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ABSTRACT 
In eukaryotes, 5’-3’ co-translation degradation machinery follows the last translating ribosome providing an in vivo 
footprint of its position. Thus 5’P degradome sequencing, in addition to informing about RNA decay, also provides 
valuable information regarding ribosome dynamics. Multiple experimental methods have been developed to 
investigate the mRNA degradome, however computational tools for their reproducible analysis are lacking. Here 
we present fivepseq: an easy-to-use application for analysis and interactive visualization of 5’P degradome data. 
This tool performs both metagene and gene specific analysis, and allows to easily investigate codon specific 
ribosome pauses. To demonstrate its ability to provide new biological information, we investigate gene specific 
ribosome pauses in S. cerevisiae after eIF5A depletion. In addition to identifying pauses at expected codon 
motifs, we identify multiple genes with strain-specific frameshifts. To show its wide applicability, we investigate 
more complex 5’P degradome from A. thaliana and discover both motif-specific ribosome protection associated 
with particular developmental stages, as well as generally increased ribosome protection at termination level 
associated with age. Our work shows how the use of improved analysis tools for the study of 5’P degradome can 
significantly increase the biological information that can be derived from such datasets and facilitate its 
reproducible analysis.  

KEY POINTS 
-Analysis of 5’P degradome data with fivepseq informs about global and gene-specific translational features.  
-Frameshifts in translation-related genes in S. cerevisiae may be linked to ribosome stalling.  
-Ribosome protection at termination and codon motifs are linked to development in A. Thaliana.  

INTRODUCTION 
The functional status of living cells largely depends on 
regulation of the pool of translating mRNAs, realized 
via opposing mechanisms of transcription and RNA 
decay. In Eukaryotes, general mRNA decay starts by 
poly(A) tail  shortening followed by 5’-3’ or 3’-5’ decay 
(1). 5’-3’ decay, whereby the exonuclease XRN1 
degrades 5’ monophosphorylated (5’P) mRNA 
intermediates after decapping, is considered to be the 
main contributing factor in cytoplasmic mRNA turnover 
(1). Although initially considered independent events, 
multiple evidence has now demonstrated that 
translation and mRNA decay are interconnected 
processes and that co-translational mRNA degradation 
is a general phenomenon (2–5). The interaction 
between the translation and decay machinery occurs 
so close that the positions of 5’P co-translational mRNA 
degradation intermediates can be used as a proxy for 
ribosome dynamics, as we and others have shown in 
yeast (6–8) and plants (4, 9, 10). In particular, XRN1-
driven 5’-3’ mRNA degradation is linked to the 
movement of the last translating ribosome allowing to 
obtain an in vivo footprint of the ribosome position. This 
interaction has been characterized also at the structural 
level showing how mRNA is channeled from the 
ribosome decoding site directly into the active center of 
the exonuclease (11). Ribosome profiling, a method 
based on cellular extraction followed by in vitro RNA 
degradation and sequencing,  is the current standard to 
investigate genome-wide ribosome protection (12, 13). 

However, investigating the  5’P degradome is a very 
useful complementary approach and allows to obtain a 
drug-free measurement of in vivo ribosome position 
(omitting in vitro RNA degradation) and to focus on  
those mRNAs that are undergoing co-translational 
decay (3, 8, 14). Over the years, multiple techniques 
have been developed to investigate 5’P mRNA 
degradation intermediates (6–8, 15–18).  Methods, 
such as GMUCT (genome-wide mapping of uncapped 
and cleaved transcripts) (16, 18) and PARE (parallel 
analysis of RNA ends) (17) were originally developed to 
investigate endonucleolytic cleavage mediated by 
microRNA (miRNA) in plants. Similar approaches have 
also been used to investigate endonucleolytic cleavage 
in budding yeast. To investigate the link between the 
ribosome position and mRNA decay, we developed 
5PSeq (6, 7) and more recently, an improved version of 
this approach, HT-5PSeq (8). Interestingly, the re-
analysis of 5’P data originally generated to investigate 
miRNA mediated endonucleo ly t ic c leavage, 
demonstrated that  general 5’P degradome sequencing 
informs about ribosome position also in plants (4, 18, 
19). This highlights that in addition to optimized 
experimental protocols for 5’P degradome sequencing 
(3–5, 9), it is necessary to develop reproducible and 
simplified computational protocols enabling the 
systemat ic study of 5 ’P mRNA degradat ion 
intermediates in respect to the ribosome position. 

