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 12 

Abstract 13 

Background: As the number of RNA-seq datasets that become available to explore transcriptome 14 

diversity increases, so does the need for easy-to-use comprehensive computational workflows. 15 

Many available tools facilitate analyses of one of the two major mechanisms of transcriptome 16 

diversity, namely, differential expression of isoforms due to alternative splicing, while the second 17 

major mechanism - RNA editing due to post-transcriptional changes of individual nucleotides – 18 

remains under-appreciated. Both these mechanisms play an essential role in physiological and 19 

diseases processes, including cancer and neurological disorders.  However, elucidation of RNA 20 

editing events at transcriptome-wide level requires increasingly complex computational tools, in 21 

turn resulting in a steep entrance barrier for labs who are interested in high-throughput variant 22 

calling applications on a large scale but lack the manpower and/or computational expertise.  23 

 24 

Results: Here we present an easy-to-use, fully automated, computational pipeline (Automated 25 

Isoform Diversity Detector, AIDD) that contains open source tools for various tasks needed to map 26 

transcriptome diversity, including RNA editing events. To facilitate reproducibility and avoid 27 

system dependencies, the pipeline is contained within a pre-configured VirtualBox environment. 28 

                                                           
* Corresponding author. Tel.: +1-330-672-3620. 
E-mail address: opiontki@kent.edu. 
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The analytical tasks and format conversions are accomplished via a set of automated scripts that 29 

enable the user to go from a set of raw data, such as fastq files, to publication-ready results and 30 

figures in one step. A publicly available dataset of Zika virus-infected neural progenitor cells is 31 

used to illustrate AIDD’s capabilities.   32 

 33 

Conclusions: AIDD pipeline offers a user-friendly interface for comprehensive and reproducible 34 

RNA-seq analyses. Among unique features of AIDD are its ability to infer RNA editing patterns, 35 

including ADAR editing, and inclusion of Guttman scale patterns for time series analysis of such 36 

editing landscapes. AIDD-based results show importance of diversity of ADAR isoforms, key RNA 37 

editing enzymes linked with the innate immune system and viral infections. These findings offer 38 

insights into the potential role of ADAR editing dysregulation in the disease mechanisms, including 39 

those of congenital Zika syndrome. Because of its automated all-inclusive features, AIDD pipeline 40 

enables even a novice user to easily explore common mechanisms of transcriptome diversity, 41 

including RNA editing landscapes.     42 

 43 

Keywords: high-throughput sequencing, analysis of RNA-seq, transcriptome, editome, RNA editing, isoform, 44 

differential expression, sequencing variants, adenosine deaminases acting on RNA (ADAR) 45 
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Background: 46 
 47 

Transcriptome complexity and diversity, including patterns of differential isoform 48 

expression, non-canonical transcripts, diversity of non-coding RNAs, and regulation of RNA 49 

editing play fundamental roles in both normal physiological function and disease mechanisms 50 

(ENCODE_Project_Consortium 2004; Albert and Kruglyak 2015; Ardlie and Guigo 2017; Gallo et 51 

al. 2017).  Due to advances in deep sequencing technologies, RNA-seq experiments have become a 52 

more affordable and therefore popular tool for studying intricacies of molecular processes (Ozsolak 53 

and Milos 2011; Conesa et al. 2016; Wang and Ma'ayan 2016; Hasin, Seldin and Lusis 2017). In 54 

fact, currently RNA-seq can be considered almost routine if not for the still substantial costs of 55 

experiments and subsequent in-silico analyses (Svensson, Vento-Tormo and Teichmann 2018), 56 

including those associated with data storage and handling (Kwon et al. 2015).  This, along with 57 

explosive increases in available volumes of data generated in large-scale RNA-seq experiments, 58 

contributes to an ongoing demand for universal, easy-to-use computational tools capable of user-59 

specific customization.   60 

One of the widely used workflows available for high-throughput RNA-seq analyses is 61 

Galaxy, which is a reproducible and collaborative analytic platform that offers developers a 62 

framework for integrating and sharing their tools and workflows (Goecks, Nekrutenko and Taylor 63 

2010; Afgan et al. 2016). Yet, although Galaxy is designed to be relatively easy to use, even for a 64 

beginner, performing more in depth analysis with multi-step workflows often requires that a user 65 

possesses and/or has access to a specialized bioinformatics expertise. Other challenges are related to 66 

sharing potentially large-scale analyses on a public webserver, which can become time-consuming, 67 

e.g., with time to completion increasing during high peak usage hours. Further, while there are 68 

hundreds of workflows currently accessible on Galaxy, many of these are quite complex and have a 69 

substantial learning curve to perform analyses and/or often require user knowledge of reference 70 

genomes and file formats. This limits the types of datasets that can be analysed without deploying a 71 

custom Galaxy instance, which in turn requires specialized skills.  Likewise, for tasks beyond the 72 

basic transcriptome discovery analysis the user would need to know how to install and utilize 73 

additional tools in the Galaxy instance, somewhat hampering its usability to the potential user with 74 

only the basic computing skills. We would like to note that Galaxy Training Network 75 

(https://training.galaxyproject.org/) already provides a variety of excellent tutorials to help 76 

inexperienced Galaxy users to performed complex analyses (Batut et al. 2018). These tutorials 77 
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nonetheless require substantial time and effort investments from users, which may exclude small 78 

labs lacking necessary manpower or somewhat limit Galaxy’s usability in the classrooms. In the 79 

past few years several toolboxes have been released in an effort to address such challenges with 80 

using Galaxy (e.g., Grüning et al. 2016; Hung et al. 2016; Meiss et al. 2017; Tithi et al. 2017; 81 

Beccuti et al. 2018; Hung et al. 2018).  Yet, these toolkits are often designed to analyse only one 82 

specific dimension of transcriptome diversity, and/or not fully automated and require some prior 83 

knowledge of R command line script (Li et al., 2016).  84 

 85 

Implementation:  86 

AIDD features overview 87 

To help overcome some of these limitations, our pipeline - Automated Isoform Diversity 88 

Detector (AIDD) - has been designed implicitly with a novice user in mind, and thus, can be used, 89 

for example, as an educational tool for RNA-seq-based laboratory exercises in the classroom setting 90 

with a minimal prior user training.  Because the pipeline is packaged in a VirtualBox environment, 91 

it is easy to install on essentially any operating system and/or a broad range of hardware (Windows, 92 

