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Abstract 

Episodic memory relies on two processes: 1) our ability to process a vast amount of sensory information, and 

2) our ability to bind these sensory representations together to form a coherent memory. The first process is 

thought to rely on neocortical alpha/beta desynchronisation while the second is thought to be supported by 

hippocampal theta and gamma synchronisation. However, recent empirical evidence suggests that these two 

neural phenomena are contingent on one another, questioning whether alpha/beta desynchronisation and 

theta/gamma synchronisation truly reflect distinct processes. Here, we addressed this conundrum by asking 

seventeen participants to complete a paradigm that temporally separated sensory information representation 

and mnemonic binding while undergoing MEG recordings. We found that, during the perception and retrieval 

of task-relevant information, neocortical alpha/beta power monotonically decreased with the number of items 

recalled from a sequence. During mnemonic binding however, hippocampal theta/gamma phase-amplitude 

coupling monotonically increased with the number of sequence items later recalled. These results suggest a 

double dissociation between neocortical alpha/beta and hippocampal theta/gamma activity, with alpha/beta 

desynchronisation uniquely relating to information representation and theta/gamma phase-amplitude coupling 

uniquely relating to mnemonic binding. As such, we conclude that alpha/beta desynchronisation and 

hippocampal theta/gamma synchronisation represent two separable processes in episodic memory.  

Significance Statement 

Episodic memories are highly detailed snapshots of our personally experienced past. The formation and 

retrieval of episodic memories have consistently been shown to rely on the hippocampus and the sensory 

neocortex. However, it is unknown whether the memory-related neural activity in the hippocampus and 

neocortex reflect separate, interacting cognitive processes, or are two neural responses to a singular process. 

Here, we find evidence in favour of the former. Memory-related decreases in neocortical alpha/beta power 

uniquely arise to the perception and retrieval of event-related information, while memory-related increases in 

hippocampal theta/gamma phase-amplitude coupling uniquely arise during mnemonic binding. This double 

dissociation suggests that the neocortex and hippocampus play distinct and separable roles in the formation 

and retrieval of episodic memories 

Introduction 

An episodic memory is a detail-rich, long-term memory that is anchored to a unique point in time and 

space (Tulving, 2002). The formation and retrieval of these memories are thought to rely on neocortical 

alpha/beta desynchronisation and hippocampal theta/gamma synchronisation (Hanslmayr, Staresina, & 

Bowman, 2016), both of which are prevalent in a wide range of episodic memory tasks (for reviews, see 

Hanslmayr & Staudigl, 2014; Nyhus & Curran, 2010).  
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Neocortical alpha/beta desynchrony is thought to be beneficial for information representation 

(Hanslmayr, Staudigl, & Fellner, 2012). This idea is derived from the tenets of information theory, which propose 

that unpredictable states (e.g. a desynchronised network, where the firing of one neuron cannot predict the 

firing of another) can convey substantially more information than predictable states. In support of this idea, a 

recent EEG-fMRI study demonstrated that the amount of stimulus-specific information present in BOLD signal 

can be predicted by neocortical alpha/beta power (Griffiths, Mayhew, et al., 2019), suggesting that alpha/beta 

power directly correlates with neocortical information representation. Moreover, interfering with these power 

decreases via transcranial brain stimulation impairs both episodic memory formation and retrieval (Hanslmayr, 

Matuschek, & Fellner, 2014; Waldhauser, Braun, & Hanslmayr, 2016), suggesting that these power decreases 

play a causal role in memory. Based on these findings (and others; e.g. Fellner, Bäuml, & Hanslmayr, 2013; Long 

& Kahana, 2015; Sederberg et al., 2007), one can hypothesise that alpha/beta power decreases relate to the 

representation of information in episodic memory.   

Hippocampal theta/gamma synchrony also correlates with episodic memory formation and retrieval. A 

memory-related increase in synchronisation can take the form of an increase in theta or gamma power (e.g. 

Burke et al., 2013; Griffiths, Parish, et al., 2019; Long & Kahana, 2015; Montgomery & Buzsáki, 2007; Osipova 

et al., 2006; Sederberg et al., 2007; Staresina et al., 2016), or an increase in the coupling between these two 

oscillations (e.g. Bahramisharif, Jensen, Jacobs, & Lisman, 2018; Heusser, Poeppel, Ezzyat, & Davachi, 2016; 

Staudigl & Hanslmayr, 2013; Tort, Komorowski, Manns, Kopell, & Eichenbaum, 2009). Mechanistically speaking, 

an increase in hippocampal synchronisation is thought to facilitate the binding of information into a coherent 

memory trace (Hanslmayr et al., 2016; Nyhus & Curran, 2010). This is, in part, dictated by theta phase, which 

determines whether long-term potentiation (LTP) or long-term depression (LTD) occurs (Hasselmo, Bodelón, & 

Wyble, 2002). Gamma synchronisation compliments this process by driving neurons to fire at the frequency 

optimal for spike-timing dependent plasticity (STDP; Bi & Poo, 1998; Jutras, Fries, & Buffalo, 2009; Nyhus & 

Curran, 2010). By coupling gamma power to the phase of theta that is optimal for LTP, the propensity for 

mnemonic binding is further enhanced. 

