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Abstract

Genome-wide association studies (GWAS) may require enrollment of up to mil-

lions of participants to power variant discovery. This requires manual curation of

cases and controls with large-scale collaborations. Biobanks connected to elec-

tronic health records (EHR) can facilitate these studies by using data from clinical

care systems, like billing diagnosis codes, as phenotypes. These systems, however,

do not de�ne adjudicated cases and controls. Machine learning can add nuance

to these de�nitions. We developed QTPhenProxy, a machine learning model

that assigns everyone in a cohort a probability of having the study disease, and

then run a GWAS using the probabilities as a quantitative trait. With an order of

magnitude fewer cases than the largest stroke GWAS, our method outperformed

previous methods at replicating known variants in stroke and discovered a novel

variant in ABCG8 associated with intracerebral hemorrhage in the UK Biobank.

QTPhenProxy expands traditional phenotyping to improve the power of GWAS.
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1. Introduction

Large genetic repositories connected to electronic health records (EHR) promise

the ability to perform thousands of genetic studies using data routinely captured

in clinical practice. High-throughput identi�cation of cases and controls can

be di�cult, however, due to time-consuming chart review and incompleteness

of medical records. Current disease genome-wide association studies develop

case-control sets in which power relies on a large amount of pure cases, and

the missingness of EHR data could prevent some cases from discovery in a high-

throughput manner McCarthy et al. (2008); Weiskopf et al. (2013); DeBoever et al.

(2019). In addition, extreme case-control imbalance in biobanks can lead to in-

creased type 1 error when running linear mixed model genome-wide association

analysis Zhou et al. (2018). An incorporation of additional accessible EHR data

could improve case curation sensitivity. In addition, many diseases such as stroke

result from a combination of gene and environmental interactions, and there is

signi�cant overlap with co-morbidities in genome-wide signi�cant variants Malik

et al. (2018a). Therefore, it is di�cult to con�rm every person without the event a

control, suggesting the utility of a disease likelihood assignment McCarthy et al.

(2008); Yang et al. (2009).

The de�nition of the disease phenotype in�uences the success of detecting a

genetic signal since power is generally calculated by number of cases and controls

Maher (2008); Zaykin and Zhivotovsky (2005). We propose that including EHR
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information about comorbidities Kohane (2011) and other health information

about our subject to trait assignment can improve the power of GWAS. Past

studies have shown that incorporating diagnosis count improved the power of

genetic studies, and the addition of patient questionnaires and genetic correlations

to hospital records improved detection of cases Sinnott et al. (2018); DeBoever

et al. (2019); Liu et al. (2017). We argue that including several modalities of

health data to estimate assignment of case probability can improve the power

of genomic studies. For example, the most successful genome-wide association

study for stroke required 40,585 cases and 406,111 controls Malik et al. (2018a).

We hypothesize that we can discover genome-wide signi�cant variants associated

with stroke with a fraction of those cases (4,354) by incorporating EHR information

into a quantitative trait assignment.

In this study, we use machine learning methods to expand sample cohorts by

assigning every patient a probability of disease. We hypothesize that the output

of a supervised machine learning classi�er, trained on the EHR data of a small

number of known cases and controls, can be used as a proxy variable for stroke

and will be an e�cient strategy for expanding cohort size. We demonstrate that

our quantitative proxy trait can improve power over its respective binary trait in

ischemic stroke. We also show that the new variants discovered are known in

similar cardiovascular and neurological diseases. We �nd up to 7 LD independent

loci that pass genome-wide signi�cance and conditional analysis, and the majority

of the associated genes are known to be associated with stroke or cardiovascular

disease. For stroke and its subtypes ischemic stroke, subarachnoid hemorrhage,

and intracerebral hemorrhage, QTPhenProxy recovered known and discovered

new stroke variants, such as in ABCG8, with an order of magnitude fewer cases
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than traditional genome-wide association studies.

2. Results

2.1. QTPhenProxy has high model performance.

We trained models with 5 di�erent classi�er types and all stroke, ischemic

stroke, intracerebral hemorrhage, and subarachnoid hemorrhage as de�ned by

the UK Biobank Algorithmically De�ned Outcomes rubric National Library of

Medicine (b). Random forest models overall showed the best area under the

receiver operating curve and adaboost models gave the best area under the

precision recall curve on the hold-out test set (Supplementary Tables B.1 andB.3)

. Overall stroke, followed by ischemic stroke showed high precision at top 50

patients ordered by probability (Figure 1, Table 1, Supplementary Table B.2).

We chose the probabilities from the EN and RF models to run the genome-wide

association analyses because the distribution of their probabilities was continuous

and included values from 0-1 (Figure 1, Supplementary Figure A.1).

2.2. Novel and known variants are recovered by QTPhenProxy in higher numbers

traditional binary method using the QC1 markers and principal components.

The binary trait logistic regression genome-wide association study for stroke,

ischemic stroke, and subarachnoid hemorrhage recovered no variants with genome-

wide signi�cance. Binary trait logistic regression genome-wide association study

for intracerebral hemorrhage recovered 2 variants with genome-wide signi�cance.

Quantitative trait linear regression using QTPhenProxy probabilities for stroke

recovered 120 genome-wide signi�cant SNPs with 16 LD-independent loci and

1215 genome-wide signi�cant SNPs with 39 LD-independent loci, for ischemic
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stroke recovered 202 genome-wide signi�cant SNPs with 15 LD-independent

loci, and 1266 genome-wide signi�cant SNPs with 46 LD-independent loci, for

subarachnoid hemorrhage recovered 69 genome-wide signi�cant SNPs with 4 LD-

independent loci, and 722 genome-wide signi�cant SNPs with 40 LD-independent

loci, and for intracerebral hemorrhage recovered 146 genome-wide signi�cant

SNPs with 8 LD-independent loci, and 1059 genome-wide signi�cant SNPs with

54 LD-independent loci using the EN and RF classi�ers, respectively (Table 1).

We show the comparison of genome-wide signi�cant variants between the QT-

PhenProxy EN model and Binary trait GWAS for stroke in a Hudson plot (Figure

2) Lucas. Out of known ischemic stroke variants, both models also recovered

3 known variants with genome-wide signi�cance, and the EN model recovered

21/49 of the known variants, equivalent to a sensitivity of 0.428, while the tradi-

tional binary trait recovered 15/49, (sensitivity=0.306), and RF model recovered

14/49 (sensitivity=0.286) with nominal p-value of 0.05 (Table 1). For all stroke, sen-

sitivity of known stroke variants was 0.333 using the EN model, 0.261 using the RF

model, and 0.202 using the binary trait. Subarachnoid hemorrhage did not have a

speci�c EBI-GWAS disease marker set, and the EBI-GWAS disease marker set for

intracerebral hemorrhage only consisted of one variant. The di�erence in p-values

between the binary and QTPhenProxy for known ischemic stroke variants was

signi�cantly increased compared to the same number of random variants using

the EN classi�er (two sample t test, t=2.43, p=0.0184 for EN classi�er and t=1.74,

p=0.0876 for RF classi�er). In addition, QTPhenProxy with EN classi�er showed a

signi�cant decrease in p-value of all known ischemic stroke variants compared

to traditional binary method (two sample t-test, t=-2.1 p=0.0367) while QTPhen-

Proxy with RF classi�er did not show a signi�cant decrease (t=-1.48,p=0.144).
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The di�erence in p-values between the binary and QTPhenProxy for known

all stroke variants was signi�cantly increased compared to the same number of

random variants for the EN classi�er (t=2.80, p=0.00638) but not signi�cant for

the RF classi�er (t=0.737,p=0.463). In addition, QTPhenProxy with EN classi�er

showed a decrease in p-value of all known stroke variants compared to traditional

binary method (two sample t-test, t=-1.87 p=0.0639) while QTPhenProxy with RF

classi�er did not show a signi�cant decrease (t=-1.05,p=0.298).

2.3. Novel and known variants are recovered by QTPhenProxy in higher numbers

traditional binary method using the QC2 markers and principal components.

The binary trait logistic regression genome-wide association study for stroke,

ischemic stroke, and subarachnoid hemorrhage recovered no variants with genome-

wide signi�cance. Binary trait logistic regression genome-wide association study

for intracerebral hemorrhage recovered 2 variants with genome-wide signi�cance.