Linux, MacOS) that is capable of handling a VirtualBox installation without concerns for 93 

compatibility. Yet despite the seeming simplicity of installing it, our AIDD pipeline is powerful 94 

enough to handle a broad range of RNA-seq analyses, spanning from differential gene and isoform 95 

expression, to variant calling, and RNA editing analysis using dimension reduction and machine 96 

learning approaches, including Guttman scale patterns (Proctor 1970) for time series analysis of 97 

ADAR editing landscapes. Unlike comparable tools, AIDD offers a fully automated data analysis 98 

pipeline with a simple setup and one-click execution, while still allowing for easily customizable 99 

options to account for a wide range of experimental conditions that users may wish to include. 100 

AIDD incorporates GATK haplotype caller (DePristo et al. 2011), which is currently not available 101 

from Galaxy, as a variant caller for RNA editing prediction, customizable R and bash scripts for 102 

detailed statistical analyses of the transcriptome, including RNA editing patterns as well as 103 

transcriptome-level differential expression combined with gene enrichment and pathway analysis. 104 

SnpEff (Cingolani et al. 2012) is used to add depth to the complete transcriptome analysis by 105 

predicting the impact of RNA editing on protein structure and function. AIDD also performs data 106 

visualization as part of the automated pipeline and produces publication-ready heatmaps, volcano 107 

and violin plots, bar charts and Venn diagrams.   108 

 109 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915348
http://creativecommons.org/licenses/by-nc/4.0/


 

AIDD availability and hardware requirements   110 

The AIDD pipeline is built in an Oracle VirtualBox 111 

(https://www.oracle.com/virtualization/virtualbox/index.html) virtual machine based on Ubuntu 112 

18.04.2 LTS (Bionic Beaver) 64-bit PC (AMD64) desktop image 113 

(http://releases.ubuntu.com/18.04/) and contains all tools necessary for transcriptome-level analysis 114 

(Figure 1).  The distributed VirtualBox image is ~ 20Gb in size and is publicly available for 115 

download via GoogleDrive link (https://drive.google.com/open?id=1XOWh9H-116 

v1nA6_Vl53PI6G2gKaVoZX6ls ).  The up-to-date detailed description of included software tools, 117 

AIDD manual and step-by-step tutorial for AIDD are distributed via our GitHub site 118 

(https://github.com/RNAdetective/AIDD).   119 

Implicitly tailored toward a novice user with no or minimal experience in computational 120 

analyses, AIDD is designed to run automatically with limited user input through a customizable 121 

bash script that controls multiple computational tools, including HISAT2 and GATK, among others, 122 

to comprehensively analyse RNA-seq datasets. AIDD can be deployed on almost any modern 123 

laboratory, classroom or office computer capable of running Ubuntu 18.04 in a VirtualBox 124 

environment. To shortcut the early learning curve, the pipeline is set up to run with default 125 

parameters directly “out of the box”, and includes commented out examples in the form of R 126 

markdown file that the user can choose to deploy as a step-by-step tutorial. 127 

The minimum recommended hardware specifications include 4 GHz dual-core processor (or 128 

better), 8 to 12 GB system memory available to the virtual environment, and 50 GB of free hard 129 

drive space (https://www.ubuntu.com/download/desktop), although at least 16 GB system memory 130 

is recommended, and some applications may require more. For example, STAR alignment tool  131 

needs at least 10 times more memory bytes than the target genome, which for human genome 132 

translates into at least 32 GB and upwards if annotations are needed (Dobin and Gingeras 2015).   133 

 134 

Included example datasets: transcriptomes of ZIKV-infected neural progenitor cell lines and 135 

importance of ADAR gene family  136 

To illustrate the AIDD capabilities, we use a publicly available dataset from a study by 137 

McGrath et al. (2017) that contains RNA-seq data from three genetically distinct neural progenitor 138 

cell (NPC) lines infected with Zika virus (ZIKV) (McGrath et al. 2017).  The authors found varying 139 

degrees of severity of symptoms associated with congenital Zika syndrome (CZS), including 140 

decreased differentiation and proliferation, and increased signs of apoptosis (McGrath et al. 2017). 141 
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McGrath et al. also reported increased expression of genes involved in innate immune response, 142 

including interferon alpha (IFNA) and adenosine deaminase acting on RNA (ADAR) during ZIKV 143 

infection (Supplementary Table 1 in McGrath et al. 2017). The ADAR gene family consists of three 144 

genes, namely, ADAR (also referred to as ADAR1), ADARB1 (ADAR2), and ADARB2 (ADAR3). 145 

Only ADAR and ADARB1 have proven deaminase activity (Chen et al. 2000; Jin, Zhang and Li 146 

2009; Walkley, Liddicoat and Hartner 2011) catalyzing the deamination of adenosine (A) to inosine 147 

(I) transition seen in RNA editing (Nishikura 2010; Savva, Rieder and Reenan 2012). ADARB2 is 148 

thought to play a regulatory role through competition with other ADARs for substrate binding 149 

(Hardt et al. 2008; Savva, Rieder and Reenan 2012). ADARs play a prominent role in the nervous 150 

system (Maas, Rich and Nishikura 2003; Tan et al. 2009; Savva, Rieder and Reenan 2012), 151 

specifically in the brain (Mehler and Mattick 2007; Liscovitch et al. 2014), where the majority of 152 

ADAR editing target genes are expressed (Melcher et al. 1996; Chen et al. 2000; Gonzalez et al. 153 

2011; Li and Church 2013), including during development (Wahlstedt et al. 2009).  154 

 155 

Running AIDD: Uploading RNA-seq data into AIDD 156 

AIDD is designed to automatically download and convert RNA-seq datasets from the SRA 157 

accession numbers that user defines in the experimental conditions table.  For the example analysis 158 

discussed here, a subset of Bioproject PRJNA360845 (McGrath et al. 2017) was downloaded and 159 

converted to fastq format.  Once converted to fastq format, fastqc 160 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is used for quality control.  Upon user 161 

assessment of quality of files, fastx-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) is used to trim 162 

fastq files to assure best quality for alignment.  In addition to downloading and preparing sequences, 163 