However, hippocampal activation during encoding is contingent on the amount of preceding neocortical 

desynchronisation, and vice versa during episodic memory retrieval  (Griffiths, Parish, et al., 2019). Statistically 

speaking, it is therefore plausible to suggest that a single latent variable produces both neocortical 

desynchronisation and hippocampal synchronisation. Here, we tested this idea using a paradigm that 

temporally separates information representation and mnemonic binding. If neocortical desynchronisation and 

hippocampal synchronisation reflect distinct cognitive processes, we would therefore expect that (1) 

neocortical alpha/beta power decreases are most prevalent during periods of information representation, and 

(2) hippocampal theta/gamma power increases and phase-amplitude coupling are most prevalent during 

mnemonic binding. Foreshadowing the results presented below, we find evidence to suggest that occipital 
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alpha/beta power decreases uniquely accompany sensory information representation, while increases in 

hippocampal theta-gamma coupling uniquely accompany mnemonic binding. These results reveal a double 

dissociation between neocortical alpha/beta desynchrony and hippocampal theta/gamma synchrony in 

episodic memory.  

Materials and Methods 

Participants 

Twenty-eight participants were recruited (mean age = 25.4; age range = 20-33; 68% female; 82% right-handed). In 

return for their participation, they received course credit or financial reimbursement. One participant was excluded for 

excessive head movement (greater than 2 standard deviations above group mean). Four participants were excluded for 

poor quality data (more than 50% of trials rejected for artifacts). Six participants were excluded for poor memory 

performance (fewer than 15 trials in one of the three memory conditions). All exclusion criteria were pre-registered (see 

https://osf.io/4nt23/; see supplementary materials). This left seventeen participants for further analysis. Ethical approval  

was granted by the Research Ethics Committee at the University of Birmingham (ERN_15-0335), complying with the 

Declaration of Helsinki. 

Experimental design 

Each participant completed a visual associative memory task (see figure 1a). During encoding, participants were 

presented with a line drawing of an object, a pattern, and a scene (each for 1500ms, with a 500ms fixation cross shown 

between each stimulus). The order in which the pattern and scene were presented was swapped between each block 

(where a “block” is  defined as a complete cycle of encoding, distractor and retrieval tasks). A prompt then appeared on 

screen instructing the participants to vividly associate these three items for a later memory test. Participants were then 

asked how difficult they found associating the triad. This question was used to keep participants attending to the task, 

rather than provide a meaningful metric for analysis. The next trial began after the participant had responded to the 

difficulty question. After associating 48 triads, participants started the distractor task. In the distractor task, participants 

attended to a fixation cross in the centre of a black screen. The fixation cross would flash from light grey to either white or 

dark grey momentarily (~100ms) approximately every 20 seconds. The participants were instructed to count the number 

of times the fixation cross changed to white (ignoring the times it turned dark grey) and report this value at the end of the  

task (approximately 2.5mins later). The retrieval task followed the distractor. Here, participants were presented with the 

line drawing and asked to recall the association they made earlier. After 3000ms, participants were presented with three 

patterns (one correct and two lures) to select from. After responding, participants were presented with three scenes (one 

correct and two lures). On blocks where scenes preceded patterns during perception, the presentation order at retrieval  

was also reversed. After responding, participants were then asked to indicate how confident they were about their choices. 

They could select ‘guess’ (i.e. they guessed their choice), ‘unsure’ (i.e. they could not remember the item, but had a feeling 
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it was the correct choice), or ‘certain’ (i.e. they could 

vividly remember the item). Participants were asked to 

recall all 48 triads learnt in the earlier encoding phase. 

Participants completed 4 blocks of this task (192 trials in 

total).  

Behavioural analysis 

For each trial, memory performance was coded as 

either ‘complete’ (i.e. they remembered both the scene 

and the pattern), ‘partial’ (i.e. they remembered only one 

of the associates), or ‘forgotten’ (i.e. they remembered 

neither the scene nor the pattern). Any trial where the 

participant indicated that they guessed was marked as a 

‘miss’. A dependent-samples t-test was used to contrast 

recall performance for patterns versus scenes. 

MEG acquisition 

MEG data was recorded using a 306-channel (204 

gradiometers, 102 magnetometers) whole brain Elekta 

Neuromag TRIUX system (Elekta, Stockholm, Sweden) in a 

magnetically shielded room. Participants were placed in 

the supine position for the duration of the experiment. 

Data was continuously recorded at a sampling rate of 

1000Hz. The headshape of each participant (including 

nasion and left/right ear canal) was digitised prior to 

commencing the experiment. Continuous head position 

indicators (cHPI) were recorded throughout. The 

frequencies emitted by the cHPI coils were 293Hz, 307Hz, 

314Hz and 321Hz. Magnetometer data was excluded from 

the main analysis as they contained substantial noise that 

could not be effectively removed or attenuated. 

MEG preprocessing 

All data analysis was conducted in Matlab using 

Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) in 

conjunction with custom scripts. First, the data was low-

pass filtered at 165Hz to remove the signal generated by 

the HPI coils. Second, the data was epoched around each event of interest. At encoding, the epochs reflected the time  

windows where each stimulus was presented (from here on termed ‘perception’) and when the ‘associate’ prompt was 

presented (termed ‘association’). At retrieval, the epochs reflected the time window when the object cue was presented 

Figure 1 . O verview of behavioural task. (a)  Paradigm 

schematic. Participants were presented with a sequence 

of three visual stimuli. The sequence always began with a 

line drawing of an object, and was then followed by a 

pattern and a scene (each with a brief fixation cross shown 

between). Participants were then given a short interval to 

create a mental image incorporating the three stimuli. 