Quantitative trait linear regression using QTPhenProxy probabilities for stroke

recovered 7 LD-independent loci, 3 LD-independent loci, for ischemic stroke, 3

LD-independent loci for subarachnoid hemorrhage, and 3 LD-independent loci

for intracerebral hemorrhage using the EN classi�er. We show the comparison

of genome-wide signi�cant variants between the EN and Binary in a Hudson

plot (Figure 2) Lucas. Out of known ischemic stroke variants, both models also

recovered 3 known variants with genome-wide signi�cance, and the EN model

recovered 16/49 of the known variants, equivalent to a sensitivity of 0.326, while

the traditional binary trait recovered 15/49, (sensitivity=0.306), and RF model

recovered 15/49 (sensitivity=0.306) with nominal p-value of 0.05 (Figure 3). For

all stroke, sensitivity of known stroke variants was 0.265 using the EN model,

0.220 using the RF model, and 0.220 using the binary trait (Supplementary Figure
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A.5). The t-tests referred to in 2.2 did not show signi�cance.

2.4. Conditional analysis identi�es novel variants with genome-wide signi�cance

using the QC1 markers and principal components.

Conditional analysis of the GWAS with QC1 quality control for the QTPhen-

Proxy EN model for all stroke identi�ed 13 candidate variants with genome-wide

signi�cance, all which are novel, though some of the nearest genes to these loci

have been identi�ed in previous studies through nearby loci. There were 12 loci

identi�ed for the stroke subtype ischemic stroke, 3 loci for subarachnoid hemor-

rhage, and 9 loci for intracerebral hemorrhage (Table 2). Several loci overlapped

across stroke and some subtypes. Position 46705193 on chromosome 11, which is

in an intronic section of ARHGAP1 National Center for Biotechnology Informa-

tion, National Library of Medicine., showed genome-wide signi�cance in stroke,

ischemic stroke, and intracerebral hemorrhage. A missense mutation at locus

rs6025 in the F5 gene showed genome-wide signi�cance across stroke, intracere-

bral hemorrhage, and locus rs1894692, which is near the F5 gene National Center

for Biotechnology Information, National Library of Medicine., showed genome

wide signi�cance in ischemic stroke. Additional loci that showed genome-wide

signi�cance in both all stroke and ischemic stroke included those that are intronic

to LPA and NOS3 and nearby to APOC1P1/APOC1 and CDKN2A/CDKN2B National

Center for Biotechnology Information, National Library of Medicine.. Finally, all

stroke and intracerebral hemorrhage shared additional loci that showed genome-

wide signi�cance after conditional analysis, which were nearby LOC105377992

and RPS4X9 National Center for Biotechnology Information, National Library of

Medicine.. All stroke genome-wide signi�cant variants also included intronic loci

in the MTA3, SOX7, ABO, FURIN, and PLCB1 genes National Center for Biotech-
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nology Information, National Library of Medicine.. Ischemic stroke genome-wide

signi�cant variants included intronic loci in theLPAL2 gene, intergenic loci in

the PITX2, LDLR, and an insertion mutation in the ABO gene National Center

for Biotechnology Information, National Library of Medicine.. Subarachnoid

hemorrhage genome-wide signi�cant variants included an intronic locus in the

ABO gene. Finally, intracerebral hemorrhage genome-wide signi�cant variants in-

cluded a missense mutation loci in the ABCG8 gene, and intronic loci in the NOS3

and XKR6 genes National Center for Biotechnology Information, National Library

of Medicine.. The variants near or in LOC105377992, NOS3, CDKN2A/CDKN2B,

LPA, LDLR, ABCG8, and RPS4X9 were below nominal signi�cance of 0.05 in the

MEGASTROKE stroke and ischemic stroke GWAS of European ancestry (Table 3)

Malik et al. (2018a).

2.5. Conditional analysis identi�es novel variants with genome-wide signi�cance

using the QC2 markers and principal components.

Conditional analysis of the GWAS with QC2 quality control for the QTPhen-

Proxy EN model for all stroke identi�ed 7 candidate variants with genome-wide

signi�cance, all which are novel, though some of the nearest genes to these

loci have been identi�ed in previous studies through nearby loci. There were

3 loci identi�ed for the stroke subtype ischemic stroke, 3 loci for subarachnoid

hemorrhage, and 3 loci for intracerebral hemorrhage (Table 3). Almost all of

the genome-wide signi�cant variants overlapped with those found running the

GWAS using QC1 quality control. New variants that were genome-wide signif-

icant for all stroke included a deletion variant that was intergenic to the gene

ATP5MC1P3, an intronic variant of the MRSA gene, and a 3’UTR variant in KCNJ4

National Center for Biotechnology Information, National Library of Medicine.. In
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addition, several genome-wide signi�cant variants in the MEGASTROKE stroke

and ischemic stroke GWAS were near the variants that were genome-wide signif-

icant in the QTPhenProxy EN GWAS. Almost all of those nearby MEGASTROKE

genome-wide signi�cant variants replicated to at least nominal signi�cance of

0.05 in the QTPhenProxy EN GWAS (Table 4).

2.6. E�ect sizes of QTPhenProxy and traditional binary trait analysis are correlated.

We determined the correlation between the e�ect sizes of the binary trait

GWAS and QTPhenProxy GWAS. Pearson correlation of the beta coe�cients and

log of the odds ratios increased when restricting to variants with small p-values

(max r2=0.58 for GWAS with QC2 control, max r2=0.70 for GWAS with QC1

control) (Figure 4, Supplementary Figure A.6). Too few variants, such as with

p-values > 5e-08 resulted in a decreased Pearson correlation.

2.7. Genome-wide signi�cant variants are enirched in related EBI-GWAS marker

sets.

From the over 2,000 EBI-GWAS disease variant marker sets mapped to organ

systems, we calculated the proportion of markers in each set that was found to be

at genome-wide signi�cance by our QTPhenProxy model with QC2 markers and

principal components. We found that the organ systems with markers sets with

the highest proportion of genome-wide signi�cant variants for stroke included

vascular disorders, investigations, psychiatric disorders, and general disorders

and administration site conditions (Figure A.5, Supplementary Figure 3). The

enriched disease marker sets in the Investigations class included the lab values

lipoprotein A levels, lipoprotein a levels adjusted for apolipoprotein A isoforms,

blood protein levels, and white blood cell counts. The enriched disease marker sets
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in the General disorders and administration site conditions included aortic valve

stenosis and allergy, while the Psychiatric disorders enriched marker sets were

response to statins (LDL change) and venous thromboembolism. For ischemic

stroke, the top enriched disease marker sets included those described for stroke

and also activated partial thromboplastin time, coagulation factor levels, protein

biomarkers, soluble levels of adhesion molecules, pancreatic cancer, and urinary

metabolites.

2.8. LD score regression intercept and genomic in�ation are similar across stroke

and its subtypes.

Using QC1 quality control, the genomic in�ation for QTPhenProxy EN model

for Stroke was 1.133, while using the QC2 quality control the genomic in�ation for

the same model was 1.134. For binary traits using QC2 quality control, genomic

in�ation for stroke was 1.027. Using the QC2 quality control model, the QTPhen-

Proxy EN model genomic in�ation for Ischemic stroke was 1.118, for subarachnoid

hemorrhage was 1.122, and for intracerebral hemorrhage was 1.114. LD score

regression intercept for QTPhenProxy EN model with QC2 quality control for

stroke was 1.037± 0.0088, for ischemic stroke, 1.031± 0.0077, for subarachnoid

hemorrhage, 1.012±0.008, and for intracerebral hemorrhage, 1.051±0.0081. We

found that more common variants, or those with higher minor allele frequencies,

had higher genomic in�ation than rarer variants (Figure 4).

2.9. Simulation of conversion of quantitative trait to binary trait shows correlation

of e�ect sizes to empirical data.

Based on the scale di�erence between binary and quantitative traits, the odds

ratios are not directly comparable. We simulated the e�ect of a quantitative trait
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locus and nearby marker both on the original quantitative trait and the binary

trait converted from the quantitative trait using liability thresholding. We found

high correlation of e�ect sizes between the beta coe�cients and log odds ratios

of the quantitative trait variants with p-value < 0.005 and their respective binary

trait variant e�ect sizes (Pearson correlation, r2=0.82). Lower p-values were

not tested because of too few qualifying variants. After standard normalizing

the quantitative trait, we also found the slope of the correlation between it and

the log binary trait to be stable across the parameters, with a mean of 1.63 for

each parameter except for marker allele frequency (1.35) and prevalence (1.77)

(Supplementary Figure A.7).