AIDD also automatically downloads and formats all necessary default references and indexes for 164 

human genome to run the tools. There are also options for user-defined reference sets, e.g., if RNA-165 

seq data comes from mouse rather than human. AIDD can also run from locally stored fastq or 166 

standard alignment SAM/BAM files.  167 

In addition to PRJNA360845 RNA-seq data (McGrath et al. 2017), the included tutorial 168 

uses a second dataset from Bioproject PRJNA313294 (Tang et al. 2016). While PRJNA313294-169 

based results are not discussed here, they are available through the AIDD manual and in the 170 

distributed AIDD image (https://github.com/RNAdetective/AIDD). 171 

 172 

 173 
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Running AIDD: Reads alignment and assembly 174 

Once the RNA-seq data and the reference files have been downloaded, the reads are aligned 175 

to the chosen reference (GRCh37_snp_tran is used as a default, and in this example). The pipeline 176 

uses HISAT2 (Kim, Langmead and Salzberg 2015) as a default alignment tool. SALMON (Patro et 177 

al. 2017) and STAR (Dobin et al. 2013) aligners are also available as options. The HISAT2 178 

(https://ccb.jhu.edu/software/hisat2/index.shtml) aligner is a low-memory yet sensitive alignment 179 

program that allows for comparable results to other slow and more memory intensive aligners such 180 

as STAR  (Dobin and Gingeras 2015; Kim, Langmead and Salzberg 2015).  Once the reads have 181 

been aligned, the output files (SAM format) are converted into BAM format using Picard tools 182 

(http://broadinstitute.github.io/picard/) in preparation for variant calling and transcriptome analysis.  183 

The pipeline saves these intermediate files should the user ever need to use them for additional 184 

analyses.  185 

Next, the transcriptome is reconstructed using Stringtie (Pertea et al. 2015), with cufflinks 186 

available as an option 187 

(https://software.broadinstitute.org/cancer/software/genepattern/modules/docs/Cuffdiff/7), with 188 

output generated as raw counts (Fragments Per Kilobase Million (FKPM), Transcripts Per Kilobase 189 

Million (TPM), and coverage) in the “counts” folder, and gene transfer format (GTF) files. The 190 

latter are then automatically modified into the count matrix for subsequent input into DESeq2 191 

(Love, Huber and Anders 2014; Varet et al. 2016), using the coverage correction for raw counts 192 

unique to Stringtie.  The conversion step is performed by a Python script available from the 193 

Stringtie website (https://ccb.jhu.edu/software/stringtie/).   194 

 195 

Running AIDD: Differential Expression Analysis 196 

Once reads have been mapped, DESeq2 (Love et al., 2014) and other dependent packages 197 

are used to generate gene-level and transcript-level differential expression outputs, including results 198 

of the principal component analysis.  The latter can be used as a quality control or as an exploratory 199 

analysis step, to verify the similarity among samples or treatments, and to identify outliers. DESeq2 200 

uses empirical Bayes shrinkage approach to take into account within-group variation as well as fold 201 

change estimation to control for variance observed in the low read count genes (Love et al., 2014).  202 

This approach allows for increased sensitivity and decreased false positive rate (Love et al., 2014).  203 

A user supplied gene list, for example, a Gene Ontology (GO)-based list, can be used to create 204 

pathway expression heatmaps and volcano plots to visualize significantly differentially expressed 205 
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genes involved in those user-defined pathways, along with the default pathways for GO terms 206 

involved in neural development, proliferation, differentiation and signalling as well as the gene list 207 

of the innate interferon pathway that we used to explore the role of ADAR editing in CZS 208 

(Supplementary Tables 1-5).  Additional pathway enrichment analysis is automatically performed 209 

using included R package topGO (Alexa and Rahnenfuhrer 2010). Alternatively, generated gene 210 

and transcript lists can be used with outside gene enrichment analysis tools such as PANTHER (Mi 211 

et al. 2010) or DAVID (Huang da et al. 2007).  212 

 213 

Running AIDD: Variant Calling 214 

While the state of the art identification of genomic variants that can be linked to phenotypic 215 

variation is based upon whole-genome (WGS) or whole-exome sequencing (WES) (Piskol, 216 

Ramaswami and Li 2013), much broader availability (and affordability) of transcriptome 217 

sequencing data makes it another appealing source of variants discovery (Han et al. 2015). 218 

Furthermore, some mechanisms of variants generation – such as RNA editing and splice-site 219 

variation – can only be studied at the transcriptome level. Thus, our pipeline includes tools enabling 220 

variant discovery from transcriptome data, with the focus on ADAR-mediated RNA editing.     221 

GATK haplotype caller (McKenna et al. 2010) is the tool used in AIDD to infer potential 222 

RNA editing events, based upon the best practice settings as defined by the GATK developers as of 223 

March 2019 (https://software.broadinstitute.org/gatk/documentation/article.php?id=3891). Picard 224 

tools are used for quality control and proper formatting of input files.  Haplotype caller is used 225 

twice in the pipeline, along with filtering steps to control for both false positives and false 226 

negatives.  SnpEff is then used to predict consequences on protein structure and function for the 227 

inferred variants (Cingolani et al. 2012).  Once a final list of potential variants is generated, these 228 

are then processed using R scripts to demonstrate both global and local view of RNA editing. 229 

Additional set of R scripts will then compare differential ADAR editing landscapes between 230 

conditions. It should be noted that here we focus on potential editing events within coding regions, 231 

and thus, we are not considering hyperediting events (Porath, Carmi and Levanon 2014). Likewise, 232 

genomic polymorphisms can appear as potential editing events in RNA-seq, and thus we include an 233 

annotation of detected edited site candidates with available polymorphism data (where applicable).  234 

Figure 2 and Supplementary Table 6 outline various tools, used, as well as folders and files 235 

generated by the pipeline.  236 

 237 
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Results and discussion:  238 

To illustrate AIDD’s capabilities, we describe results from the included tutorial that uses 239 