However, analysis of 5’P degradome sequencing is not 
trivial. It is commonly performed using custom scripts 
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optimized for the methodology and the organism of 
interest (3, 7, 9). Although sufficient to derive useful 
biological information, this makes it difficult to 
reproduce and share results. Additionally, it demands a 
high level of computational competence and 
complicates the biological interpretation by users with 
limited bioinformatics experience. Contrary to the case 
of 5’P degradome sequencing, multiple pipelines have 
been developed to analyze ribosome profiling data 
(20–23). Those pipelines focus on identification of 
translational open reading frames (ORFs), differential 
expression at translational level and ribosome stalling, 
with the assumption that ribosome protection fragments 
are markers of translational activity (12, 20). A primary 
feature of ribosome profiling pipelines is the ability to 
take into consideration variable lengths of ribosome 
protected fragments, which mostly range from 20-22 nt 
or 28-32 nt in length (depending on factors, such as 
ribosome conformation and use of translocation 
inhibitors, in vitro nuclease digestion, sequence 
context, etc.) and to determine the ribosome P and A 
sites. This is usually performed by read stratification by 
length, followed by alignment of same-length reads 
relative to all the annotated start sites in the genome. 
The resulting cumulative counts of read 5’ endpoints 
show a peak at a certain distance from the start codon, 
which is regarded as the P-site offset - the distance 
from read 5’ site to the ribosome P site. This offset is 
either computed for the most abundant read length or 
for several read lengths separately (20). Such 
preprocessing steps for read length selection and 
adjustment, although important for ribosome profiling, 
are not relevant for 5’P mRNA degradome datasets, as 
the latter usually produce longer reads (e.g. more than 
50nt (8)), where only the 5’ site is functionally relevant, 
and do not require 5’ adjustment (6–8). Thus, applying 
ribosome profiling analysis tools to 5´P degradome 
sequencing data is complex and would require 
computational preprocessing to trim the reads to 28-32 
nt, limiting the advantages of long-read sequencing and 
requiring bioinformatics expertise. In addition, there is 
no simple interactive application that allows for easy 
exploration of 5’-3’ co-translational degradation profiles, 
something that is essential to facilitate biological 
inference from 5’P degradome sequencing data.  

Here we present fivepseq, a simple python based 
standalone command line application that performs 
comprehensive analyses of 5'P degradome datasets 
and provides interactive visualization features for data 
exploration. Fivepseq allows for reproducible analysis 
of 5'P degradome in respect to translational features 
informing about ribosome protection patterns in respect 
to ORFs and codons, at genome-wide and gene-
specific levels. We demonstrate its applicability by 
investigating 5´P degradome sequencing in budding 
yeast and plants. Using this improved approach, we 
identify gene and codon specific ribosome stalls after 
depletion of eIF5A in budding yeast. In addition, we 
identify multiple novel frameshift events associated with 
strain specific ribosome stalling. Finally, we validate our 
computational analysis strategy in plants by 

investigating GMUCT 2.0 data in Arabidopsis thaliana 
developmental stages. In addition to developmental 
stage- and codon-specific regulation of translation 
elongation, we report a clear increase of ribosome 
stalling at termination level in an age dependent 
manner.  

MATERIAL AND METHODS 

Implementation 
Fivepseq is written in python 2.7 and can be used with 
python 2.7 or 3.x in Unix operating systems. The input 
for fivepseq are alignment, and genome sequence and 
annotation files. We used the plastid framework (24) for 
retrieving 5’P counts in respect to annotated start and 
stop positions of gene coding sequences (CDS). 
Protein coding genes (or alternative features specified 
at input) are filtered based on transcript attributes in the 
annotation files. The general distribution of 5’P counts 
is used to determine outliers. The counts are assumed 
to fall within Poisson distribution with the λ parameter 
defined as the mean of all the counts greater than 0. 
Counts that fall below nominal probability 0 defined by 
python package stats are considered as outliers and 
their values are set to the lowest value among all the 
outliers. The noise removal options are adjustable. 
Library size normalization is performed accounting for 
preprocessed counts in the coding regions, and counts 
are presented as reads per million (RPM). 