They were then asked to rate how plausible they found 

the mental image they created. After a distractor task, 

participants were presented with the object as a cue and 

asked to recall both the pattern and the scene, each from 

a choice of three stimuli. After selection, participants had 

to rate how confident they felt about their response. 

Windows of information processing are outlined in blue, 

and windows of mnemonic binding are outlined in red (b) 

Raincloud plot depicting memory performance for each 

participant. (c) Raincloud plot depicting memory 

performance for each stimulus type. Scene stimuli were 

better recalled than pattern stimuli. 
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(termed ‘retrieval’). Perception epochs began 2000ms before stimulus onset and ended 3500ms after onset (that is, 

2000ms after stimulus offset). Association and retrieval epochs began 2000ms before stimulus onset and ended 4500ms 

after onset (that is, 2000ms after stimulus offset). Third, independent components analysis was conducted, and any 

identifiable eye-blink or cardiac components were removed. Fourth, the data was visually inspected and any artefactual  

epochs or sensors were removed from the dataset (mean percentage of trials removed: 18.0%; range: 5.7-32.2%).  

Movement correction 

To identify participants with extreme head motion during MEG recordings, the recorded data was first high-pass 

filtered to 250Hz to isolate the cHPI signal. Second, the variance of the signal for each sensor was computed across every 

time point of the continuous recording. Third, the variance was mean averaged across sensors to provide a singular 

estimate of change in cHPI signal across the duration of the experiment. Fourth, the mean variance and its standard 

deviation was calculated across participants. Lastly, participants with extreme head motion were identified as those with 

variance greater than two standard deviations above the group mean. These participants were excluded from further 

analysis. 

To help attenuate motion-related confounds in the spectral power analyses, a trial-by-trial estimate of motion was 

calculated. First, the data was high-pass filtered at 250Hz. Second, the data was epoched into trials matching those outlined 

in the section above. Third, the envelope of the signal in each epoch was then calculated (to avoid issues of mean phase 

angle difference in cHPI signal across trials). Fourth, the envelope was averaged over time to provide a single value for 

each epoch and channel. Fifth, the dot product was computed across sensors between the first epoch and every other 

epoch (algebraically: ∑ 𝑎𝑖
𝑛
𝑖=1 𝑏𝑖, where n is the number of channels, 𝑎𝑖  is the power at sensor i during the first trial, and 𝑏𝑖 

is the power at sensor i during the trial of interest). This provided a single value (between zero and infinity) for each trial  

that described how similar the topography of that trial was to the first trial  – the higher the value, the more similar the 

topographies are between the two trials (with the assumption that the more dissimilar a cHPI topography is to the starting 

topography, the more the head has deviated from its starting position). These values were entered as a regressor of no 

interest in the central multiple regression analyses. 

Time-frequency decomposition and statistical analysis 

Sensor-level time-frequency decomposition was conducted on the three epochs (perception, association, and 

retrieval). For low frequencies, the preprocessed data was first convolved with a 6-cycle wavelet (-0.5 to 3 seconds, in steps 

of 50ms; 2 to 40Hz; in steps of 1Hz). For high frequencies, Slepian multitapers were first used to estimate power (-0.5 to 3 

seconds, in steps of 50ms; 40 to 100Hz, in steps of 4Hz). For this latter analysis, frequency smoothing was set to one quarte r 

of the frequency of interest and temporal smoothing was set to 200ms. Second, planar gradiometers were combined by 

summing the power of the vertical and horizontal components. Third, for perceptual trials only, power was then averaged 

over the three stimulus presentation windows of each triad to provide mean power during perception of the triad. Any 

triads where one or more epochs had been rejected during preprocessing were excluded at this stage. Fourth, the data 

was baseline correlated by means of z-transformation (Griffiths et al., 2016). To this end, power was first averaged over 

time for each trial, channel and frequency band. The mean and standard deviation of this time-averaged power was then 

computed across trials. This mean was then subtracted from power for each trial, and the resulting value was divided by 

the standard deviation.  
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For statistical analysis, a multiple regression was run for each participant using four regressors to predict observed 

power within a channel x frequency x time point. These four regressors were (1) number of items recalled, (2) whether the 

scene was recalled, (3) whether the pattern was recalled, (4) the change in head position [based on the motion calculation 

outlined above]. The first regressor was of primary interest, while the others were used to account for variance from 

potentially confounding sources. The beta weight of the first regressor, obtained for a given channel x frequency x time 

point, was then transformed into a t-value (by dividing by the standard error) to attenuate the impact of poor model fits 

on the final analysis. Here, a positive t-value would indicate that spectral power increases with more items recalled, and a 

negative t-value would indicate that spectral power decreases with more items recalled. The t-values for each participant 

were pooled across the sample and entered into a one-sample t-test to examine whether the observed fits consistently  

deviated from the null hypothesis (t=0) across participants. To address the issue of multiple comparisons, the t-values were 

subjected to a one-tailed cluster-based permutation test (2000 permutations; Maris & Oostenveld, 2007). Clusters that 

produced a p-value less than 0.05 were considered significant.   