3. Discussion

3.1. QTPhenProxy can identify patients with stroke using EHR data other than the

disease diagnosis code.

For all stroke and its subtype ischemic stroke, the machine learning models

trained to assign QTPhenProxy probabilities performed well (greater than 90%

AUROC, greater than 30% maximum F1 score, 74-97% precision at 50). The

models trained on subarachnoid hemorrhage and intracerebral hemorrhage cases

performed similarly with AUROC but not as well with maximum F1 score and

precision at 50. This may be due to the number of cases the two subtypes have to

train on, which was an order of magnitude smaller ( 600 cases versus 3300-4300

cases). Importantly, we only trained on half of the cases and tested on the other

half, which equates to 300-2200 cases, depending on the disease de�nition. From

this small training set, we were able to assign a probability of disease to all 500,000

subjects in the UK Biobank. This training set is a fraction of the over 40,000 cases
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required to power the most recent genome-wide association study for stroke

(MEGASTROKE).

3.2. QTPhenProxy discovers many new variants and recovers known disease variants

to genome-wide signi�cance

Using QTPhenProxy resulted in 3-13 loci with genome-wide signi�cance.

In contrast, traditional binary trait GWAS using all disease cases resulted in

the discovery of 0 genome-wide signi�cant loci for stroke, ischemic stroke, and

subarachnoid hemorrhage and 3 loci for intracerebral hemorrhage. In addition

to new loci discovery, QTPhenProxy recovered known disease variants to a

signi�cance level of 0.05 with a sensitivity better than binary trait GWAS. In

addition to recovering known variants, overall the e�ect size of the known variants

in the binary trait GWAS was correlated with QTPhenProxy e�ect sizes for

variants with low p-values. These results suggest that the QTPhenProxy method

can recover relevant variants with fewer cases than traditional methods for stroke.

3.3. Simulation of quantitative trait and corresponding binary trait further supported

the correlation of e�ect sizes between the two methods.

Our simulations showed high correlation between quantitative trait beta

coe�cients and binary trait log odds ratio, which is similar to our empirical

�ndings in the UK Biobank. We also show that the correlation slope is relatively

stable across all the di�erent simulation parameters, suggesting that there is a

set correlation between quantitative traits and binary traits created from them.

Further simulation will need to determine the e�ects of multiple loci on correlation

between quantitative and corresponding binary trait.
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3.4. Variants discovered for stroke are enriched in diseasemarker sets for vascular and

neurological disease, and variants discovered for other diseases were enriched

for disease and system speci�c markers.

As a speci�city measure for the variants discovered by QTPhenProxy, we

found the EN model had the highest proportion of overlapping variants with

EBI-GWAS marker sets related to vascular disorders and associated lab values. QT-

PhenProxy variants improves the power of detecting variants related to diseases

that are co-morbid or risk factors for stroke.

3.5. Low LD score regression intercepts relative to genomic in�ation suggests high

polygenicity.

Our genome-wide association studies using QTPhenProxy had moderate

genomic in�ation, slightly above 1.1, but low LD score regression intercepts

near 1.0. The corresponding binary trait GWAS had genomic in�ation below

1.05, suggesting minimal population strati�cation. Since the population for the

binary trait GWAS was the same as those used for QTPhenProxy, this suggests

that polygenicity, rather than population strati�cation, is the cause for genomic

in�ation. Polygenicity, or the contribution of small e�ects of many genes to a

phenotype, may be the more likely cause Bulik-Sullivan et al. (2015). In addition,

Bulik-sullivan et. al. argue that genomic in�ation can increase with sample size

when there is polygenicity, and LD score regression intercept is more robust in

distinguishing in�ated p-values from polygenicity. As seen in Howrigan et al.

(2017), increased genomic in�ation with common variants over rare variants

suggests polygenicity. We show a similar upward trend in Figure 4. Another sign

of true signal over in�ated signal is the evidence of causal variants in linkage

disequilibrium, as seen in a manhattan or hudson plot Howrigan et al. (2017).
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Figure 2 shows genome-wide signi�cant variants in linkage disequilibrium with

each other. Finally, this study reports results from using two di�erent quality

controls in the genome-wide association analysis, QC1, and more stringent, QC2.

Results using QC1 showed more variants with genome-wide signi�cance and

discovered more new variants for stroke than the QC2 GWAS. This may lead one

to believe that more stringent quality control led to reduced in�ation of p-values.

However, the genomic in�ation of the p-values from the QC1 GWAS was the

same as the genomic in�ation of the p-values from the QC2 GWAS (1.134 vs 1.133)

with the QC2 GWAS having a slightly higher LD score regression intercept value

(1.0288 vs 1.0369). This suggests that the p-values from the QC1 GWAS may not

by overly in�ated.

3.6. QTPhenProxy replicates known stroke variants and discovers variants within

cardiovascular disease genes.

Several of the genes discovered by the QTPhenProxy GWAS, using QC1 or

QC2 quality control have been associated with stroke, including NOS3, FURIN,

PITX2, CDK2NB, LDLR, and ABO Malik et al. (2018a,b). NOS3, in particular was

discovered through meta-analysis of the MEGASTROKE results with the UK

Biobank Malik et al. (2018b). We were able to replicate this association using

only the QTPhenProxy method on the UK Biobank, and not traditional binary

trait analysis. NOS3 has been shown to be related to hypertension either through

salt excretion regulation in the kidney Gao Yang et al. (2018) or regulation of

vascular relaxation in endothelial cells Farah et al. (2018). Other discovered genes

by QTPhenProxy are also associated with related cardiovascular diseases. F5 gene

codes for an essential coagulation factor, and mutations that can lead to increased

thrombosis or hemorrhage, depending on the mutation Asselta and Peyvandi
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(2009); Kujovich (2011); Hinds et al. (2016). LPA codes for a protein, lipoprotein-

A, that can contribute to atherosclerosis Song et al. (2019); Wang Long et al.

(2016). Mutations in the PLCB1 gene, which encodes for phospholipase synthesis,

have been found in epilepsy and seizures Schoonjans et al. (2016). LDLR gene

codes for the low-density lipoprotein receptor, which is involved in cholesterol

production Biobank, and the APOC1/APOC1P1 genes code for parts of apoliprotein

C1, which are involved in high density lipoprotein metabolism Erqou et al. (2010).

ARHGAP1, a gene coding for Rho GTPase activating protein 1 has been associated

with cancer phenotypes and activation of hypoxic and in�ammatory pathways

Fessler et al. (2004); Hashimoto et al. (2018); Zhang et al. (2019). ABCG8 gene has

been associated with combined gwas of lipids and in�ammation, lipid levels, and

gallstone disease Ligthart et al. (2016). EYST3 and XKR6 gene mutations have been

associated with coronary artery disease and ischemic stroke respectively in Asian

populations, and MRAS gene mutations have been associated with coronary artery

disease in two populations Jiang et al. (2011); Zheng et al. (2019); Song et al. (2019);

Erdmann et al. (2009). These results suggest that QTPhenProxy has replicated

genome-wide signi�cant mutations in genes known to be related with stroke and

discovered of those associated with related risk factors such as coronary artery

neurological diseases. Out of the 13 newly discovered variants with genome-wide

signi�cance, �ve are intronic or nearby genes that have been found in previous

studies (MEGASTROKE), and �ve more are have been discovered in previous

GWAS studies of related cardiovascular diseases. The variants within and near

the F5 gene had the highest genetic signal for stroke and all of its subtypes,

even though it was not replicated in the MEGASTROKE GWAS. Out of all the

new variants discovered by the QTPhenProxy EN model using the GWAS QC2
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quality control, the rs11887534 variant, a missense mutation within the ABCG8

gene, replicated to a p-value signi�cance of 6.85E-04 in the MEGASTROKE stroke

GWAS of over 40,000 European ancestry subjects. Using a tenth of the number of

cases, QTPhenProxy discovered a variant within a new gene that replicated in

MEGASTROKE, and discovered variants within known stroke genes.