To obtain metagene counts, we query 100 nt 
(adjustable) around start and stop positions and 
combine the position-wise counts across all the genes. 
To obtain meta-count vectors for Fast Fourier 
transformation (FFT), we align the genes at the start or 
stop positions, then truncate all the genes to the 0.75 
percentile of lengths and add stretches of zeros to 
shorter genes. The resulting equal length vectors are 
summed up at each position and the resulting meta-
vector is used for FFT analysis implemented in the 
python numpy package. The periodicity values are 
determined by normalizing the number of waves to the 
meta-vector length, and the absolute values of the 
corresponding signals are taken as the measure of 
periodicity strength. A signal-to-noise ratio is computed 
for the FFT signal by dividing it to the mean of the rest 
of the signals, the strongest periodicity statistics are 
stored as output. To obtain frame preference statistics, 
we sum the counts falling into the first (F0), the second 
(F1) and the third (F2) nucleotide in each codon of all 
the genes. For each frame i, the relative preference 
compared to the other two frames j and k is computed 
as the frame protection index with the formula . 
Significance of frame-preference is estimated by a t-
test comparing the counts in a given frame to the 
distribution of counts in the other frames. The same 
calculations are also performed for each gene 
separately. All the statistics are stored in text files, while 
the global FPI and the maximum p-value for two 
possible comparisons in each frame are displayed on 
the reports.  
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For each codon, we sum the counts at certain positions 
upstream from its first nucleotide in all the CDS regions 
across the genome. By default, we store counts 30 nt 
upstream and 5 nt downstream (adjustable). For each 
amino acid, we combine the counts for the set of 
codons it is encoded by. The same computations are 
performed for all combinations of two/three consecutive 
codons (or di/tri-peptides), taking the relative positions 
of 5’P counts from the first nucleotide of the first codon. 
The di/tri-codons and di/tri-peptides are then filtered to 
include the top 50 motifs with highest relative counts at 
positions -14 nt and -11 nt (adjustable) compared to 
background distribution in the given region (-30 to +5 
nt).  

We use the python bokeh package  (v1.0.4) (25) to 
visualize the counts and statistics obtained above and 
export to images (.png and .svg) and HTML formatted 
report files. We use the interactive bokeh tools for 
zooming and hovering over features under interest and 
limiting the view to certain samples.   

Preprocessing  
The input for fivepseq are alignment (.bam) files. To 
ease the experience for the user, we also provide a 
script for preprocessing of raw (.fastq) files and (.bam) 
alignment file generation (https://github.com/lilit-
nersisyan/fivepseq/blob/master/preprocess_scripts/
fivepseq_preprocess.sh), which performs (i) adapter 
trimming with cutadapt (26) (with the standard Illumina 
adapter AGATCGGAAGAGCAC and options --
minimum-length 28 -e 0.2 -o 9 --nextseq-trim 20); (ii) 
extraction of unique molecular identifiers (UMI) with 
UMI-tools (27) (with the option --bc-pattern 
NNNNNNNN); (iii) quality control before and after fastq 
p r e p r o c e s s i n g w i t h F a s t Q C [ h t t p s : / /
www.bioinformatics.babraham.ac.uk/projects/fastqc/] 
and MultiQC (28); (iv) reference index generation and 
a l ignment wi th STAR (29) (wi th opt ions - -
a l i g n E n d s T y p e E x t e n d 5 p O f R e a d 1 - -
o u t F i l t e r M a t c h N m i n O v e r L r e a d 0 . 9 - -
outFilterMultimapNmax 3 --alignIntronMax 2500); (v) 
selection of primary alignments for multi-mapped reads 
with Samtools view program (30) (with the option -F 
0x100) and indexing with Samtools index program; (vi) 
UMI-based removal of PCR duplicates with UMI-tools 
(27); (vii) generation of read distribution statistics over 
different features (rRNA, mRNA, tRNA, snoRNA, 
snRNA, ncRNA) with bedtools intersect program (31); 
and (viii) generation of lightweight 5’P endpoint 
distribution (.bedgraph) files with bedtools genomecov 
program (31) (with options -bg -5 -strand +/-).   

Datasets 
The 5PSeq data from Saccharomyces cerevisiae with 
eIF5A depletion (7) are available from the Gene 
Expression Omnibus (GEO) under accession 
GSE91064 (replicates GSM2420386, GSM2420387 
and GSM2420390 presented in the main figures). 
5PSeq data for S. cerevisiae 3AT and CHX treatments 
and randomly fragmented controls (3) are available 
under accessions GSM1541731, GSM1541711 and 

GSM1541717. The Arabidopsis thaliana GMUCT 2.0 
dataset was available from GSE72505 and the PARE 
dataset from GSE77549 (9). R64-1-1 and TAIR10 
assembiles were used for S. cerevisiae and A. thaliana 
genomes. The fastq files were preprocessed with the 
fivepseq_preprocess.sh script with its default 
parameters. UMI extraction and deduplication steps 
were skipped for the GMUCT 2.0 and PARE datasets 
and adapter trimming was performed with the options -
a TGGAATTCTCGGGTGCCAAGG --minimum-length 
20. Fivepseq reports were generated with fivepseq 
version 1.0b5 with its default options.  

Motif and frameshift analysis 
Counts for the tripeptide motifs were taken from the 
tripeptide_pauses.txt files in the fivepseq output. The 
relative counts at position -11 nt over the background 
were considered to filter motifs with at least 3-fold 
enrichment. The logo plots for common motifs were 
generated with the Seq2Logo generator (32). Motif 
enrichment for frameshift analysis in RNA sequences 
was performed with the MEME suite (33) under 1-order 
model of sequences, restricting motif length to 6-7 nt. 
Variable-nucleotide and out-of-frame motifs were 
filtered out.  