Model comparison 

Notably, several statistical patterns can produce an apparent linear effect of memory performance. To examine the 

statistical pattern that produce the result observed in our multiple regression analyses, we generated three models that 

could, theoretically, produce such a trend:  

Monotonic model: A monotonic trend where power decreases with increasing memory performance. Here, 

complete memories were coded with the value 2, partial memories with the value 1, and forgotten triads 

were coded with the value 0. 

Hit vs. miss model: A binary division where any successful encoding produces a power decrease relative to 

the forgotten triads, but no distinction exists between triads that were completely recalled and triads that 

were only partially recalled. Here, complete and partial memories were coded with the value 1, and 

forgotten triads were coded with the value 0. 

All-or-nothing model: A binary division where any successful encoding of the entire triad produces a power 

decrease relative to the partial and forgotten triads, but no distinction exists between triads that were 

partially recalled and triads that were forgotten (the “all-or-nothing model”). Here, complete memories were 

coded with the value 1, and partial and forgotten triads were coded with the value 0. 

The first of these predictors matches that described in the ‘time-frequency analysis’ section. The multiple regression 

outlined in that section was re-run using the latter two models described above. As the monotonic model is the linear sum 

of the hit vs. miss model and the all-or-nothing model, this creates rank deficiency in the predictor matrix. Therefore, 

separate solutions for the three models had to be calculated. The effect size [Cohen’s d z; where dz = t / sqrt(n), and n = 

number of participants] of the maximum cluster identified in the main text was calculated for each model. The model 

which produced the greatest effect size was interpreted as the model which best fit the data. 

Source analysis 

The preprocessed data was reconstructed in source space using individual head models and structural (T1-weighted) 

MRI scans for all but two individuals who did not wish to return for an MRI scan. For these two individuals, a standard head 
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model and MRI scan was used (taken from the Fieldtrip toolbox; for details, see 

http://www.fieldtriptoolbox.org/template/headmodel). The headshape (together with the HPI coil positions) of each 

participant was digitised using a Polhemus Fasttrack system. The timelocked MEG data was reconstructed using a single-

shell forward model and a Linearly Constrained Minimum Variance beamformer (LCMV; van Veen, van Drongelen, 

Yuchtman, & Suzuki, 1997). The lambda regularisation parameter was set to 1%. 

1/f correction 

To isolate oscillatory contributions, 1/f activity was attenuated in the time-frequency data by subtracting the linear 

fit of 1/f characteristic (Griffiths, Parish, et al., 2019; Manning, Jacobs, Fried, & Kahana, 2009; Zhang & Jacobs, 2015) . To 

this end, a vector containing values of each derived frequency (A) and another vector containing the power spectrum, 

averaged over all time-points and trials of the relevant memory condition, (B) were log-transformed at approximate a 

linear function. The linear equation Ax = B was solved using least-squares regression, where x is an unknown constant 

describing the curvature of the 1/f characteristic. The 1/f fit (Ax) was then subtracted from the log-transformed power 

spectrum (B). As this fit can be biased by outlying peaks (Haller et al., 2018), an iterative algorithm was used that removed 

probable peaks and then refitted the 1/f. Outlying peaks in this 1/f-subtracted power spectrum were identified using a 

threshold determined by the mean value of all frequencies that sat below the linear fit. The MEG power spectrum is the 

summation of the 1/f characteristic and oscillatory activity (i.e. at no point does oscillatory activity subtract from the 1/ f), 

therefore all values that sit below the linear fit can be seen an error of the fit. Any peaks that exceed the threshold were 

removed from the general linear model, and the fitting was repeated. Notably, as power for the low frequencies (2-40Hz) 

and high frequencies (40-100Hz) was calculated using different methods (wavelets and DPSS multitapers, respectively) , 

the two bands have disparate levels of temporal and spectral smoothing. To avoid a spurious fitting due of the 1/f because 

of these differences, the 1/f correction was conducted separately for these two bands.  

MEG phase-amplitude coupling computation and statistical analysis 

To calculate the extent to which hippocampal gamma activity coupled to hippocampal theta phase, the modulation 

index (MI) was calculated (Tort et al., 2010). First, the peak theta and gamma frequencies were calculated by estimating 

power across all hippocampal virtual sensors (bilaterally, as defined by the automated anatomical labelling [AAL] atlas)  

using the same time-frequency decomposition method reported above. The Matlab function findpeaks() was then used to 

extract the most prominent peak within the theta (2-7Hz) and gamma (40-100Hz) bands for each participant. Across 

participants, the mean theta peak was at 5.0Hz, and the mean gamma peak was at 67.0Hz. Second, the time-series of the 

hippocampal virtual sensors were duplicated, with the first being filtered around the theta peak (±0.5Hz) and the second 

being filtered around the gamma peak (±5Hz). Third, the Hilbert transform was applied to the theta- and gamma-filtered 

time-series, with the phase of the former and power of the latter being extracted. Fourth, the time-series data was re-

epoched, beginning 500ms after the onset of the stimulus/fixation cross and ending 500ms before the onset of the next 

screen. This attenuated the possibility that an event-related potential and/or edge artifacts from the filtering/Hilbert 

transform could influence the phase-amplitude coupling measure (Aru et al., 2014). Fifth, gamma power was binned into 