3.7. Limitations

There are several limitations with this method. First, out of the �ve machine

learning models used in QTPhenProxy, only two provided probabilities along

a continuous scale. Adaboost, gradient boosting, and logistic regression using

L1 penalty models, although with high performance, assigned probabilities in

discrete bins. These distributions violate the the genome-wide association linear

regression assumption of normal distribution of the quantitative trait. Although

the probabilities produced by EN and RF models were not initially normally dis-

tributed, they were continuous, and could be adjusted with quantile normalization.

In addition, the GWAS results from QTPhenProxy using the RF model resulted

in many more hits than the EN model, and reduced sensitivity to known disease

variants. Further study will be required to understand why one model gave more

sensitive and speci�c results than the other, and whether there was p-value in�a-

tion in the random forest models. QTPhenProxy also may be particularly suited

for stroke because the training model for phenotyping patients was optimized for

stroke Thangaraj et al. (2019). Since stroke is an acute event than can be identi�ed

with high accuracy in the electronic health record, this method may not translate

as well to other diseases, such as chronic illnesses. Another potential limitation

of the study is that only about half of known loci for stroke are replicated with

signi�cance of less than 0.05 in the QTPhenProxy method, even though new
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variants are suggested.

3.8. Conclusions

We have developed a method, QTPhenProxy, that we have shown improves

the power of genome-wide association studies in stroke and three of its subtypes:

ischemic stroke, subarachnoid hemorrhage, and intracerebral hemorrhage with an

order of magnitude fewer cases than required for traditional genome-wide associ-

ation studies of the same diseases. Converting dichotomous traits to quantitative

ones could result in improvement of power by incorporating electronic health

record information for subjects who may have genetic susceptibility to stroke

but may not have experience a stroke yet. Previous studies have shown that for

diseases with low prevalence, there can be a reduction of power using logistic

regression for binary trait GWAS compared to linear regression for quantitative

trait GWAS Zaitlen et al. (2012). Recently, Abraham et al. (2019) showed that

the inclusion of ischemic stroke risk factors’ genome-wide signi�cant SNPs in

polygenic risk score improves prediction of ischemic stroke. This supports our

idea that inclusion of risk factor information into the phenotype can hep detect

genetically susceptible subjects. We show that with as few as 2200 stroke subjects

we can recover known variants of stroke and discover new variants that have

been linked to cardiovascular and nervous system diseases. This method could

be useful for studies with a small set of cases and without access to large meta-

analyses. We also have suggested new variants that warrant further replication

in other groups. QTPhenProxy shows the bene�ts of incorporating electronic

health record data to convert traditional binary traits to quantitative in improving

GWAS power.
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7. Figures

Figure 1: Precision at top 50, 100, 500, and N cases probabilities assigned by machine

learning algorithms on hold out test set and probability distributions. A. All Stroke, B.

Ischemic Stroke, C. Sub-arachnoid Hemorrhage, D. Intracerebral Hemorrhage. Left panel: Pre-

cision of each algorithm Circles represent precision for the Logistic Regression model with L1

penalty (LR), squares: Random Forest model (RF), triangles: Adaboost model (AB), cross: Gradient

boosting model (GB), and star Logistic Regression model with Elastic Net penalty (EN). Middle

Panel: EN probability distributions, Right panel: RF Probability distributions
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Figure 2: QQ Plots and Hudson plot of QTPhenProxy genome-wide association analysis,

EN Model with Binary trait genome-wide association analysis for Stroke, (Top) using

QC1 quality control and (Bottom) using QC2 quality control. A. and D. Q-Q Plot for QT-

PhenProxy, EN Model GWAS. B.and E. Q-Q Plot for Binary trait GWAS. C. and F. Top manhattan

plot is for QTPhenProxy, bottom plot for binary trait.Variants with p-value < 5e-08 are highlighted

in pink, and the dashed lines are at the same value.
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Figure 3: QTPhenProxy recovers known ischemic stroke variants and variants speci�c

to related organ systems. Results from QTPhenProxy GWAS with QC2 quality control. (A)

Horizontal axis shows Ischemic Stroke variants catalogued in EBI-GWAS that have shown genome-

wide signi�cance in previous studies. Black markers represent p-values of variants recovered by

QTPhenProxy models (square=RF,Triangle=EN). (B) X-axis is the top percentile of marker sets in

each category, Y-axis is the proportion of variants in marker sets that overlap with QTPhenProxy

genome-wide signi�cant variants. Each shape corresponds to a disease category. In color are top

disease categories: Square=Investigations, Triangle=Vascular disorders, Cross=Nervous system

disorders, X=General disorders and administration site conditions, Star=cardiac disorders, and

Diamond=Blood and lymphatic system disorders.
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Figure 4: Correlation between beta and odds ratio e�ect sizes for variants at varying de-

grees of signi�cance and Genomic In�ation within bins of variants with similar minor

allele frequencies for QTPhenProxy EN Model for Stroke with QC2 quality control. (A-

E) Correlation between QTPhenProxy, EN Model for Stroke GWAS and Binary trait GWAS e�ect

size, QC2 quality control. X-axis is QTPhenProxy GWAS beta-coe�cients, Y-axis is log base 10

of the Binary GWAS odds ratios. Pearson correlation is recorded in top right corner. From left

to right, top to bottom, variants included decreases by restricting p-value.(F) Genomic In�ation

within bins of variants with similar minor allele frequencies for QTPhenProxy EN Model for

Stroke with QC2 quality control. Light blue line shows the genomic in�ation of each bin of

variants, green line shows 1.0 genomic in�ation, and blue bars show numbers of SNPs (variants)

in each bin, binned by log10(MAF), or log(minor allele frequency.)
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8. Tables

Disease N Cases Binary Hits Bin Sens RF Hits RF Sens EN Hits EN Sens

Stroke 4354 0 0.217 1215 0.217 120 0.261

IscStroke 3308 0 0.312 1266 0.312 202 0.333

SAHStroke 665 0 NA 722 NA 69 NA

ICHStroke 581 2 NA 1059 NA 146 NA

Table 1: Number of genome-wide signi�cant loci and proportion of known stroke vari-

ants that reach nominal signi�cance for each model. IscStroke: Ischemic Stroke, SAHStroke:

Subarachnoid Hemorrhage, ICHStroke: Intracerebral Hemorrhage, N Cases: number of cases, hits:

Number of genome-wide signi�cant loci, sens: sensitivity measure for each model GWAS and

binary trait GWAS, measures what proportion of known stroke variants reach genome-wide

signi�cance in each association test. RF : Random Forest model, EN : Logistic Regression with

elastic net penalty model.

Phenotype rsID Chr. Gene Location R/R allele RAF Beta Converted OR P value

Stroke rs6025 1q24.2 F5 missense T/C 0.0231 0.0492 (0.0421-0.0564) 1.09 (1.08-1.10) 4.87e-12

Stroke rs8179838 2p21 MTA3 intronic T/C 0.621 0.0126 (0.0104-0.0149) 1.02 (1.02-1.03) 9.63e-09

Stroke rs6923947 6q22.32 LOC105377992 intergenic A/G 0.447 0.0123 (0.0101-0.0144) 1.02 (1.02-1.02) 1.19e-08

Stroke rs55730499 6q25.3 LPA intronic T/C 0.0817 0.0273 (0.0234-0.0312) 1.05 (1.04-1.06) 2.70e-12

Stroke rs3918226 7q36.1 NOS3 intronic T/C 0.0814 0.0263 (0.0223-0.0302) 1.05 (1.04-1.05) 3.44e-11

Stroke rs6991641 8p23.1 SOX7 intronic G/C 0.403 0.013 (0.0108-0.0152) 1.02 (1.02-1.03) 3.29e-09

Stroke rs1333049 9p21.3 CDKN2A-CDKN2B intergenic C/G 0.481 0.0129 (0.0108-0.0151) 1.02 (1.02-1.03) 1.41e-09

Stroke 9:136138765 9q34.3 ABO intronic G/GC... 0.184 0.0155 (0.0128-0.0183) 1.03 (1.02-1.03) 2.05e-08

Stroke 11:46705193 11p11.2 ARHGAP1 intronic C/CT 0.28 0.0143 (0.0119-0.0167) 1.02 (1.02-1.03) 4.10e-09

Stroke rs59065675 15q26.1 FURIN intronic C.../C 0.47 0.0127 (0.0105-0.0149) 1.02 (1.02-1.03) 5.00e-09

Stroke rs814573 19q13.32 APOC1-APOC1P1 intergenic T/A 0.188 0.0156 (0.0128-0.0184) 1.03 (1.02-1.03) 2.97e-08