Bioproject PRJNA313294 data from (McGrath et al. 2017).  Using PRJNA313294 data, AIDD 240 

mapped reads and then computed normalized and transformed gene and transcript count matrices 241 

for differential expression (DE) analysis using DESeq2 with a multivariate model for infection 242 

status taking into account cell-line identity. Principle component analysis (PCA) of the top 500 243 

expressed genes showed that ~47% of the variance is explained by the first principle component, 244 

which separated cell lines by fetal age, with K048 cell line derived from the 9 week old fetal tissue 245 

being separated from the 13 weeks old fetal tissue of G010 and K054 cell lines. The second 246 

principle component explained ~27% of the variation, and clustered ZIKV-infected cells from the 247 

mock infected cells, except in the case of the G010 cell line (Figure 3A). The pipeline also 248 

generated a heatmap of the top 60 differentially expressed genes with hierarchal clustering that 249 

showed clustering of samples by infection status, except for the G010 cell line (Figure 3B). This 250 

latter phenomenon is consistent with reported findings of McGrath et al. (McGrath et al. 2017) that 251 

showed that G010 cells exhibited the least amount of cytopathic effects, if any, due to ZIKV 252 

infection, potentially reflecting genetic heterogeneity across studied cells. Figure 3C shows 253 

generated volcano plots that visualize the top 20 differentially expressed genes between ZIKV and 254 

mock infections taking into account differences in cell-lines. AIDD generates clustering heatmaps 255 

for each cell line, which showed that while both K048 and K054 exhibit clear differences between 256 

mock and ZIKV infections consistent with the phenotypic differences between the two conditions 257 

(Figure 3D & E), G010 cells showed no significant difference between ZIKV and mock infected 258 

cells, consistent with McGrath et al. (2017) results  (Figure 3F). By looking at each cell line 259 

individually, AIDD is able to highlight differential effects of ZIKV infection in combination with 260 

host genetics that are consistent with results originally reported by McGrath et al. (2017) (Figure 261 

3G, H & I).   262 

 263 

Pathways analysis:  264 

The gene pathways exploration tool included in AIDD was used to examine differential 265 

expression in neurodevelopmental pathways during ZIKV infection. Using gene list supplied by the 266 

user, AIDD will generate customized heatmap, volcano plot, and data table with differential 267 

expression results for genes of interest. Gene ontology (GO) terms “innate immunity”,” brain 268 

development”, “central nervous system development”, “neurological development”, and “peripheral 269 
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nervous system” are already included as default pathways. We also included a custom gene list for 270 

genes in the interferon alpha pathway (Supplementary Table 1). AIDD results showed that ZIKV-271 

infected cells showed increased expression of innate immune genes (Figure 4A), as well as those in 272 

the interferon alpha pathway, including ADAR (Figure 4B), except for the G010 cells. Consistent 273 

with McGrath et al. findings (McGrath et al. 2017), cell lines that have CZS-like phenotypic 274 

appearance if ZIKV infected (namely, K048 and K054) have significant differential expression in 275 

the majority of the genes involved in the interferon alpha pathway (Figure 4C & D), whereas G010 276 

cells that appear to be essentially normal phenotypically showed only a few significantly 277 

differentially expressed genes in the interferon alpha pathway (Figure 4E), pointing to potential 278 

involvement of interferon alpha response in ZIKV infection and CZS-like symptoms (Piontkivska et 279 

al. 2019). On the other hand, only cell line-associated differences but not the ZIKV infection-280 

mediated differences were observed for genes associated with GO terms of brain development 281 

(Figure 4F), central nervous system development (Figure 4G), neurological development (Figure 282 

4H), and peripheral nervous system development (Figure 4I). 283 

 284 

Mapping ADAR expression and editing landscapes 285 

To explore the potential role of ADAR enzymes and ADAR editing, AIDD allows us to 286 

focus on expression of ADAR genes and editing patterns (Supplementary Tables 7 & 8), including 287 

applying Guttman scale patterns to identify temporal changes in ADAR editing landscapes 288 

(Supplementary Figure 1). The results showed that ADAR1p150 isoform-specific expression was 289 

significantly higher in ZIKV infected cells with the CZS phenotype (K048 and K054), while not 290 

being significantly different in G010 cells (Figure 5A). Interestingly, ADARB1 showed the 291 

opposite pattern, being significantly upregulated in G010 cells, but not in cells with CZS-like 292 

phenotype (Figure 5B). Because ADARB1 and ADAR both share some overlapping editing targets 293 

as well as have gene-specific ones (Lehmann and Bass 2000; Riedmann et al. 2008), this expression 294 

pattern suggests that both ADAR genes may play complementary roles in the differential response 295 

to ZIKV infection (Piontkivska et al. 2019).  This would be consistent with prior suggestions that 296 

ADARB1 contributes to dysregulation of RNA editing in many diseases (Amore et al. 2004; Cenci 297 

et al. 2008; Hideyama et al. 2012; Karanovic et al. 2015).   298 

AIDD also allows the user to map ADAR editing landscapes by performing variant calling 299 

to identify potential A to G substitutions. Globally, we found that the total numbers of A to G 300 

substitutions are higher in ZIKV-infected in both the G010 and K048 cell lines but not in the K054 301 
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line (Figure 5C). However, when the potential impact of these substitutions on protein structure and 302 

function is examined, cell lines with the CZS-like  phenotype (K048 and K054) had more of high 303 

and moderate impact variants detected in ZIKV infection, while seemingly normal G010 cells had 304 

smaller number of potentially impactful changes in ZIKV infection (Figure 5D, E & F).  305 

It should be noted that one major challenge of using variant calling methods for detecting 306 

RNA editing events is the need to have a sufficient coverage depth (of at least 50 million reads or 307 

higher per sample) to accurately detect editing events when editing frequencies are low. AIDD 308 

attempts to correct for this by normalizing substitution counts by the read depth as determined from 309 

alignment algorithms. Therefore, these observed editing differences among cell lines could be 310 

attributed to interactions between ADAR family members as well as ADAR preferences at the 311 

editing sites, and spatio-temporal regulation of editing.  312 

We were also interested in editing events at known editing sites in ion channels and 313 

transporters that are known to be associated with fine-tuning of neural signalling, including 314 

excitotoxicity, brain development and neural plasticity (Tan et al. 2009; Hood and Emeson 2012; 315 

Eran et al. 2013). To define the excitome, computationally-predicted ADAR editing sites found in 316 

psychiatric disorders confirmed with PCR (Zhu et al., 2012) were combined with editing sites from 317 