12 equidistant bins of 30°, according to the concurrent theta phase. This binning was conducted for each trial and sensor 

separately. Notably, as differences in trial number can bias the phase-amplitude coupling estimate, trial numbers for each 

memory condition were balanced. This was achieved by identifying the condition with the smallest number of trials and 
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then taking a matching number of trials from the other conditions (evenly distributed across the duration of the 

experiment). Sixth, the MI was computed by comparing the observed distribution to a uniform distribution. Seventh, the 

resulting MI values were subjected to a multiple regression conducted in the same manner as for the spectral power 

analyses. However, two additional regressors were added to this model: (1) hippocampal peak theta power [per trial, 

averaged across 500ms to 2500ms], (2) hippocampal peak gamma power [per trial, averaged across 500ms to 2500ms]. 

These regressors addressed the potential confound of concurrent power influence phase estimates (Aru et al., 2014). 

Eighth, these results were subjected to the same statistical procedure as outlined above; namely, a one-sample t-test 

comparing per-participant t-values relating phase-amplitude coupling to changes in memory performance to the null 

hypothesis (t=0). 

To test the spatial specificity of this effect, the same pipeline was used to assess theta-gamma phase-amplitude 

coupling in the frontal, occipital, parietal and temporal lobes (individually; defined in by in wfupickatlas toolbox for SPM) 

Results 

Behavioural results 

Participants, on average, correctly recalled both the associated pattern and associated scene on 38.3% of trials, 

recalled only one associated stimulus on 34.4% of trials, and failed to recall either associate on 27.3% of trials 

(see figure 1b). Participants correctly recalled the associated pattern on 49.2% of trials, and correctly recalled 

the associated scene on 82.1% of trials (both of which are well above chance performance [33.3%]; see figure 

1c). A paired-samples t-test revealed that memory for scenes was substantially greater than memory for 

patterns (p < 0.001, Cohen’s dz = 4.57). 

Occipital alpha/beta power decreases during stimulus perception predict successful memory formation 

We first investigated the extent to which spectral power fluctuates as a function of memory performance 

during visual perception. We hypothesised that, as information surrounding the three stimuli need s to be 

processed in order to form a complete memory, alpha/beta power should monotonically decrease as a function 

of memory performance. To test this, the time-series of sensor-level MEG gradiometer data was decomposed 

into spectral power using 6-cycle Morlet wavelets (for low frequencies; 2-40Hz) and Slepian multitapers (for 

high frequencies; 40-100Hz), and then baseline-corrected using z-transformation on the artifact-free data. 

Spectral power was then entered as an outcome variable into a multiple regression with four predictor 

variables: the number of items recalled, whether the scene was recalled, whether the pattern was recalled, and 

head motion. The first regressor was of primary interest, while the latter three were used to at tenuate 

potentially confounding variables. This returned a t-value (beta coefficient divided by standard error) for each 

participant. Here, a positive t-value would indicate that spectral power increases with the number of items 

recalled and a negative t-value would indicate that spectral power decreases with the number of items recalled. 

The t-values for each participant were pooled and entered into a group-level, cluster-based one-sample t-test 
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which compared observed values against the null 

hypothesis (t=0; Maris & Oostenveld, 2007). This 

analytical approach revealed a significant effect 

where power decreases correlated with an increase 

in memory performance (pcorr = 0.013, Cohen’s dz = 

1.33). Visual inspection of the cluster suggests that 

the effect was greatest over the posterior sensors, 

bilaterally, between 8 and 20Hz (see figure 2a-b). 

The reconstruction of this effect on source level 

suggests that this effect primarily arose in the 

occipital lobe (see figure 2d).  

It is important to note that three types of 

statistical patterns can produce the trend we 

uncovered: (1) a monotonic relationship where 

power decreases with increasing memory 

performance (the “monotonic model”), (2) a binary 

division where any successful encoding produces a 

power decrease relative to the forgotten triads, but 

no distinction exists between triads that were 

completely recalled and triads that were only 

partially recalled (the “hit vs. miss model”), and (3) a 

binary division where successful encoding of the entire triad produces a power decrease relative to the partial 

and forgotten triads, but no distinction exists between triads that were partially recalled and triads that were 

forgotten (the “all-or-nothing model”). To examine which model best fit the data, the effect size of each model 

was computed based on all data points found within the cluster. These values were then descriptively 

compared. It seemed the monotonic model best described the power decrease, producing an effect size of dz 

= 1.33. The other models also produced large effect sizes (perhaps owning to the fact that they are very similar 

models) but, critically, they were smaller than the monotonic model (hit vs. miss: dz = 1.25; all-or-nothing: dz = 

0.74). This suggests that alpha/beta power monotonically decreases with the amount of information encoded. 