For comparison of gene-specific frame preferences we 
took statistics from the frame_counts_TERM.txt files in 
the fivepseq output for the wild type and the tif5A1-3 
strains. Only genes with at least 50 reads mapping to 
at least 30 positions were considered. We took the 
genes where the dominant frame (the one with highest 
FPI) was the same across all the replicates in each 
strain. The frame-specific count line-charts were 
produced in R by taking the counts_FULL_LENGTH.txt 
file as input. The counts along the gene body were 
averaged over a 90 nt window and then separated into 
a vector for each frame and plotted as overlaid line 
charts. We then performed manual selection of genes 
for which we could observe change in the frame along 
the gene body consistently among the replicates in 
each strain. We then plotted combined counts across 
the replicates for the 13 genes chosen in this manner.  

RESULTS  
Fivepseq facilitates reproducible analysis of 5´P 
degradome data   
To address the current limitation of computational 
methods to analyze and interpret 5’P mRNA 
degradome sequencing data we developed fivepseq, a 
python based standalone command line application 
that performs comprehensive analyses of 5’P endpoint 
distribution and facilitates its biological interpretation. 
We designed fivepseq to generate full reports 
regarding translational features with a single command 
(“fivepseq”) indicating the mapped reads, and the 
sequence and annotated features of the genome of 
interest (Figure 1). Although normally most users will 
already have reads mapped to their genome of interest, 
to further facilitate its usability we have also included 
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an auxiliary script (“fivepseq_preprocess.sh”) to 
perform all required preprocessing steps from raw 
sequencing data (.fastq), such as adapter and quality 
trimming, removal of PCR duplicates and generation of 
alignment files (.bam) (see methods for details). This 
step also generates lightweight files (.bedgraph) to 
enable visualization of the 5’P endpoints in a genome 
browser. To facilitate the study of co-translational 
degradation features, f ivepseq automatical ly 
masks reads mapping to rRNA, tRNA or non-coding 
RNA (adjustable upon user input). With this information 
fivepseq generates interactive reports in HTML format 
(see the report links in the data availability section), 
providing tools for navigation, zooming, hovering and 
sample selection, using the bokeh package as 
framework (25). To facilitate data sharing and 
downstream analysis we have designed fivepseq to 
output also text files with count distribution and 
statistics, and to generate publication quality vector 
images.  

 In brief, fivepseq performs the following analysis. First, we 
analyze the mapped reads to obtain 5’P count vectors in 
respect to annotated start and stop positions of gene coding 
sequences (CDS) using  plastid as a framework and sum the 
counts at each position across genes to obtain metagene 
information (Figure 2A) (24). As fivepseq has been designed 
to investigate in vivo 5’-3’ footprints generated by the cellular 
degradation machinery, we decided not to apply any 
correction to the 5’ end position, unlike many ribosome 
profiling approaches (12, 20). We reasoned that any 
observed variation will be caused by in vivo physiological 
variations (not due to differential in vitro RNA digestion) and 
decided to provide the user with real protection patterns to 
facilitate the biological interpretation with no prior 
assumptions regarding fragment position relative to the 
ribosome. To avoid the effect of outliers, we perform data 
cleaning and noise reduction steps, down-scaling extremely 
high 5’P counts, which adds to robustness of fivepseq.  

As ribosomes move along the mRNAs one codon at a 
time, we also analyze the presence of 3-nt periodicity 
and frame preference in the 5’P degradome data. We 
sum the counts falling into the first (F0), the second 
(F1) or the third (F2) nucleotide of each codon in each 
gene and represent it as a histogram. To quantify 
variations in the observed frame protection patterns we 
also provide statistics for frame protection - the frame 
protection index (FPI, see methods) and a t-test p-
value comparing counts in each frame to the other two. 
In addition to global profiles, 5’P degradome 
sequencing can also provide gene-specific information. 
To achieve this, we transform the gene-specific frame 
counts into 2D coordinates and visualize them with 
triangle plots, where each point is a gene and each 
triangle vertex a frame (Figure 2B). The higher the 
counts in frames F0, F1 or F2, the closer is the point to 
the respective triangle vertex. To provide a more 
sensitive measure of presence of periodic count 
patterns without restricting to 3-nt, we also perform 

a Fast Fourier transformation based (FFT) analysis. As 
anticipated, the FFT analysis shows a clear periodicity 
peaking at 3-nt, as expected from the protection 
patterns of a ribosome moving one codon at a time 
(Figure 2B).  