Stroke 20:862958 20p12.3 PLCB1 intronic TA/T 0.76 0.0138 (0.0113-0.0164) 1.02 (1.02-1.03) 4.73e-08
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IscStroke rs1894692 1q24.2 F5-SLC19A2 intergenic G/A 0.0218 0.0546 (0.0478-0.0614) 1.1 (1.09-1.11) 8.22e-16

IscStroke rs369787256 4q25 PITX2-MIR297 intergenic C/T 0.0905 0.0223 (0.0188-0.0257) 1.04 (1.03-1.05) 1.17e-10

IscStroke rs55730499 6q25.3 LPA intronic T/C 0.0817 0.0272 (0.0236-0.0307) 1.05 (1.04-1.05) 2.49e-14

IscStroke rs117733303 6q25.3 LPAL2 intronic G/A 0.0187 0.0428 (0.0356-0.05) 1.08 (1.06-1.09) 2.69e-09

IscStroke rs3918226 7q36.1 NOS3 intronic T/C 0.0814 0.0209 (0.0173-0.0246) 1.04 (1.03-1.04) 6.81e-09

IscStroke rs2205258 8q23.3 LOC107986968 intronic C/T 0.83 0.0151 (0.0125-0.0177) 1.03 (1.02-1.03) 6.76e-09

IscStroke rs8176719 9q34.2 ABO insertion TC/T 0.34 0.0145 (0.0124-0.0165) 1.02 (1.02-1.03) 2.17e-12

IscStroke rs1333049 9p21.3 CDKN2A-CDKN2B intergenic C/G 0.481 0.0132 (0.0112-0.0151) 1.02 (1.02-1.03) 1.31e-11

IscStroke 11:46705193 11p11.2 ARHGAP1 intronic C/CT 0.28 0.0122 (0.01-0.0145) 1.02 (1.02-1.02) 3.22e-08

IscStroke rs814573 19q13.32 APOC1-APOC1P1 intergenic T/A 0.188 0.0172 (0.0146-0.0198) 1.03 (1.02-1.03) 1.85e-11

IscStroke rs118068660 19p13.2 LDLR intergenic C/T 0.901 0.0193 (0.0159-0.0227) 1.03 (1.03-1.04) 1.43e-08

IscStroke rs12151925 20p12.2 LOC101929413-FAT1P1 intergenic C/T 0.222 0.0129 (0.0105-0.0152) 1.02 (1.02-1.03) 4.26e-08

SAHStroke rs6025 1q24.2 F5 missense T/C 0.0231 0.0673 (0.0593-0.0753) 1.12 (1.11-1.14) 4.61e-17

SAHStroke rs36058710 9q34.2 ABO intronic CT/C 0.287 0.0166 (0.0139-0.0194) 1.03 (1.02-1.03) 1.03e-09

SAHStroke rs34850248 12q12 LINC02400 intergenic A/AC 0.0714 0.0268 (0.0221-0.0314) 1.05 (1.04-1.06) 9.95e-09

ICHStroke rs6025 1q24.2 F5 missense T/C 0.0231 0.0480 (0.0411-0.0549) 1.09 (1.07-1.1) 2.85e-12

ICHStroke rs11887534 2p21 ABCG8 missense G/C 0.935 0.0271 (0.0229-0.0313) 1.05 (1.04-1.06) 7.90e-11

ICHStroke rs372302634 3q22.3 ESYT3-MRAS intergenic T/T... 0.457 0.0121 (0.01-0.0142) 1.02 (1.02-1.02) 8.51e-09

ICHStroke rs6923947 6q22.32 LOC105377992 intergenic A/G 0.447 0.0127 (0.0106-0.0148) 1.02 (1.02-1.03) 9.5e-10

ICHStroke rs2077111 6q22.33 RPS4XP9 intergenic G/A 0.447 0.012 (0.00995-0.0141) 1.02 (1.02-1.02) 8.89e-09

ICHStroke rs1808593 7q36.1 NOS3 intronic G/T 0.25 0.0131 (0.0107-0.0155) 1.02 (1.02-1.03) 4.14e-08

ICHStroke rs7013277 8p23.1 XKR6 intronic C/A 0.396 0.0116 (0.00947-0.0137) 1.02 (1.02-1.02) 4.6e-08

ICHStroke 11:46705193 11p11.2 ARHGAP1 intronic C/CT 0.28 0.0133 (0.011-0.0156) 1.02 (1.02-1.03) 1.35e-08

Table 2: Genome-wide signi�cant variants discovered byQTPhenProxy, ENModel, using

QC1 quality control. Cytogenic position was determined using Kent et al. (2002). rsID: variant

id, Chr : cytogenic position, Location: location of variant relative to the gene, R/R: risk/reference,

RAF : risk allele frequency in population, Beta: Beta coe�cient OR: Odds Ratio, 95% Con�dence

Intervals

Phenotype rsID Chr. Gene P value MEGASTROKE P value

Stroke rs1894692 1q24.2 F5-SLC19A2 6.87E-10 0.435
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Stroke rs8179838 2p21 MTA3 8.36E-06 0.515

Stroke rs769407520 3q22.3 ATP5MC1P3 2.50E-08 not found

Stroke rs6923947 6q22.32 LOC105377992 4.58E-07 0.04332

Stroke rs55730499 6q25.3 LPA 6.85E-10 0.05915

Stroke rs3918226 7q36.1 NOS3 6.45E-09 0.00134

Stroke 8:10206921 8p23.1 MSRA 4.62E-08 not found

Stroke rs1333049 9p21.3 CDKN2A-CDKN2B 5.02E-06 1.85E-07

Stroke 9:136138765 9q34.3 ABO 9.73E-09 not found

Stroke 11:46705193 11p11.2 ARHGAP1 7.06E-07 not found

Stroke rs59065675 15q26.1 FURIN 4.06E-07 not found

Stroke rs814573 19q13.32 APOC1-APOC1P1 2.52E-05 0.412

Stroke 20:862958 20p12.3 PLCB1 1.95E-06 not found

Stroke rs2269608 22q13.1 KCNJ4 4.23E-08 0.212

IscStroke rs1894692 1q24.2 F5-SLC19A2 1.90E-11 0.229

IscStroke rs369787256 4q25 PITX2-MIR297 3.69E-06 not found

IscStroke rs55730499 6q25.3 LPA 1.26E-09 0.0316

IscStroke rs117733303 6q25.3 LPAL2 0.000119 0.422

IscStroke rs3918226 7q36.1 NOS3 3.59E-06 0.00118

IscStroke rs2205258 8q23.3 LOC107986968 7.16E-06 0.415

IscStroke 9:1361387 9q34.2 ABO 4.99E-10 not found

IscStroke rs1333049 9p21.3 CDKN2A-CDKN2B 3.01E-06 1.09E-06

IscStroke 11:46705193 11p11.2 ARHGAP1 3.85E-05 not found

IscStroke rs814573 19q13.32 APOC1-APOC1P1 2.20E-06 0.716

IscStroke rs118068660 19p13.2 LDLR 1.28E-06 1.14E-05
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IscStroke rs12151925 20p12.2 LOC101929413-FAT1P1 0.000107 0.104

SAHStroke rs6025 1q24.2 F5 6.34E-18 0.453

SAHStroke rs36058710 9q34.2 ABO 1.59E-10 not found

SAHStroke rs34850248 12q12 LINC02400 7.18E-09 not found

ICHStroke rs6025 1q24.2 F5 1.52E-10 0.453

ICHStroke rs11887534 2p21 ABCG8 4.29E-08 6.85E-04

ICHStroke rs372302634 3q22.3 ESYT3-MRAS 4.03E-08 not found

ICHStroke rs6923947 6q22.32 LOC105377992 1.47E-07 0.00433

ICHStroke rs2077111 6q22.33 RPS4XP9 1.96E-06 0.0372

ICHStroke rs1808593 7q36.1 NOS3 2.96E-06 0.565

ICHStroke rs7013277 8p23.1 XKR6 2.06E-05 0.156

ICHStroke 11:46705193 11p11.2 ARHGAP1 3.59E-06 not found

Table 3: Genome-wide signi�cant variants discovered byQTPhenProxy, ENModel, using

QC2 quality control. Also includes QC2 p-value for genome-wide signi�cant variants from QC1