It is worth considering that the decrease in alpha/beta power does not appear to be strictly linear (that is, the 

power decrease for one item recalled relative to no items recalled is not equivalent to the power decrease for 

two items recalled relative to one item). Rather, it’d appear that the difference in power is greater between 

one and no items recalled compared to two and one items recalled (see figure 2c). Therefore, we have refrained 

from referring to this effect (and indeed do not view this effect) as a “linear decrease” in power across 

Figure 2. Alpha/beta power decreases during perception 

correlate with increased memory performance. (a) Time-

frequency representation over occipital and parietal  

sensors shows that a decrease in low-frequency power (8-

20Hz) correlates with later memory success. (b) A 

topographic plot of post-stimulus alpha/beta power 

suggests that memory-related power decreases were 

most prominent over the occipital lobe. (c ) Raincloud plot 

depicting alpha/beta power as a function of items 

recalled. Power appeared to linearly decrease with 

greater memory performance. (d) Source reconstruction 

of this effect confirmed this, as well as implicating parts of 

the parietal lobe and ventral medial prefrontal cortex. 
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conditions. Rather, we choose to refer to this effect as “monotonically decreasing”. That is, there is a decrease 

in power for one item recalled relative to no items, and a decrease in power for two items recalled relative to 

one, but these decreases are not equivalent. 

Notably, the observed effect was spectrally broad. As such, it is reasonable to suggest that this effect may 

not reflect a change in oscillatory activity, but rather a change in the underlying 1/f characteristic (Haller et al., 

2018; Miller, Sorensen, Ojemann, & Den Nijs, 2009). To address this, the 1/f characteristic of this cluster was 

isolated from the oscillatory signal by subtracting a linear fit of the 1/f characteristic in log-log space (see 

methods for details). This approach provides a power spectrum that describes memory-related changes in 

oscillatory power and a beta weight that describes the 1/f characteristic. Both measures were subjected to the 

same statistical analysis as above. This revealed a significant effect for oscillatory power (p = 0.006, Cohen’s dz 

= 0.72), where a decrease in alpha power (8-11Hz) correlated with an increase in memory performance. In 

addition, a trending effect was observed in the fractal slope, where a decrease in low frequency power and an 

increase in high frequency power correlated with greater memory performance (p = 0.087, Cohen’s dz = 0.34). 

A comparison of effect sizes suggests that a decrease in oscillatory alpha power is the primary driver of the 

monotonic relationship to memory performance.  

Occipital and parietal alpha/beta power decreases during stimulus recall predict successful memory retrieval  

  We then asked how spectral power fluctuates as a function of memory performance during memory 

retrieval. We hypothesised that alpha/beta power should parametrically decrease as a funct ion of memory 

performance, reflecting an increase in the representation of reinstated information. The analytical approach 

matched that reported above. In line with our hypothesis, we found a significant effect where post -stimulus 

alpha/beta power decreases correlated with an increase in memory performance (pcorr = 0.025, Cohen’s dz = 

1.32; see figure 3a-b). Visual inspection of the cluster suggests that the effect was greatest over the frontal, and 

left parietal/occipital sensors, between 6-20Hz. Source reconstruction localised this effect to the parietal and 

retrosplenial cortices (see figure 3d). As during perception, it appeared that the linear model better account for 

the observed effect (Cohen’s dz = 1.32) rather than the hit vs. miss model (Cohen’s  dz = 1.26) or the all-or-

nothing model (Cohen’s dz = 0.62). Moreover, 1/f corrected analyses (conducted in the same manner as above) 

revealed a significant effect for oscillatory power (pcorr = 0.002; Cohen’s dz = 0.72), where a decrease in 

alpha/beta power (10-15Hz) correlated with an increase in memory performance. No significant cluster was 

observed for the beta weight describing the 1/f characteristic (p = 0.323, Cohen’s dz = 0.14). These results 

suggest that a decrease in oscillatory alpha/beta power, rather than a shift in 1/f, correlates with greater 

memory performance during successful memory retrieval.  
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Hippocampal theta/gamma phase-amplitude coupling during stimulus association predicts successful episodic 

memory formation 

We then asked how spectral power fluctuates as a function of memory performance during the association 

window at encoding. We hypothesised that theta and gamma power should parametrically increase as a 

function of memory performance, reflecting an increase in hippocampal binding. The analytical approach 

matched that reported above. Intriguingly however, our analysis did not reveal any memory-related changes in 

theta or gamma power. As we had hypothesised that such effects would originate from the hippocampus, and 

deep sources can obscured by more superficial sources (Ruzich, Crespo-García, Dalal, & Schneiderman, 2019), 

we re-ran our analysis using a bilateral hippocampal region of interest, but still found no memory-related 

change in theta or gamma power. However, a trending effect in the alpha/beta frequency range was observed 

(pcorr = 0.059), where an increase in alpha/beta power correlated with enhanced memory performance.  As this 

effect was not hypothesised and merely trending towards significance, we have relegated the analyses and 

discussion of this result to the supplementary 

information. 

 We then probed how theta/gamma phase-

amplitude coupling relates to episodic memory 

formation and retrieval. To address this, we went 

straight to the source level as we had strong a priori 

hypotheses about the hippocampal source of this 

effect (see https://osf.io/4nt23/; see supplementary 

materials), and such a deep source can often be 

masked by more superficial sources (Ruzich et al., 

2019). We first extracted the theta and gamma 

peaks in the hippocampal power spectrum for each 

participant individually. Across participants, the peak 

in hippocampal theta arose at 5.0Hz (when searching 

between 2 and 7Hz), while the peak hippocampal 

gamma frequency arose at 67.0Hz (when searching 

between 40 and 100Hz). By taking the peak 

frequencies, we ensured that analysis focused on the 

coupling between two oscillatory signals (Aru et al., 

2014). Every sample of hippocampal gamma power 

was binned according to hippocampal theta phase, 

and the modulation index (Tort, Komorowski, 

Figure 3 . Alpha/beta power decreases during memory 

retrieval correlate with increased memory performance. 

