 ∑
i y

∗
i,k. By adjusting the normal precision parameter, this constraint can be relaxed or made333

more strict. In the strictest case a hard constraint can be imposed via the “ones trick”, where334

a vector of ones is passed as data, and the likelihood for failed captures is represented as335

ones[k] ~ dbern(sum(y_star[, k]) == failures[k]).336

Baseline model with auxiliary encounters337

To add auxiliary encounter data to the baseline model, we use the following likelihood for338

the number of auxiliary encounters ak in survey k conditional on the true abundance N and339

the encounter probability η:340
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ak ∼ Binomial(η,N),

where N = ∑
i zi. Note that there need not be an equal number (K) capture-recapture341

surveys and auxiliary encounter surveys, but here we assume this is the case to simplify342

notation. This model permits decomposing the parameter p, which represents the marginal343

probability of capture, into the product of the encounter probability η and the probability of344

capture conditional on encounter κ.345

Then, the posterior is:346

[
z1, ..., zM , ω, η, κ | y1,1, ..., yM,K , a1, ..., aK

]
∝

Captures︷ ︸︸ ︷∏
i

∏
k

[yi,k | zi, η, κ]×
Auxiliary encounters︷ ︸︸ ︷∏
k

[ak |
∑

i

zi, η]××
State model︷ ︸︸ ︷∏
i

[zi | ω]×
Priors︷ ︸︸ ︷

[ω][η][κ] .

JAGS code for this model with uniform priors over ω, η, and κ is:347

model {

omega ~ dbeta(1, 1)

p_encounter ~ dbeta(1, 1)

p_capture ~ dbeta(1, 1)

for (i in 1:M) {

z[i] ~ dbern(omega)

for (k in 1:K) {

y[i, k] ~ dbern(z[i] * p_encounter * p_capture)

}

}
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N <- sum(z[])

for (k in 1:K) {

a[k] ~ dbinom(p_encounter, N)

}

}

Baseline model with failed captures and auxiliary encounters348

Combining failed captures and auxiliary encounters includes the N-mixture model likelihood349

for auxiliary encounters in the failed capture model. As described in the main text, the350

posterior is:351

[
z1, ..., zM , y

∗
1,1, ..., y

∗
M,K , ω, η, κ | y1,1, ..., yM,K , f1, ..., fK , a1, ..., aK

]
∝

Captures︷ ︸︸ ︷∏
i

∏
k

[yi,k | y∗
i,k]×

Failed captures︷ ︸︸ ︷∏
k

[fk | y∗
1,k, ..., y

∗
M,k]×

Auxiliary encounters︷ ︸︸ ︷∏
k

[ak |
∑

i

zi, η]×

Encounter model︷ ︸︸ ︷∏
i

∏
k

[y∗
i,k | zi, η, κ]×

State model︷ ︸︸ ︷∏
i

[zi | ω]×
Priors︷ ︸︸ ︷

[ω][η][κ] .

JAGS code for this model with uniform priors over ω, η, and κ is:352

model {

omega ~ dbeta(1, 1)

p_encounter ~ dbeta(1, 1)

p_capture ~ dbeta(1, 1)

p_encounter_and_capture = p_encounter * p_capture

p_failed_capture = p_encounter * (1 - p_capture)

p_not_encountered = 1 - p_encounter
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for (i in 1:M) {

z[i] ~ dbern(omega)

pi[i, 1] = z[i] * p_not_encountered + 1 - z[i]

pi[i, 2] = z[i] * p_failed_capture

pi[i, 3] = z[i] * p_encounter_and_capture

for (k in 1:K) {

y_star[i, k] ~ dcat(pi[i, ])

y[i, k] ~ dbern(y_star[i, k] == 3)

}

}

# number of failed captures (soft constraint)

for (k in 1:K) {

failures[k] ~ dnorm(sum(y_star[, k] == 2), 4)

}

N <- sum(z[])

for (k in 1:K) {

a[k] ~ dbinom(p_encounter, N)

}

}
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