GWAS and p-values for variants from the MEGASTROKE stroke or ischemic stroke european

GWAS Malik et al. (2018a). Cytogenic position was determined using Kent et al. (2002). rsID:

variant id, Chr : cytogenic position
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Phenotype Gene rsID QTPhenProxy p-value

Stroke LPA rs56393506 1.09E-08

Stroke NOS rs1799983 not found

Stroke CDKN2B-CDKN2A rs7859727 6.94E-05

Stroke ABO rs635634 1.07E-07

Stroke FURIN rs4932370 2.55E-05

Stroke COL4A1 rs9521634 0.00375

Stroke LOC105372798 rs720470 0.88

Ischemic stroke PITX2-MIR297 rs13143308 not found

Ischemic stroke LPA rs56393506 2.50E-09

Ischemic stroke NOS3 rs1799983 not found

Ischemic stroke CDKN2B-CDKN2A rs7859727 5.95E-05

Ischemic stroke ABO rs635634 7.93E-09

Ischemic stroke LDLR rs8103309 0.171

Subarachnoid Hemorrhage ABO rs635634 2.22E-06

Intracerebral Hemorrhage NOS3 rs1799983 not found

Table 4: QTPhenProxy EN Model GWAS using QC2 quality control P-value of vari-

ants that were genome-wide signi�cant in MEGASTROKE Stroke and Ischemic Stroke

GWAS.
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Appendix A. Supplementary Figures

Figure A.1: Model probability distributions assigned by machine learning algorithms,

related to Figure 1. A. All Stroke, B. Ischemic Stroke, C. Sub-arachnoid Hemorrhage, D. Intrac-

erebral Hemorrhage. First panel: Logistic Regression model with Elastic Net penalty probabiltiy

distribution, Second panel: Random Forest probability distribution, Third panel: Logistic Re-

gression model with L1 penalty probability distribution, Fourth panel: Adaboost probability

distribution, Fifth panel: Gradient boosting probability distribution
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Figure A.2: QQ Plots and Hudson plot of QTPhenProxy genome-wide association analy-

sis, EN Model with Binary trait genome-wide association analysis for Ischemic Stroke,

(Top) using QC1 quality control and (Bottom) using QC2 quality control, related to Fig-

ure 2. A. and D. Q-Q Plot for QTPhenProxy, EN Model GWAS. B.and E. Q-Q Plot for Binary trait

GWAS. C. and F. Top manhattan plot is for QTPhenProxy, bottom plot for binary trait.Variants

with p-value < 5e-08 are highlighted in pink, and the dashed lines are at the same value.
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Figure A.3: QQ Plots and Hudson plot of QTPhenProxy genome-wide association anal-

ysis, EN Model with Binary trait genome-wide association analysis for Subarachnoid

Hemorrhage, (Top) using QC1 quality control and (Bottom) using QC2 quality control,

related to Figure 2. A. and D. Q-Q Plot for QTPhenProxy, EN Model GWAS. B.and E. Q-Q Plot

for Binary trait GWAS. C. and F. Top manhattan plot is for QTPhenProxy, bottom plot for binary

trait.Variants with p-value < 5e-08 are highlighted in pink, and the dashed lines are at the same

value.
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Figure A.4: QQ Plots and Hudson plot of QTPhenProxy genome-wide association anal-

ysis, EN Model with Binary trait genome-wide association analysis for Intracerebral

Hemorrhage, (Top) using QC1 quality control and (Bottom) using QC2 quality control,

related to Figure 2. A. and D. Q-Q Plot for QTPhenProxy, EN Model GWAS. B.and E. Q-Q Plot

for Binary trait GWAS. C. and F. Top manhattan plot is for QTPhenProxy, bottom plot for binary

trait.Variants with p-value < 5e-08 are highlighted in pink, and the dashed lines are at the same

value.
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Figure A.5: QTPhenProxy recovers known stroke variants and variants speci�c to related

organ systems, related to Figure 3. Results from QTPhenProxy GWAS with QC2 quality control.

(A) Horizontal axis shows Stroke variants catalogued in EBI-GWAS that have shown genome-

wide signi�cance in previous studies. Black markers represent p-values of variants recovered by

QTPhenProxy models (square=RF,Triangle=EN). (B) X-axis is the top percentile of marker sets in

each category, Y-axis is the proportion of variants in marker sets that overlap with QTPhenProxy

genome-wide signi�cant variants. Each shape corresponds to a disease category. In color are top

disease categories: Square=Investigations, Triangle=Vascular disorders, Cross=Nervous system

disorders, X=General disorders and administration site conditions, Star=cardiac disorders, and

Diamond=Blood and lymphatic system disorders.
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Figure A.6: Correlation between beta and odds ratio e�ect sizes for variants at varying

degrees of signi�cance, related to Figure 4. (A-E) Correlation between QTPhenProxy, EN

Model for Stroke GWAS and Binary trait GWAS e�ect size, QC1 quality control. X-axis is

QTPhenProxy GWAS beta-coe�cients, Y-axis is log base 10 of the Binary GWAS odds ratios.

Pearson correlation is recorded in top right corner. From left to right, top to bottom, variants

included decreases by restricting p-value.
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Figure A.7: Slope of correlation between beta from simulated quantitative trait and

log(odds ratio) of simulated binary trait with varying simulation parameters. Left panels

calculate slope with all variants, right panels calculate slope with variants with p-value <0.005.

(A) varies the transformation of the probability distribution, where N(0,1) is a normal distribution

with mean 0, variance 1, N(0,10) is a normal distribution with mean 0, variance 10,N(10,50) is a

normal distribution with mean 10, variance 50, norm is normalized by the maximum value, and

orig is the original distribution. (B) varies the prevalence of the trait, (C) varies the causal allele

frequency, (D) varies the recombination fraction between the causal allele and marker allele, and

(E) varies the marker minor allele frequency.
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Appendix B. Supplementary Tables

Disease Model AUROC AUPRC Maximum F1

Ischemic Stroke

rf 0.953(0.000279) 0.248(0.00201) 0.326(0.00229)

ab 0.950(0.000504) 0.246(0.00465) 0.316(0.00335)

lr 0.946(0.000409) 0.239(0.0021) 0.322(0.00196)

gb 0.952(0.000686) 0.210(0.00479) 0.294(0.00319)

en 0.943(0.000362) 0.209(0.00193) 0.295(0.00199)

SAH Stroke

rf 0.875(0.000746) 0.144(0.00299) 0.242(0.00423)

ab 0.859(0.00186) 0.171(0.0062) 0.271(0.00807)

lr 0.850(0.00115) 0.151(0.00419) 0.291(0.00509)

gb 0.863(0.00149) 0.113(0.00379) 0.203(0.00513)

en 0.863(0.000958) 0.109(0.00377) 0.198(0.00497)

ICH Stroke

rf 0.903(0.000924) 0.0483(0.00143) 0.116(0.00253)

ab 0.900(0.00171) 0.0480(0.00196) 0.114(0.00305)

lr 0.879(0.00145) 0.0270(0.000709) 0.0762(0.00137)

gb 0.900(0.00123) 0.0365(0.00125) 0.0935(0.00227)

en 0.903(0.00118) 0.0329(0.000755) 0.0861(0.00146)

Stroke

rf 0.899(0.000404) 0.326(0.0016) 0.375(0.00147)

ab 0.906(0.000711) 0.335(0.00423) 0.380(0.00262)

lr 0.905(0.000528) 0.314(0.00143) 0.368(0.00154)

gb 0.903(0.00047) 0.292(0.00245) 0.355(0.00151)

en 0.896(0.000448) 0.282(0.00113) 0.350(0.000962)
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Table B.1: Phenotyping Models Performance. rf : Random Forest, ab= Adaboost, lr=Logistic

regression with L1 penalty, gb=Gradient Boosting, en=Logistic Regression with elastic net penalty

models. AUROC: Area under the Receiver Operating Curve, AUPRC: Area under Precision-Recall

curve. 95% con�dence intervals shown in parentheses

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

IscStroke

rf 0.739(0.0132) 0.682(0.0105) 0.544(0.00575) 0.322(0.00246)

ab 0.71(0.0192) 0.674(0.0154) 0.527(0.0117) 0.309(0.00405)

lr 0.801(0.0143) 0.672(0.00997) 0.483(0.00560) 0.314(0.00205)

gb 0.609(0.0305) 0.544(0.0246) 0.425(0.0179) 0.282(0.00714)

en 0.74(0.0141) 0.63(0.00946) 0.435(0.00476) 0.29(0.00197)