(a)  Time-frequency representation over left parietal  

sensors (top left) shows that a decrease in low-frequenc y 

power (8-20Hz) correlates with later memory success. (b)  

A topographic plot of post-stimulus alpha/beta power 

suggests the memory-related power decreases were most 

prominent over the left parietal and occipital regions. (c)  

Raincloud plot depicting power as a function of items 

recalled. Power appeared to decrease when successfully 

recalling a stimulus, but power did not vary as a function 

of the number of items recalled. (d) Source reconstruction 

of this effect (bottom right) confirmed this. 
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Eichenbaum, & Kopell, 2010) was computed for each trial (against the null hypothesis that the distribution of 

gamma power is uniform across the theta phase). The resulting modulation index values were then entered in 

a multiple regression (as described above) with the addition of two more nuisance regressors: concurrent theta 

power and concurrent gamma power. As power can affect the phase estimate, these regressors attenuate the 

potential influence of power on the trial-by-trial measures of PAC. These values were then entered into a one-

sample t-test for statistical analysis in the same manner as above. During mnemonic binding, a significant 

increase in theta/gamma phase-amplitude coupling correlated with greater memory performance observed (p 

= 0.012, Cohen’s dz = 0.61; see figure 4). When examining which model best fit hippocampal phase-amplitude 

coupling, it appeared that the monotonic model of memory performance best described the effect (Cohen’s dz 

= 0.61; relative to hit vs. miss [Cohen’s dz = 0.49] and all-or-nothing [Cohen’s dz = 0.43] models). No significant 

coupling was observed during perception (p = 0.500, Cohen’s dz < 0.01) or retrieval (p = 0.396, Cohen’s dz = 

0.06). These results suggest that memory-related theta/gamma phase-amplitude coupling is most prominent 

during periods of mnemonic binding.  

To confirm the spatial specificity of the effect observed during mnemonic binding, we re-ran this analysis 

using four additional regions of interest: the frontal lobe, parietal lobe, temporal lobe (excluding the 

hippocampus), and the occipital lobe. None of these regions exhibited significant theta-gamma phase-

amplitude coupling (frontal: p = 0.308, parietal: p = 0.250, temporal: p = 0.078, occipital: p = 0.169; see figure 

4e). These results suggest the memory-related enhancement in theta/gamma phase-amplitude coupling 

predominately arises in the hippocampus.  

 

Figure 4. Increases in hippocampal theta/gamma coupling during mnemonic b inding correlate with increased memory 

performance. (a) the modulation of peak gamma power as a function of peak theta phase across all trials. Peak 

gamma appears to decrease during the peaks of the theta phase, and increase during troughs of the theta phase. 

(b) the specificity of memory-related hippocampal theta-gamma phase-amplitude coupling. (c )  raincloud plot 

depicting the fit between memory performance and hippocampal theta-gamma coupling (each dot represents a 

participant). (d)  peak-locked average of peak theta (left) and gamma (right) frequencies, averaged across all 

participants. For both, theta and gamma the waveforms appear symmetric thus excluding a distortion of the cross-

frequency coupling measure due to waveshape. (e)  group-level t-statistic for the hippocampal region of interest 

compared to t-statistics for frontal, occipital, parietal and temporal regions of interest.  
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Discussion 

During episodic memory formation, the amount of hippocampal synchrony can be predicted by  the 

amount of preceding neocortical desynchrony (Griffiths, Parish, et al., 2019). Similarly, the amount of 

neocortical desynchrony during episodic memory retrieval can be predicted by the preceding hippocampal 

synchrony. While this has been interpreted as the interaction between information representation within the 

neocortex and mnemonic binding in the hippocampus (Hanslmayr et al., 2016), such a correlation between two 

neural phenomena could also be ascribed to a singular latent variable. Here, we disentangle these two ideas by 

using a paradigm that temporally separated information representation and mnemonic binding. In this task, we 

found that memory-related decreases in neocortical alpha/beta power only arose during the perception and 

retrieval of the sequence, fitting with the idea that these decreases reflect information representation. In 

contrast, memory-related increases in hippocampal theta/gamma phase-amplitude coupling only arose during 

the association window, fitting with the idea that such coupling reflects the mnemonic binding of a memory. 

These results suggest that alpha/beta desynchronisation and hippocampal theta/gamma synchronisation 

reflect two distinct cognitive processes in episodic memory formation and retrieval. 