In addition to general ribosome protection patterns 
associated with translation initiation and termination, it 
is also important to identify codon-specific protection 
patterns arising in translation elongation. Context-
dependent ribosome protection (or stalling) can inform, 
for example, about differential velocity for incorporation 
of certain amino acids (3) or even interactions between 
the ribosome exit tunnel and particular peptide 
sequences (7). This effect can be even more drastic 
when targeting amino acid or tRNA metabolism (3, 34). 
To aid in those analyses, we compute the metagene 
profiles for 5’P endpoints positions at a certain distance 
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> fivepseq_preprocess.sh -f [FQ] -g [FA] -a [GFF] 
> fivepseq -b [BAM] -g [FA] -a [GFF] [optional args]
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Figure 1. Schematic representation of the fivepseq workflow. The preprocessing steps generate alignment (.bam) files 
from raw reads (.fastq) and may optionally be performed with the preprocessing script fivepseq_preprocess.sh. It also 
produces lightweight files (.bedgraph) for visualization in genome browsers. The main fivepseq workflow takes alignment 
and genome sequence and annotation files as input and generates interactive reports and publication quality image files 
describing the translational features, as well as stores counts and statistics in text files suitable for downstream analysis. 
Type to enter text

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.01.22.915421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915421
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the first nucleotide of each codon or amino acid 
(see below Figure 3A). We generate interactive line 
charts for each individual codon (or amino acid) where 
samples are overlaid and specific samples may be 
interactively highlighted or hidden. We also summarize 
that information in a heatmap to facilitate the 
comparison across codons within a sample (Figure 
3A). To ease comparison of translational features 
between samples, we also generate differential 
heatmaps for each sample pair, where the normalized 
difference between counts at every position from each 
codon is displayed (Figure 3B,C). As certain 
combinations of codons or amino acids can also affect 
ribosome dynamics (35, 36), we additionally analyzed 
the ribosome protection associated with the presence 

of two and three codon combinations (and di/tri-
peptide) (Figure 3D-E).  

Finally, as in some cases particular groups of genes 
display differential translational features, we allow for 
specification of particular gene sets for detailed 
analysis using a simple text input. This allows for easy 
comparison of ribosome protection signatures across 
gene sets and samples. 

Global and gene-specific ribosome protection 
patterns upon eIF5A depletion 
Having developed the fivepseq framework, we decided 
to demonstrate its utility by reanalyzing our recent 
5PSeq data targeting the translation elongation factor 
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Figure 2. General 5’P degradome distribution in budding yeast. A. For each transcript, fivepseq queries a region around 
the CDS start and stop codons and gets a vector containing 5’P count information. These vectors are summed up to derive a 
metagene coverage around the start and stop codons. Library size normalized counts are presented as reads per million 
(RPM) considering only those reads mapping in the coding regions. B. Top: Fast Fourier transform (FFT) analysis showing 
the strength (y-axis) and periodicity (x-axis) values. Bottom: Histograms displaying the global frame preference for the first 
(F0), the second (F1) and the third (F2) nucleotide of each codon. The frame protection index (FPI) shows the strength of 
preference for each frame along with a t-test p-value comparing the counts to the other two frames. C. Frame preference 
values for each gene converted to 2D space in a triangle plot, where each point is a gene and its distance from the triangle 
vertex is inversely proportional to respective frame preference. D. Genome wide frame preferences for a positive control, a 
CHX treated sample and a randomly fragmented negative control (3).
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eIF5A in S. cerevisiae (7). eIF5A is thought to act in 
translation elongation by binding the E-site and 
promoting peptide bond formation (37). In addition, the 
lack of eIF5A is known to increase ribosome stalling at 
proline and stop codons (37–39). We analyzed 5PSeq 
data obtained from thermosensitive yeast strains 
carrying  one (tif1A-1) or two (tif5A1-3) point mutations 
in the eIF5A gene (7). As expected, we clearly see a 
5’P peak 17 nt upstream from the stop codon, 
indicating RNA decay fragments protected by 
ribosomes stalled at termination (Figure 2A). This 
protection at termination was enhanced for both 
mutants and led also to an increased protection 47 nt 
and 50 nt upstream from the stop codon, indicating 
disomes stalled at the stop codon. We also detected a 
clear protection pattern 14 nt upstream from the start 
codon for the tif5A1-3 mutant that corresponds to 
ribosome stalling in the P site at the start codon, in 
agreement with our previous finding (7). In addition to 
start and stop peaks, we also investigated the variation 
of 3-nt periodicity across strains, as it can provide 
information regarding translation elongation speed and 
co-translational mRNA degradation sensitivity (3). To 
expand our prior work, we quantitatively assess the 
presence and compare the strength of genome-wide 3-
nt periodicity applying Fast Fourier transformation 
(FFT) analysis. As seen in Figure 2B, the presence of 
3-nt periodicity is apparent in all the three strains and 
increases in the eIF5A mutants. Additionally, we can 
easily see that the 5’ counts are accumulated in the 
second nucleotide of each codon (F1), with counts 
significantly greater than those in frames F0 and F2, 
and this effect was more apparent in the eIF5A mutants 
(F1 frame protection index (FPI): 0.59 and 0.67 versus 
0.55 in the wild type). This frame preference observed 
at metagene level is not driven only by a few genes, as 
we can see that gene-specific frame protection is 
generally skewed toward F1 (Figure 2C). To 
demonstrate the general applicability of these 
analyses, we also analyzed 5’P degradome after 
stalling ribosomes with cycloheximide and using 
randomly fragmented RNA as a negative control, where 
no apparent 3-nt periodicity was observed (Figure 2D).  