SAHStroke

rf 0.607(0.0178) 0.55(0.0106) 0.308(0.00623) 0.235(0.00381)

ab 0.627(0.0185) 0.538(0.0144) 0.329(0.0102) 0.266(0.00801)

lr 0.535(0.0187) 0.5(0.0147) 0.356(0.00722) 0.271(0.00630)

gb 0.532(0.0203) 0.442(0.0176) 0.249(0.00759) 0.197(0.00557)

en 0.543(0.0188) 0.441(0.0136) 0.244(0.00773) 0.192(0.00523)

ICHStroke

rf 0.263(0.013) 0.216(0.00968) 0.124(0.00328) 0.110(0.00265)

ab 0.203(0.0185) 0.171(0.0124) 0.108(0.00400) 0.0997(0.00352)

lr 0.109(0.0121) 0.100(0.00713) 0.0742(0.00252) 0.0677(0.0027)

gb 0.137(0.0146) 0.123(0.00838) 0.0908(0.00279) 0.0834(0.00240)

en 0.123(0.0110) 0.115(0.00761) 0.0835(0.00262) 0.0768(0.00204)

Stroke

rf 0.974(0.00548) 0.941(0.00506) 0.822(0.00339) 0.374(0.0015)

ab 0.940(0.0120) 0.910(0.0120) 0.813(0.0131) 0.378(0.00265)
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lr 0.929(0.00793) 0.872(0.00678) 0.775(0.00413) 0.365(0.00164)

gb 0.868(0.0324) 0.818(0.0309) 0.696(0.0180) 0.351(0.00166)

en 0.848(0.00829) 0.836(0.00706) 0.694(0.00394) 0.345(0.000996)

Table B.2: Precision at top 50, 100, 500, and N cases probabilities of phenotyping models.

rf : Random Forest, ab= Adaboost, lr=Logistic regression with L1 penalty, gb=Gradient Boosting,

en=Logistic Regression with elastic net penalty models. Prec: Precision. 95% con�dence intervals

Disease Model Sensitivity Speci�city PPV NPV

Ischemic Stroke

rf 0.347(0.00483) 0.996(0.000133) 0.00185(2.58e-05) 0.997(2.52e-05)

ab 0.369(0.00744) 0.995(0.000256) 0.00196(3.99e-05) 0.997(3.86e-05)

lr 0.362(0.00528) 0.995(0.000127) 0.00192(2.82e-05) 0.997(2.76e-05)

gb 0.368(0.00868) 0.994(0.000354) 0.00196(4.67e-05) 0.997(4.50e-05)

en 0.332(0.00624) 0.995(0.000195) 0.00177(3.35e-05) 0.996(3.24e-05)

SAH Stroke

rf 0.215(0.00503) 0.999(5.47e-05) 0.000354(8.28e-06) 0.999(8.21e-06)

ab 0.272(0.00924) 0.999(7.14e-05) 0.000447(1.52e-05) 0.999(1.51e-05)

lr 0.266(0.00764) 0.999(6.34e-05) 0.000437(1.26e-05) 0.999(1.25e-05)

gb 0.204(0.00598) 0.999(9.43e-05) 0.000336(9.86e-06) 0.999(9.75e-06)

en 0.201(0.00597) 0.999(0.000126) 0.000330(9.85e-06) 0.999(9.68e-06)

ICH Stroke

rf 0.133(0.00715) 0.998(0.000140) 0.000174(9.40e-06) 0.999(9.22e-06)

ab 0.167(0.0113) 0.998(0.000219) 0.000220(1.49e-05) 0.999(1.47e-05)

lr 0.177(0.0211) 0.995(0.000742) 0.000233(2.79e-05) 0.999(2.69e-05)

gb 0.141(0.00950) 0.998(0.000268) 0.000185(1.25e-05) 0.999(1.22e-05)

37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.22.915397doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915397
http://creativecommons.org/licenses/by/4.0/


en 0.146(0.0123) 0.997(0.000398) 0.000192(1.62e-05) 0.999(1.57e-05)

Stroke

rf 0.377(0.00414) 0.989(0.000286) 0.00648(7.24e-05) 0.989(6.74e-05)

ab 0.390(0.00559) 0.989(0.000379) 0.00671(9.76e-05) 0.990(9.17e-05)

lr 0.399(0.00499) 0.987(0.000408) 0.00688(8.81e-05) 0.990(8.1e-05)

gb 0.388(0.00462) 0.986(0.000373) 0.00670(8.15e-05) 0.989(7.51e-05)

en 0.393(0.00425) 0.985(0.000336) 0.00678(7.51e-05) 0.990(6.90e-05)

Table B.3: Sensitivity, Speci�city, Positive PredictiveValue, andNegative PredictiveValue

of phenotyping models. rf : Random Forest, ab= Adaboost, lr=Logistic regression with L1

penalty, gb=Gradient Boosting, en=Logistic Regression with elastic net penalty models. PPV :

Positive Predictive Value, NPV : Negative Predictive Value. 95% con�dence intervals shown in

parentheses

Appendix C. Methods

Appendix C.1. QTPhenProxy Phenotyping Model.

We gathered clinical features of primary ICD10 dignosis codes, OCPS4 pro-

cedure codes (UK Biobank code 42100), medications (UK Biobank code 20003),

race/ethnicity (UK Biobank code 1001), and age. 2018 served as the age end point.

We mapped the OCPS4 procedure codes (UK Biobank code 240) to SNOMED-CT

codes and the UK Biobank medication codes to RxNorm codes by name National

Library of Medicine (b,a). We also gathered data of self reported and �rst oc-

currence of all stroke, ischemic stroke, sub-arachnoid stroke, and intracerebral

hemorrhage. We made a large matrix in which each extracted EHR feature was a

binary variable based on the presence or absence of the feature. We dichotomized
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age as greater than or equal or less than 50 years. For each disease, we then de-

�ned the cases from the ICD10 code combinations described in the UK Biobank’s

phenotyping algorithm National Library of Medicine (b). We then trained 5 di�er-

ent classi�ers: 1) logistic regression with elastic net penalty, 2) logistic regression

with L1 penalty, 3) random forest, 4) adaboost, 5) gradient boosting classi�ers

on 50% of the cases and an equal number of controls. Controls were identi�ed

as subjects without any ICD10 codes within the same category as the Clinical

Modi�cation Clinical Classi�cations Software tool Healthcare Cost and Utiliza-

tion Project. We then applied the trained algorithm to the whole UK Biobank,

resulting in a model probability or quantitative trait proxy for each subject and

each disease. For comparison, another phenotype �le with binary assignment of

case and control for each disease was prepared as well. Table 1 shows the number

of cases available for each disease.

Appendix C.2. Evaluation of QTPhenProxy Model Performance.

To evaluate the performance of the QTPhenProxy model, we determined its

ability to recover cases when the de�ning ICD10 codes are removed. We trained

50% of the cases and an equal number of controls on the clinical features described

above using the EN and RF classi�ers. We chose these classi�ers because of their

overall high performance and their probability assignment distributions were

continuous (Figure 1, Supplementary Figure A.1). We removed the ICD10 codes

used to de�ne the cases and controls in our feature set. We then tested the model

on all other subjects in the UK Biobank, which included known cases and self-

reported cases that did not have an ICD10 code for the disease. We then evaluated

the recovery of 1) cross-validation and 2) the holdout test set through Precision

at top 50, 100, 500, and number of cases, area under the receiver operating curve,
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area under the precision recall curve, and maximum F1 score.

Appendix C.3. Genotyping and Imputation.

UK Biobank subjects that were of White British descent, in the UK Biobank

PCA calculations and therefore without 3rd degree and above relatedness, and

without aneuploidy were used in this study, totalling 337147 subjects (181,032

females and 156,115 males) Biobank; Bycroft et al. (2018). Of the nearly 500,000

participants, approximately 50,000 subjects were genotyped on the UK BiLEVE

Array by A�ymetrix while the rest were genotyped using the Applied Biosystems

UK Biobank Axiom Array, with over 800,000 markers. The arrays share 95%

marker coverage. Initially, we ran a QC extracting markers with an MAF>0.5%,

INFO score > 0.3, and hardy-weinberg equilibrium test mid-p value > 10−10 using

all subjects, which we will refer to as QC1. QC1 was run for GWAS of all 18

diseases. We then re-ran the QC, which we will refer to as QC2, more stringently

by extracting markers with an MAF>1%, INFO score > 0.8, and hardy-weinberg

equilibrium test mid-p value > 10−5 using Plink2 Chang et al. (2015). UKBB

version 3 Imputation combined the Haplotype Research Consortium with the

UK10K haplotype resource using the software IMPUTE4 Biobank.