RADAR database that were previously examined in Alzheimer’s disease (Khermesh et al., 2016) to 318 

create a list of 151 editing sites located in 91 genes (Supplementary Table 8). In part because of 319 

relatively low coverage in all three cell lines as well as rather drastic differences in fetal age, the 320 

editing patterns at specific sites varied both between different cell lines and between infected and 321 

uninfected cells. ZIKV infected K048 cells showed likely editing events at multiple sites, including 322 

at two ion channel receptors (namely, GRIA3 and GRIN3B). Other ZIKV-induced editing events 323 

were detected at IGFBP7, KIF20B and SRP9 genes, responsible for controlling cellular metabolism, 324 

vesicular transport, and proper protein storage and transport respectively (Godfried Sie et al. 2012; 325 

Ivanova et al. 2015; Lee et al. 2017; McNeely, Little and Dwyer 2019). There was also an increased 326 

editing detected at the ATXN7 gene that is implicated in degenerative ataxia (Clark et al. 2015). 327 

ZIKV infected K054 cells showed likely editing events in PTPRN2, GRIA2 Q/R site, GRIA3 and 328 

IGFBP7, whereas uninfected cells showed editing events in ATXN7, BEST1, BLCAP, and 329 

KIF20B. ZIKV infected G010 cells exhibited increased editing in ATXN7, KIF20B, and PTPRN2, 330 

and decreased editing at the NEIL1 genes. Changes in editing landscapes can also be visualized 331 

with Guttman scale patterns, where differences between distinct cell lines as well as mock and 332 

infected cells are shown for individual editing events/residues (Supplementary Figure 1).  However, 333 
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further transcriptomics studies – including at much higher read depth - are needed to fully elucidate 334 

the changes in editing patterns that can be induced by viral infections.  335 

 336 

Conclusions:  337 

A fully automated pipeline, Automated Isoform Diversity Detector (AIDD), has been 338 

developed to facilitate RNA-seq analyses focused on changes in transcriptome diversity, including 339 

isoform expression ratios and ADAR-editing events.  A publicly available dataset of human neural 340 

progenitor cells (McGrath et al. 2017) is used to demonstrate how AIDD pipeline can be used to 341 

robustly and reproducibly analyse transcriptome diversity and to infer RNA editing patterns from 342 

RNA-seq data. Presented results illustrate the importance of examining both the gene-level and the 343 

isoform-level expression differences, as well as exploring RNA editing aspects of transcriptome 344 

diversity and their potential association with pathogenicity mechanisms.  345 

AIDD pipeline has additional benefits of being novice-user friendly and completely 346 

automated for highly reproducible results. Briefly, AIDD incorporates multiple steps needed for 347 

using RNA-seq data to study transcriptome diversity, and offers an easy-to-use pipeline for 348 

mapping and contrasting genome-wide RNA editing patterns, with focus on protein-coding 349 

transcripts (Supplementary Table 8). Once reads have been mapped to the reference genome, AIDD 350 

uses DESeq2 to infer patterns of differential expression at both gene and transcript levels. For users 351 

- such as ourselves - interested in patterns of editing of excitome-related genes, AIDD will 352 

summarize the expression of the excitome gene members, including ADARs and other genes with 353 

known editing sites. AIDD will further summarize global RNA editing patterns and infer 354 

correlations between edited sites and ADAR expression patterns. Lastly, lists of genes involved in 355 

ADAR editing landscape changes are produced and can be used as potential biomarkers for 356 

diagnostic and prognostic purposes.   357 

 The distributed pipeline image includes a user-friendly tutorial written in R markdown that 358 

can be used to illustrate AIDD features in a classroom setting as teaching tool and/or to generate 359 

hypotheses for future experimental validation, or both. The ZIKV infection-associated example 360 

described in this paper further highlights the ability of AIDD to conduct complicated analyses 361 

within the constraints of a small research laboratory. Future work includes testing AIDD’s accuracy 362 

against simulated reads with known editing sites and across various read depths per sample, as well 363 

as expanding AIDD’s ability for variant calling by incorporating other methods (such as Freebayes, 364 

Garrison and Marth 2012). AIDD can also be used in meta-analysis of publically available RNA-365 
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seq datasets to comprehensively map ADAR editing landscapes across different cells and 366 

organisms, and to facilitate discovery of novel diagnostic and prognostic biomarkers and potential 367 

targets for drug therapies.  368 

 369 

Declarations 370 

Ethics approval and consent to participate 371 

 Not applicable. 372 

Consent for publication 373 

 Not applicable. 374 

Availability of data and materials 375 

 The datasets used in this current study are publicly available in the NCBI SRA/BioProject 376 

repository, at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA360845/ and 377 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA313294.  378 

 The AIDD pipeline is distributed via GitHub, at https://github.com/RNAdetective/AIDD.  379 

Competing interests 380 

 The authors declare that they have no competing interests. 381 

Funding 382 

This work was partially supported by a Kent State University Research Council Seed 383 

Award, Brain Health Research Institute Pilot Award, and the National Institutes of Health (NIA 384 

award R21AG064479-01). The funders had no role in the design of the study and collection, 385 

analysis, and interpretation of data and in writing the manuscript. 386 

Authors' contributions 387 

NMP designed and implemented the pipeline, and wrote the manuscript. EJ, MF, HM and 388 

GF contributed to conceptualization of pipeline features, testing of code components and validation, 389 

and provided manuscript feedback. RM and GC contributed to conceptualization of pipeline 390 

features and analysis steps. HP conceived the pipeline, supervised the project, helped with code and 391 

testing, and wrote the manuscript. All authors read and approved the final manuscript. 392 

Acknowledgements 393 

Not applicable.  394 

 395 

 396 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915348
http://creativecommons.org/licenses/by-nc/4.0/


 

References  397 

Afgan, E., et al. (2016). "The Galaxy platform for accessible, reproducible and collaborative 398 

biomedical analyses: 2016 update." Nucleic Acids Res 44(W1): W3-W10. 399 

Albert, F. W. and L. Kruglyak (2015). "The role of regulatory variation in complex traits and 400 

disease." Nat Rev Genet 16(4): 197-212. 401 

Alexa, A. and J. Rahnenfuhrer (2010). "topGO: enrichment analysis for gene ontology." R package 402 

version 2(0). 403 

Amore, M., et al. (2004). "Sequence analysis of ADARB1 gene in patients with familial bipolar 404 

disorder." J Affect Disord 81(1): 79-85. 405 

Ardlie, K. G. and R. Guigo (2017). "Data Resources for Human Functional Genomics." Curr Opin 406 