Codon-specific ribosome protection patterns upon 
eIF5A depletion 

The role of eIF5A in translation elongation was initially 
restricted to its ability to contribute to releasing 
ribosome stalls at polyproline motifs (39). However, 
recent data shows that this role is not limited to 
polyproline motifs, but also combinations of other 
amino acids, including proline, glycine and charged 
amino acids (7, 38). To investigate elongation stalls in 
more detail we first analyzed codon and amino acid 
specific ribosome protection. To facilitate the 
comparison of protection patterns for the same codon 
between different conditions, fivepseq generates 
differential heatmaps, where only the difference of 
scaled counts between each pair of conditions is 
shown. For example, the differential heatmap between 
the tif5A1-3 eIF5A mutant (which displays a stronger 

phenotype compared to tif5A1-1) and the wild type, 
clearly reveals not only increased protection at 
termination, but also at -17 nt and -14 nt from proline 
(Figure 3B). Given the side chain structure of proline, it 
induces ribosome stalls during peptide bond formation, 
which normally get alleviated by eIF5A (40), while the 
pause at -11 nt could be explained by differential 
interaction with the ribosome exit tunnel (7). Similar 
changes in protection were also observed for glycine at 
positions -14, for arginine at -11, etc. These pauses 
suggest alleviation of ribosome stalling by eIF5A when 
the amino acid has already been incorporated into the 
peptide chain and interacts with the exit tunnel. To 
demonstrate the robustness of this analysis, we also 
analyzed ribosome protection after 3AT treatment (3), 
which inhibits the histidine biosynthesis pathway and 
induces drastic ribosome stalls at histidine codons 
(Figure 3C).  

In addition to single amino acids, specific arrangement 
of consecutive amino acids can also lead to ribosome 
stalls, as the neighboring amino acids affect peptide 
bond formation or modulate interactions in the 
ribosome exit tunnel (35). In other cases, specific 
codon motifs can change the mRNA conformation, 
interfering with the decoding process (36). To facilitate 
the exploration of this phenomenon, we generate an 
automatic report investigating two or three codon (or 
amino acids) combinations able to produce ribosome 
stalls. This analysis shows for example, that the 
dipeptide GP (glycine-proline) induces pausing in the 
tif5A1-3 eIF5A mutant (Figure 3D). More pauses are 
observed at tripeptide motifs both in the mutants and in 
the wild type. For example, DNP (Asp-Asn-Pro) shows 
the strongest stall in the tif5A1-3 mutant (Figure 3E). 
Notably, the tripeptides were enriched in prolines in the 
E and A sites, but other amino acids, such as aspartic 
acid and arginine were also enriched in these positions. 
To further expand our analysis and for more systematic 
characterization of the tripeptides, we focused on those 
motifs for which more than 3-fold increase in -11 counts 
was observed. Seven motifs were common in all the 
samples, while the majority were specific to the 
mutants. Interestingly, there were also motifs that 
showed 3-fold increase only in the wild type (Figure 3F, 
Supplementary Figure S1). Motif analysis showed 
enrichment of proline, glycine and charged amino acids 
arginine and lysine in the E and A sites in the eIF5A 
mutants, while in the wild type strain lysine and 
arginine were frequently observed in the E, P and A 
sites, and glycine and glutamic acid mainly in the A site 
(7).  

Contribution of ribosome stalling and eIF5A 
depletion to ribosome frameshifts   
Having confirmed our ability to identify and expand 
known eIF5A biology, we decided to use fivepseq to 
investigate gene specific regulation of ribosome 
protection patterns. We wondered whether the changes 
in frame protection patterns observed at global level 
(Figure 2B-C) could also be detected at single-gene 
resolution. Taking the gene-specific frame preference 
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statistics output of fivepseq, we compared frame 
preference patterns between the wild type and the 
tif5A1-3 eIF5A mutant strains, restricting ourselves to 
high coverage genes (more than 50 reads distributed 
along at least 30 different nucleotides). In the wild type 
strain, we identified 32 genes with 5’P counts 
predominantly in the frame F0, and 13 genes in the 