Appendix C.4. Genome-wide Association Analysis.

The binary trait and QTPhenProxy probabilities were compared by running

two separate association analyses. For both analyses, covariates included age at

2018, sex, �rst 10 principal components, and the genotyping array the sample

was carried out on. In QC1, the original PCs determined by the UKBiobank QC

were used. In QC2, we calculated the PCs using the method described in Ap-

pendix C.11. QC2 GWAS was only run for stroke, ischemic stroke, subarachnoid
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hemorhage, and intracerebral hemorrhage GWAS. For the binary trait GWAS,

a logistic regression was run adjusted with the aformentioned covariates. For

comparison, the QTPhenProxy probabilities were quantile normalized and run

under a linear regression adjusting for the same covariates. We also permuted

the probabilities within the phenotyping �les and ran additional GWAS 10 times

to ensure the signal was correlated with the phenotype.

Appendix C.5. Mapping variants to known disease variant marker sets andmapping

marker sets to disease systems.

The EBI-GWAS catalogue has a database of all published GWAS Buniello et al.

(2019). We extracted over 2,000 disease marker sets conducted on populations

with European ancestry. MedDRA is a standardized medical vocabulary developed

by International Council for Harmonisation of Technical Requirements for Phar-

maceuticals for Human Use (ICH) Brown (1999). All terms in the vocabulary can

be mapped to its highest system level, which includes 27 di�erent organ systems

and other general and lab studies such as social circumstance and investigations.

Using the NCBO annotator, we mapped the names of the EBI-GWAS disease

marker sets to the MedDRA System Organ Classes level Whetzel et al. (2011).

Appendix C.6. Assessing the speci�city of the QTPhenProxy-derived variants.

To assess the disease speci�city of the genome-wide signi�cant variants, we

�rst calculated the proportion of genome-wide signi�cant variants in each of the

EBI-GWAS disease marker sets. We then aggregated the marker sets together by

System Organ Class to evaluate the systems enriched for genome-wide signi�cant

variants. We ordered the marker sets in each class by proportion of genome-wide

signi�cant variants and divided by the number of marker sets in each class. We
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also compared the proportion of variants of varying signi�cance of the marker

sets related to each disease with 1) the other marker sets related to the same

System Organ Class as the disease and 2) all other marker sets. We strati�ed each

comparison by signi�cance value, between 0.05 and 5E-08.

Appendix C.7. Evaluation of recovery of known variants

For each disease, we gathered EBI-GWAS marker sets that contained the

disease in its name. These represent known variants of each disease. We then

extracted the p-value from either the binary trait logistic regression or QTPhen-

Proxy linear regression. We then ran a t-test comparing the negative log base

10 p-values of the binary trait with QTPhenProxy GWAS. We also ran a t-test

comparing the di�erence between the binary and QTPhenProxy log base 10 p val-

ues for the known ischemic stroke variants and an equivalent number of random

variants.

Appendix C.8. Re�nement of discovered variants by QTPhenProxy using conditional

analysis

At each LD-independent locus, the SNP with lowest p-value may not be the

variant that causes the most phenotypic variation within the area Yang et al. (2012).

Therefore, we applied GCTA-COJO, a conditional analysis that takes into account

lead SNPs and the LD structure of a sample of the population, to our genome-

wide association results Yang et al. (2012). We randomly sampled 10,000 subjects

from the UKBiobank for the linkage disequilibrium calculation Wells et al. (2019).

From the GCTA-COJO results, we then mapped each locus to its nearest gene

using dbSNP and the UCSC Genome Browser accessed at http://genome.ucsc.edu/

National Center for Biotechnology Information, National Library of Medicine.;
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Kent et al. (2002). For intergenic loci, we chose the 1-2 nearest genes that were at

most 10,000 KB away.

Appendix C.9. Correlation of QTPhenProxy GWAS beta coe�cients to Binary trait

GWAS Odds Ratio

We calculated the Pearson correlation between the beta-coe�cients of the

QTPhenProxy GWAS and log of the odds ratios of the Binary trait GWAS. In order

to account for noise, we calculated the correlation with variants with di�erent

levels of signi�cance in the QTPhenProxy models. P-value cuto�s included 1,

0.05,0.0005,5e-06,and 5e-08.

Appendix C.10. Simulation of Conversion of QTPhenProxy trait to Binary trait and

Conversion of beta coe�cients to odds ratios

Based on the scale di�erence between binary and quantitative traits, the odds

ratios are not directly comparable. We decided to simulate a method to convert

beta coe�cients from QTPhenProxy to Odds ratios. We did this by simulating

a quantitative trait, converting it to a binary trait, and testing the correlation

of a simulated marker variant’s signi�cance between the two methods. Using

SOLAR, a software package for estimating heritability using identity by descent

calculations, we simulated a quantitative trait with one quantitative trait locus

with two alleles and a nearby marker locus with two alleles Almasy and Blangero

(1998). We �rst removed all related individuals with a resulting cohort of 4,195

subjects. For the simulation, we varied the frequency for the causal minor al-

lele and a marker minor allele from 0.05-0.45 in increments of 0.010, the mean

quantitative trait value for the heterozygous genotype from 5-45 in increments

of 10 and the homozygous genotypes’ mean± 50, the standard deviation of the
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quantitative trait from 5-20 in increments of 4, and the recombinant fraction from

0.01-0.10 in increments of 0.02. After simulating the quantitative trait distribution,

we then normalized the trait to several distributions: standard normal, normal

distribution with mean 0 and standard deviation 10, and mean 50 and standard

deviation 10. We compared distributions because we quantile normalized our

QTPhenProxy trait values before running the genome-wide associations studies.

We then converted each simulation to a binary trait using liability thresholding

Risch (1990). Liability thresholding was implemented as follows: We determined

a quantitative trait value as a threshold based o� the prevalence of the simu-

lated trait, which we varied from 2.5-20% in increments of 5%. Any subjects

above this threshold is labeled a case, and the rest controls in the binary trait

phenotype. We then ran linear or logistic regressions using the python package

statsmodels between the simulated quantitative trait or the binary trait and the

subjects’genotypes for the marker and causal loci National Library of Medicine

(b). We developed a conversion formula for the beta coe�cients to odds ratios by

linearly regressing the correlation between the simulated e�ect sizes. We then

converted the beta-coe�cients to odds ratios of the UK Biobank GWAS results

by multiplying the beta coe�cient by the average slope and intercept and then

taking the exponential of the result.

Appendix C.11. PCA

In order to con�rm the cases were well distributed within the data and to

determine the number of principal components to use as covariates, we conducted

PCA. For each of the four diseases, we �rst pruned the variants used for PCA by

running a sliding window of size 100 kbps, 5 variant step size, and r2 threshold of

0.1. We then combined the chromosomes, extracting only the pruned variants,
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using plink2 and cat-bgen software Band and Marchini (2018). We then ran pca

with plink2 Chang et al. (2015) and evaluated the PCs to be used as covariates

using a skree plot. Within the main PCs, we plotted them against each other,

highlighting the distribution of the cases.

Appendix C.12. LD Score Regression and evaluation of genomic in�ation

We determined the lambda genomic correction and LD score regression coef-

�cient using the software LDSC Bulik-Sullivan et al. (2015). We used the disease

GWAS summary statistics and European LD scores pre-computed from 1000

genomes by the Alkes group Bulik-Sullivan et al. (2015). QQ plots were plotted

using qqman Turner (2014). To determine the relationship between genomic

in�ation and minor allele frequency, we binned all variants in the stroke gwas by

minor allele frequency into 30 bins. We then calculated the genomic in�ation of

the p-values of the variants in each bin.

Appendix C.13. Data and Code Availability Statements

The EBI-GWAS marker set- MedDRA mappings and code generated in this

study will be made publicly available online at https://github.com/pthangaraj/QTPhenProxy

in February 2020. Currently, it is available upon request.
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