Syst Biol 1: 75-79. 407 

Batut, B., et al. (2018). "Community-Driven Data Analysis Training for Biology." Cell Syst 6(6): 408 

752-758 e751. 409 

Beccuti, M., et al. (2018). "SeqBox: RNAseq/ChIPseq reproducible analysis on a consumer game 410 

computer." Bioinformatics 34(5): 871-872. 411 

Cenci, C., et al. (2008). "Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 412 

editing activity inhibits cell migration and proliferation." J Biol Chem 283(11): 7251-7260. 413 

Chen, C. X., et al. (2000). "A third member of the RNA-specific adenosine deaminase gene family, 414 

ADAR3, contains both single- and double-stranded RNA binding domains." Rna 6(5): 755-415 

767. 416 

Cingolani, P., et al. (2012). "A program for annotating and predicting the effects of single 417 

nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain 418 

w1118; iso-2; iso-3." Fly (Austin) 6(2): 80-92. 419 

Clark, L. N., et al. (2015). "Genetic analysis of ten common degenerative hereditary ataxia loci in 420 

patients with essential tremor." Parkinsonism Relat Disord 21(8): 943-947. 421 

Conesa, A., et al. (2016). "A survey of best practices for RNA-seq data analysis." Genome Biol 17: 422 

13. 423 

DePristo, M. A., et al. (2011). "A framework for variation discovery and genotyping using next-424 

generation DNA sequencing data." Nat Genet 43(5): 491-498. 425 

Dobin, A., et al. (2013). "STAR: ultrafast universal RNA-seq aligner." Bioinformatics 29(1): 15-21. 426 

Dobin, A. and T. R. Gingeras (2015). "Mapping RNA-seq Reads with STAR." Curr Protoc 427 

Bioinformatics 51: 11 14 11-19. 428 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915348
http://creativecommons.org/licenses/by-nc/4.0/


 

ENCODE_Project_Consortium (2004). "The ENCODE (ENCyclopedia Of DNA Elements) 429 

Project." Science 306(5696): 636-640. 430 

Eran, A., et al. (2013). "Comparative RNA editing in autistic and neurotypical cerebella." Mol 431 

Psychiatry 18(9): 1041-1048. 432 

Gallo, A., et al. (2017). "ADAR RNA editing in human disease; more to it than meets the I." Hum 433 

Genet 136(9): 1265-1278. 434 

Garrison, E. and G. Marth (2012). "Haplotype-based variant detection from short-read sequencing." 435 

arXiv preprint arXiv:1207.3907. 436 

Godfried Sie, C., et al. (2012). "IGFBP7's susceptibility to proteolysis is altered by A-to-I RNA 437 

editing of its transcript." FEBS Lett 586(16): 2313-2317. 438 

Goecks, J., A. Nekrutenko and J. Taylor (2010). "Galaxy: a comprehensive approach for supporting 439 

accessible, reproducible, and transparent computational research in the life sciences." 440 

Genome Biol 11(8): R86. 441 

Gonzalez, C., et al. (2011). "Editing of human K(V)1.1 channel mRNAs disrupts binding of the N-442 

terminus tip at the intracellular cavity." Nat Commun 2: 436. 443 

Grüning, B., et al. (2016). "Enhancing pre-defined workflows with ad hoc analytics using Galaxy, 444 

Docker and Jupyter." bioRxiv: 075457. 445 

Han, Y., et al. (2015). "Advanced Applications of RNA Sequencing and Challenges." Bioinform 446 

Biol Insights 9(Suppl 1): 29-46. 447 

Hardt, O., et al. (2008). "Gene expression analysis defines differences between region-specific 448 

GABAergic neurons." Mol Cell Neurosci 39(3): 418-428. 449 

Hasin, Y., M. Seldin and A. Lusis (2017). "Multi-omics approaches to disease." Genome Biol 450 

18(1): 83. 451 

Hideyama, T., et al. (2012). "Profound downregulation of the RNA editing enzyme ADAR2 in ALS 452 

spinal motor neurons." Neurobiol Dis 45(3): 1121-1128. 453 

Hood, J. L. and R. B. Emeson (2012). "Editing of neurotransmitter receptor and ion channel RNAs 454 

in the nervous system." Curr Top Microbiol Immunol 353: 61-90. 455 

Huang da, W., et al. (2007). "DAVID Bioinformatics Resources: expanded annotation database and 456 

novel algorithms to better extract biology from large gene lists." Nucleic Acids Res 35(Web 457 

Server issue): W169-175. 458 

Hung, L.-H., et al. (2018). "Building containerized workflows using the BioDepot-workflow-459 

builder (Bwb)." bioRxiv: 099010. 460 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915348
http://creativecommons.org/licenses/by-nc/4.0/


 

Hung, L. H., et al. (2016). "GUIdock: Using Docker Containers with a Common Graphics User 461 

Interface to Address the Reproducibility of Research." PLoS One 11(4): e0152686. 462 

Ivanova, E., et al. (2015). "Alu RNA regulates the cellular pool of active ribosomes by targeted 463 

delivery of SRP9/14 to 40S subunits." Nucleic Acids Res 43(5): 2874-2887. 464 

Jin, Y., W. Zhang and Q. Li (2009). "Origins and evolution of ADAR-mediated RNA editing." 465 

IUBMB Life 61(6): 572-578. 466 

Karanovic, J., et al. (2015). "Joint effect of ADARB1 gene, HTR2C gene and stressful life events 467 

on suicide attempt risk in patients with major psychiatric disorders." World J Biol 468 

Psychiatry 16(4): 261-271. 469 

Khermesh, K., et al. (2016). "Reduced levels of protein recoding by A-to-I RNA editing in 470 

Alzheimer's disease." RNA 22(2): 290-302. 471 

Kim, D., B. Langmead and S. L. Salzberg (2015). "HISAT: a fast spliced aligner with low memory 472 

requirements." Nat Methods 12(4): 357-360. 473 

Kwon, T., et al. (2015). "Next-generation sequencing data analysis on cloud computing." Genes & 474 

Genomics 37(6): 489-501. 475 

Lee, S. H., et al. (2017). "Identification of Diverse Adenosine-to-Inosine RNA Editing Subtypes in 476 