frame F2. Interestingly, those same genes had the 
expected canonical preference for the frame F1 in the 
tif5A1-3 mutant (Supplementary Table S1). In tif5A1-3, 
we identified fewer genes with preference for F0 (6 
genes) and F2 (6 genes), while these same genes had 
F1 preference in the wild type (Supplementary Table 
S1). To understand if the observed changes in frame 
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Figure 3. Codon and codon-motif specific ribosome protection patterns in budding yeast. A. Heatmap of counts 
located at a certain distance from each amino acid in the wild type. The ribosome scheme depicts positions of 5’P endpoints 
relative to the ribosome. B. A differential heatmap showing the difference in scaled 5’P counts between the tif5A1-3 eIF5A 
mutant and the wild type for all the amino acids, and a line chart highlighting the difference between both mutants and the 
wild type for proline (Pro/P).  C. A differential heatmap of codon-specific 5’P counts between 3AT treated and control yeast 
cells highlighting the stalling at -17 nt from histidine (His/H) and the corresponding line chart. D. The top 20 dipeptides 
showing relatively high counts at -14 nt in the tif5A1-3 eIF5A mutant and the strongest pausing caused by GP (Gly-Pro) 
dipeptide, comparing the two eIF5A mutants and the wild type. E. The top 20 tripeptide motifs showing the strongest -11 nt 
pausing in the tif5A1-3 eIF5A mutant and a line chart comparing the two mutants and the wild type strains for the strongest 
pause associated tripeptide DNP (Asp-Asn-Pro). F. A venn diagram showing the overlap of tripeptides with at least 3-fold 
increase in 5’P counts at position -11 nt compared to the background, in the three yeast strains. The logo plots present the 
motifs specific to the wild type, or the three strains or to the two eIF5A mutants. 
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preference could partially be explained by ribosome 
frameshifts, we explored the line charts representing 
frame-specific counts along the bodies of these genes 
and manually picked those that consistently changed 
the frame of preference in the same position in all the 
replicates for each strain, resulting in 13 genes with 
likely ribosomal frameshifts (RF) in the wild type in the 
directions -1 (7 genes, Figure 4A) and +1 (6 genes, 
Figure 4B) (Supplementary Table S2).  

As the orthologues or family members of some of these 
genes were previously reported to experience 
ribosome frameshifts (e.g. RPS11A in S. pombe, see 
Supplementary Table S2), we decided to check for the 
presence of known “slippery” sequences that 
commonly promote ribosomal frameshifts. First, we 
checked for 6 and 7-nucleotide motifs in the RNA 
sequences, and found enrichment for Lysine and 

Arginine, in particular for the di-codon AAG-AAG (p-
value > 10e-4). Interestingly, di- and tri- peptide motifs 
enriched in Lys, Arg and Glu showed preferential 
stalling specifically in the wild type strains, with drastic 
stalling at poly-lysines (Figure 3F, Figure S1), 
suggesting possible lack of these amino acids or 
respective t-RNAs. The observed ribosome stalling in 
the wild type strain for those genes would  lead to 
r ibosome queuing and potent ia l ly fac i l i ta te 
frameshifting around  “slippery” sequences, as has 
recently been proposed in bacteria (41). Indeed, 8 out 
of the13 explored genes had slippery sites (C-TTC-
AAG and GCC-AAG-C) that are commonly inducing 
frameshifts at “hungry” lysine codons (42). The fact that 
stalling at poly-lysines is preferentially occurring in the 
wild type  (and not the tif5A1-3 mutant (7)) suggests 
that the general decrease in relative ribosome load in 
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Figure 4. Changes in frame preference patterns in the wild type versus the eIF5A mutant strains.  A. Two (out of 7) 
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those genes in the eIF5A mutant strain (7) reduces 
frequencies of ribosome collisions and suppresses 
frameshifts. This observation might  provide 
functionally relevance to the environmentally regulated 
stall at SKE motifs (Ser-Lys-Glu) that we described 
previously in the wild type strains (7). Additionally, the 
observed enrichment for Arg-Arg sequence AAG-AAG 
is also known to induce frameshifting in E. coli, when 
the cognate t-RNAs are sparse (42, 43) (Figure 4). 
Interestingly, all, except for one, of the identified 13 
genes code for ribosomal proteins or regulate 
translation (Supplementary Table S2), suggesting a 
possible regulatory role (44). Contrary to our 
expectations, even if the eIF5A depletion leads to 
massive ribosome stalling at polyproline sequence, we 
were only able to find a few examples where frameshift 
was induced by eIF5A depletion (Supplementary Table 
S1). 5´P degradome reveals codon-specific ribosome 
protection patterns in plants  