The representation of information relating to an ongoing event or retrieved memory is thought to be 

supported by the desynchronisation of neocortical alpha/beta oscillations (Hanslmayr et al., 2012). Information 

theory proposes that unpredictable states carry more information than predictable states (Shannon & Weaver, 

1949). As spiking in desynchronised neural networks is less predictable than spiking in synchronised networks, 

the former is thought to benefit information representation. Our findings add to the ever-increasing number of 

studies implicating neocortical alpha/beta power decreases in the successful formation and retrieval of episodic 

memories (e.g. Fell, Ludowig, Rosburg, Axmacher, & Elger, 2008; Fellner, Bäuml, & Hanslmayr, 2013; Griffiths 

et al., 2016; Hanslmayr et al., 2009, 2011; Long & Kahana, 2015; Sederberg et al., 2007; Waldhauser et al., 

2016). Notably, our paradigm was sensitive to the amount of information encoded/retrieved. Therefore, it 

allowed us to ask if neocortical alpha/beta power decreases not only correlate with whether a memory is 

encoded/recalled or not (as investigated in the studies above), but how much of the memory is 

encoded/recalled. During perception and retrieval, our analysis suggests that alpha/beta power decreases 

directly correspond to the amount of information encoded about a memory. This result ties in with earlier 

findings which suggest that neocortical alpha/beta power decreases track the quantity of information reinstated 

within the brain (Griffiths, Mayhew, et al., 2019; Martín-Buro et al., 2019). Together, these results suggest that 

alpha/beta power has a monotonic relationship to the quantity of information being encoded and/or retrieved 

as an episodic memory. 

We also investigated the role of hippocampal theta and gamma oscillations, with the hypothesis that 

synchronisation (both independently as power increases, and their conjunction in phase-amplitude coupling) 
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would monotonically increase with memory performance during the binding window. We were partially correct. 

We found that hippocampal theta-gamma phase-amplitude coupling scaled with memory performance – theta-

gamma coupling monotonically increased with memory performance. Mechanistically speaking, these increases 

may reflect a heightened degree of long-term potentiation (LTP) within the hippocampus. By coupling gamma 

oscillations resonating at a frequency optimal for spike-timing dependent plasticity (STDP; Bi & Poo, 1998; 

Nyhus & Curran, 2010) to the phase of theta optimal for LTP (Hasselmo et al., 2002), the potential for building 

synaptic connections between hippocampal neurons is increased greatly. One could therefore speculate that 

the increase in theta-gamma coupling reflects an increase in underlying plasticity within the hippocampus. 

Alternatively, these increases in coupling may reflect enhanced representation of the sequence structure within 

the hippocampus. Numerous studies have suggested that theta-gamma phase-amplitude coupling provides an 

intricate mechanism well-suited for the representation and maintenance of sequences (Bahramisharif et al., 

2018; Heusser et al., 2016; Lisman & Jensen, 2013) as well as complex event memories (Griffiths & Fuentemilla, 

2019). Under these ideas, the observed increase in theta-gamma phase-amplitude coupling would be 

interpreted as reflecting a more robust representation of the sequence within the hippocampus, and perhaps 

this enhanced representation facilitates the encoding and retrieval of this sequence. Unfortunately, we cannot 

untangle these two ideas based on the data from the current paradigm. However, these two ideas needn’t be 

adversarial. Indeed, sequence representation may be a convenient by-product of enhanced LTP via theta-

gamma coupling, or vice versa. Regardless, it seems that hippocampal theta-gamma phase-amplitude coupling 

scales with the number of items recalled about a memory. 

We did not observe any memory-related fluctuations in theta or gamma power during the binding window. 

We had been exploring theories that hippocampal theta/gamma synchronisation is beneficial for long-term 

potentiation (Bi & Poo, 1998; Hanslmayr et al., 2016; Nyhus & Curran, 2010), which emphasise the importance 

of theta phase for LTP, rather than power. Such theories would not anticipate that theta power would increase 

with enhanced mnemonic binding, perhaps explaining the absence of theta power fluctuations here. As 

increases in gamma power have been hypothesised to reflect increases in STDP, it is odd to not observe a strong 

increase in gamma power correlating with successful memory formation. However, our observed theta-gamma 

coupling effect may explain this. If memory-related increases in gamma power are restricted to particular 

phases of theta and theta is not stimulus-locked across trials, then across-trial averages of gamma power are 

unlikely to reveal any memory-related change as the temporal onset of these gamma power increases fluctuate 

across trials. 

It is worth noting that we have, throughout this paper, considered information representation to arise 

solely during sequence perception and sequence retrieval, and mnemonic binding to arise solely during the 

binding window. However, it seems plausible to suggest these cognitive processes are not completely restricted 

to their respective windows. Indeed, one may anticipate that some processing of the stimulus arises during 
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mental association of the stimuli (Dijkstra, Bosch, & van Gerven, 2019), and that some mnemonic binding arises 

during sequence perception (Griffiths & Fuentemilla, 2019; Heusser et al., 2016). We do not dispute these ideas, 

but do suggest that any information representation that does arise during the binding window will be 

substantially smaller than the representation occurring during stimulus presentation, as we anticipate that the 

vast majority of stimulus processing to occur when participants are first shown the stimulus. Similarly, while 

some binding may arise during sequence perception, this will be substantially less than the binding that occurs 

at the end of the sequence, simply because any binding that arises before the end of the sequence has fewer 

stimuli to bind together. In short, while the two cognitive processes are unlikely to be completely segregated in 

this paradigm, there still is a substantial degree of segregation that allows us to investigate the distinct neural 

correlates of these processes. 

In sum, we demonstrate that decreases in neocortical alpha/beta power and increases in hippocampal 

theta/gamma phase-amplitude coupling are functionally dissociable in episodic memory. These results add 

further support to the idea that neocortical desynchrony supports memory-related information representation 

while hippocampal synchrony supports mnemonic binding (Hanslmayr et al., 2016). 
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