Colorectal Cancer." Cancer Res Treat 49(4): 1077-1087. 477 

Lehmann, K. A. and B. L. Bass (2000). "Double-stranded RNA adenosine deaminases ADAR1 and 478 

ADAR2 have overlapping specificities." Biochemistry 39(42): 12875-12884. 479 

Li, J. B. and G. M. Church (2013). "Deciphering the functions and regulation of brain-enriched A-480 

to-I RNA editing." Nat Neurosci 16(11): 1518-1522. 481 

Liscovitch, N., et al. (2014). "Positive correlation between ADAR expression and its targets 482 

suggests a complex regulation mediated by RNA editing in the human brain." RNA Biol 483 

11(11): 1447-1456. 484 

Love, M. I., W. Huber and S. Anders (2014). "Moderated estimation of fold change and dispersion 485 

for RNA-seq data with DESeq2." Genome Biol 15(12): 550. 486 

Maas, S., A. Rich and K. Nishikura (2003). "A-to-I RNA editing: recent news and residual 487 

mysteries." J Biol Chem 278(3): 1391-1394. 488 

McGrath, E. L., et al. (2017). "Differential Responses of Human Fetal Brain Neural Stem Cells to 489 

Zika Virus Infection." Stem Cell Reports 8(3): 715-727. 490 

McNeely, K. C., J. N. Little and N. D. Dwyer (2019). "Cytokinetic abscission dynamics in 491 

neuroepithelial stem cells during brain development." bioRxiv: 529164. 492 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915348
http://creativecommons.org/licenses/by-nc/4.0/


 

McKenna, A., et al. (2010). "The Genome Analysis Toolkit: a MapReduce framework for analyzing 493 

next-generation DNA sequencing data." Genome Res 20(9): 1297-1303. 494 

Mehler, M. F. and J. S. Mattick (2007). "Noncoding RNAs and RNA editing in brain development, 495 

functional diversification, and neurological disease." Physiol Rev 87(3): 799-823. 496 

Meiss, T., et al. (2017). "Software solutions for reproducible RNA-seq workflows." bioRxiv: 497 

099028. 498 

Melcher, T., et al. (1996). "RED2, a brain-specific member of the RNA-specific adenosine 499 

deaminase family." J Biol Chem 271(50): 31795-31798. 500 

Mi, H., et al. (2010). "PANTHER version 7: improved phylogenetic trees, orthologs and 501 

collaboration with the Gene Ontology Consortium." Nucleic Acids Res 38(Database issue): 502 

D204-210. 503 

Nishikura, K. (2010). "Functions and regulation of RNA editing by ADAR deaminases." Annu Rev 504 

Biochem 79: 321-349. 505 

Ozsolak, F. and P. M. Milos (2011). "RNA sequencing: advances, challenges and opportunities." 506 

Nat Rev Genet 12(2): 87-98. 507 

Patro, R., et al. (2017). "Salmon provides fast and bias-aware quantification of transcript 508 

expression." Nat Methods 14(4): 417-419. 509 

Pertea, M., et al. (2015). "StringTie enables improved reconstruction of a transcriptome from RNA-510 

seq reads." Nat Biotechnol 33(3): 290-295.  511 

Piontkivska, H., et al. (2019). "Explaining Pathogenicity of Congenital Zika and Guillain-Barre 512 

Syndromes: Does Dysregulation of RNA Editing Play a Role?" Bioessays 41(6): e1800239. 513 

Piskol, R., G. Ramaswami and J. B. Li (2013). "Reliable identification of genomic variants from 514 

RNA-seq data." Am J Hum Genet 93(4): 641-651. 515 

Porath, H. T., S. Carmi and E. Y. Levanon (2014). "A genome-wide map of hyper-edited RNA 516 

reveals numerous new sites." Nat Commun 5: 4726. 517 

Proctor, C. H. (1970). "A probabilistic formulation and statistical analysis of Guttman scaling." 518 

Psychometrika 35(1): 73-78. 519 

Riedmann, E. M., et al. (2008). "Specificity of ADAR-mediated RNA editing in newly identified 520 

targets." RNA 14(6): 1110-1118. 521 

Savva, Y. A., L. E. Rieder and R. A. Reenan (2012). "The ADAR protein family." Genome Biol 522 

13(12): 252. 523 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915348
http://creativecommons.org/licenses/by-nc/4.0/


 

Svensson, V., R. Vento-Tormo and S. A. Teichmann (2018). "Exponential scaling of single-cell 524 

RNA-seq in the past decade." Nat Protoc 13(4): 599-604. 525 

Tan, B. Z., et al. (2009). "Dynamic regulation of RNA editing of ion channels and receptors in the 526 

mammalian nervous system." Mol Brain 2: 13. 527 

Tang, H., et al. (2016). "Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their 528 

Growth." Cell Stem Cell 18(5): 587-590. 529 

Tithi, S. S., et al. (2017). "Biopipe: A Lightweight System Enabling Comparison of Bioinformatics 530 

Tools and Workflows." bioRxiv: 201186. 531 

Varet, H., et al. (2016). "SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive 532 

Differential Analysis of RNA-Seq Data." PLoS One 11(6): e0157022. 533 

Wahlstedt, H., et al. (2009). "Large-scale mRNA sequencing determines global regulation of RNA 534 

editing during brain development." Genome Res 19(6): 978-986. 535 

Walkley, C. R., B. Liddicoat and J. C. Hartner (2011). Role of ADARs in mouse development. 536 

Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing. C. E. Samuel, 537 

Springer: 197-220. 538 

Wang, Z. and A. Ma'ayan (2016). "An open RNA-Seq data analysis pipeline tutorial with an 539 

example of reprocessing data from a recent Zika virus study." F1000Res 5: 1574. 540 

Wysoker A, Tibbetts K, Fennell T (2019). Picard. [http://broadinstitute.github.io/picard/] 2019. 541 

Zhu, H., et al. (2012). "Quantitative analysis of focused a-to-I RNA editing sites by ultra-high-542 

throughput sequencing in psychiatric disorders." PLoS One 7(8): e43227. 543 

 544 

 545 

  546 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915348
http://creativecommons.org/licenses/by-nc/4.0/


 

 547 

 548 
 549 
Figure 1: Flow chart of the tools and steps used in the automated workflow carried out by AIDD 550 

pipeline. The analysis begins from gathering relevant RNA-seq data files from the NCBI SRA 551 

database, followed by reads alignment using HISAT2 with Ensembl annotations.  Transcriptome 552 

assembly is then performed by Stringtie.  Downstream expression analysis can be performed using 553 

multiple tools, including DESeq2, edgeR and topGO. Variant calling to detect RNA-editing events, 554 

including A-to-I editing, is performed using tools implemented in GATK; and statistical analysis of 555 

the effect of RNA editing is performed using custom R scripts. 556 

 557 
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 560 
 561 
 562 

 563 
 564 
Figure 2: Flow chart showing directory structure created by AIDD. The main folder is AIDD_data 565 

and contains 4 folders including (i) AIDD, containing all scripts used in analysis for reproducibility, 566 

(ii) quality control files, (iii) intermediate files, including BAM, GTF and VCF files, (iv) results of 567 

statistical analysis and data visualization including differential isoform expression and ADAR 568 

editing landscapes. 569 
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 572 

 573 

 574 

Figure 3: Visualization of differential expression analysis using AIDD. (A) Principle component 575 

analysis of the top 500 expressed genes counts show 47% of the variance in the system is attributed 576 

to differences in cell lines and 27% of the variance is attributed to ZIKV infection status. (B) The 577 

top 500 hierarchal clustering also shows clustering of CSZ phenotype cell line (K048 & K054) 578 

ZIKV infected cells and normal phenotype cells (G010) regardless of ZIKV infection status 579 

clustered with the CSZ phenotype cell line mock infections. (C) The top 20 differentially expressed 580 
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genes during ZIKV infection taking into account genetic cell line differences highlight the innate 581 

immune activation. When looking at each cell line independently, K048 (D) and K054 cells (E) 582 

have clear pattern of differentially expressed genes during ZIKV infection, whereas G010 cells (F) 583 

shows less of a pattern of differentially expressed genes. Panels G-I show that when the top 20 584 

differentially expressed genes are considered, each genetically distinct cell line shows a 585 

differentially gene expression response to ZIKV infection. 586 

 587 
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 590 

 591 

 592 

Figure 4: Results of AIDD pathway expression analysis. (A) Gene Ontology term “innate immune 593 

system” shows clustering of ZIKV infected cells with the CSZ phenotype (K048 & K054) and 594 

clustering of normal phenotype (G010) with the mock infected cells of all 3 cell lines. (B) 595 

Customized “interferon alpha pathway” list shows similar clustering pattern as (A). The CZS 596 

phenotype cell lines (K048 & K054) show the top 10 differentially expressed genes with gene 597 

products induced by interferon alpha pathway, including OAS1 and 2, and intermediary genes in the 598 
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interferon alpha pathway, including STAT1 (C & D, respectively). On the other hand, 599 

phenotypically normal cell line (G010) has only 2 differentially expressed genes, which are not part 600 

of the interferon alpha pathway (E). Gene ontology terms “brain development” (F), “CNS 601 

development” (G), “neurological development” (H), and “PNS development” (I) exhibit differential 602 

expression patterns that can be attributed to genetic differences among cell lines, but not associated 603 

with ZIKV infection. 604 
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 608 

 609 

Figure 5: Visualization of ADAR expression and ADAR editing landscapes.  (A) ADAR expression 610 

is significantly increased in CZS phenotype cell lines K048 (F=58.396, p=0.001575) and K054 611 

(F=18.516, p=0.01261), but not in phenotypically normal G010 (F=0.1219, p=0.7446) cells. (B) 612 

ADAR1p150 expression is significantly higher in K048 (F=29.497, p=0.005576), but not in K054 613 

(F=2e-04, p=0.9902) or G010 (F=3.4772, p=0.1357) cells. (C) ADARB1 expression is not 614 

significantly different in K048 (F=0.2579, p=0.6383) or K054 (F=1.0492, p=0.3636) cells, but is 615 

significantly higher in G010 (F=14.684, p=0.01859). (D) The numbers of A to G substitutions were 616 

somewhat elevated in K048 (F=6.0422, p=0.06984), but not in G010 (F=6e-04, p=0.9813) or K054 617 

cells (F=0.0648, p=0.8116). (E) The numbers of A to G substitutions with predicted high impact on 618 

protein structure and function were significantly lower in G010 (F=17.498, p=0.01388), but 619 

somewhat higher in K048 cells (F=6.3489, p=0.06538); there were no changes in K054 cells 620 

(F=1.7384, p=0.2578). Likewise, moderate impact substitutions were also significantly lower in 621 

G010 (F=15.737, p=0.01658) and significantly higher in K048 (F=157.23, p=0.0002328) cells, 622 

while were not changed in K054 cells (F=1.9198, p=0.2381) (F).  623 
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Supplementary Tables are available at GitHub, 624 

https://github.com/RNAdetective/AIDD/tree/master/AIDD_supplFiles.ST1-8_and_SF1  625 

 626 
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Supplementary Figure 1: Guttman scale patterns (Proctor 1970) were used to order and group ADAR editing sites based on the frequency of 
samples that had editing at those sites. ADAR editing landscapes are differentially edited in both order and groupings based on cell line and ZIKV 
infection. (A) The expression and editing events are ordered by normal phenotype cell line G010 shown in blue, with cell lines K048 and K054 
shown in green and red, respectively. The mock-infected cells are shown with solid lines and ZIKV-infected cells are shown with dashed lines. (B) 
The mean editing frequencies differ between mock- and ZIKV-infected cells at several sites including; (i) AZIN1 at amino acid position 367 
(F=7.1095, p=0.00263), (ii) CRB2 at amino acid position 969 (F=3.2, p=0.04584), (iii) IGFBP7 at amino acid position 95 (F=40.651, p=4.09e-07), 
(iv) SRP9 at amino acid position 75 (F=3.5131, p=0.03459), and (v) UQCRHL at amino acid position 53 (F=8.796, p=0.00105). Changes in 
editing patterns were also detected at ADAR1 at amino acid position 427 (F=2.9571, p=0.05749), CCN1 at amino acid position 75 (F=2.5546, 
p=0.08504), and GRIA3 at amino acid position 775 (F=2.5515, p=0.08531), respectively. 
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