Having demonstrated the ability of fivepseq to identify 
codon- and gene-specific ribosome protection patterns 
in budding yeast, we decided to apply it to investigate 
5’P degradome in A. thaliana, an organism of higher 
complexity. In plants, the cytoplasmic exonuclease 
XRN4 (orthologue of the yeast XRN1) is responsible for 
the 5’-3’ co-translational mRNA decay and can also be 
used to investigate ribosome protection (4, 9). For this 
purpose, we decided to use a rich GMUCT 2.0 dataset 
of developmental transitions in A. thaliana (Poethig, 
Meyers, Willmann and McCormick, GSE72505). This 
dataset was originally generated to study miRNA 
regulation, and thus was never used to investigate 
ribosome dynamics. In addition to this, we also 
explored the PARE data from A. thaliana with fivepseq 
(9). However, the use of MmeI during library generation 
introduces an additional bias that complicates the 
investigation of codon-specific patterns in these 
datasets (Figure S2).  

We observed clear accumulation of 5’P endpoints 16 nt 
upstream from the stop codons of all protein coding 
genes indicating ribosome protection at termination 
(Figure 5A) and a clear 3-nt periodicity (4, 9). 
Interestingly, the protection at codons different from the 
stop is extended by an additional nucleotide (17 nt, as 
observed in yeast) suggesting that ribosomes stalled at 
termination level in A. thaliana protect a region 1 nt 
shorter than in budding yeast. Globally, we observed a 
protection preference for the second nucleotide of each 
codon (F1) (Figure 5B). The 3-nt patterns were subtler 
compared to those observed in budding yeast, which 
may be attributed to more complex biology in plants, 
longer mRNA half-life (as we hypothesized for S. 
pombe (3, 8)) or differences in 5’P degradome library 
preparation. Interestingly, we observed a clear 
regulation of 5’P accumulation associated with the stop 
codon across developmental stages, which suggests 
an increase of ribosome termination stall with age (from 
day 6 to day 33 of growth). This effect was not 
dependent on genotype (early flowering, flc-3, or late 
flowering, FLC) or the tissue under study (cotyledons 

from day 6, apices from days 9 and 11, and leaves 
from days 14, 23, 32 and 33) (Figure 5A). Increased 
termination stall during A. thaliana development is in 
line with previously observed reduction in polysome 
associated mRNAs (45), and the increased ribosome 
termination stalls that we previously described in 
budding yeast during  limited nutrient conditions or 
stationary phase (3, 8). Interestingly, apices showed 
subtle preference for 5’P counts 17nt upstream from 
the stop codon, as opposed to the general -16 nt 
preference in the other samples (Figure 5A, Figure 
S3E). Contrary to previous findings suggesting 
differential protection for  TAA and TAG stop codons 
(16 and 17 nt respectively) (4), we observe similar 
preference for all stop codons (TGA, TAG and TAA ) 
(Figure S3E). The coverage surrounding the start 
codon was relatively low and thus limited our ability to 
study ribosome protection patterns associated with 
translation initiation (Figure 5A). This is likely the result 
of the poly(A) selection strategy used to generate 
GMUCT 2.0  libraries that biases read coverage 
towards 3’ ends the genes (4, 6, 8).  

Having investigated differential co-translational decay 
associated with translation termination, we moved on to 
explore differential ribosome protection during 
translation elongation. Notably, for some amino acids, 
such as valine, abundances of upstream 5’P reads and 
protection patterns were similar across all the samples. 
Whereas for others, such as aspartic acid, a difference 
in 5’P read abundances was present between leaves 
and apices (Figure 5C). This suggests differential 
codon composition on mRNAs expressed at different 
stages as previously shown (46). At single amino acid 
level, proline did not induce noticeable ribosome 
stalling. However, the motifs of two or three codons/
amino acids associated with ribosome pausing, 
showed enrichment for proline, arginine and glycine, 
similar to what was observed in yeast (Figure 5D-E, 
Figure S3A-D). We confirmed accumulation of 5’P 
reads 14 nt upstream of known inhibitory codon pairs, 
such as Arg-Arg and Arg-Pro (Figure S3A-C). In 
addition, we found the Pro-Ala (CCC-GCC) and Asp-
Pro-Ala (GAT-CCC-GCC) motifs to be strongly 
associated with ribosome pausing specifically in A. 
thaliana (Figure 5D-E). This pausing was observed in 
all the samples and was codon-dependent. We also 
identified particular motifs where pausing was 
associated with age. Specifically, the tripeptides Trp-
Pro-Gly (WPG) and Ile-Phe-Cys (IFC) (Figure 5F,G), 
and the dicodon Gln-Leu (CAA-CTG) (Figure S3D) 
showed increased stalling in earlier developmental 
stages. 

DISCUSSION 
Here we have presented the development of a 
reproducible computational pipeline for 5’P degradome 
analysis. Fivepseq, performs comprehensive analyses 
of 5'P degradome data in respect to translational 
features in a single command line and allows for easy 
exploration of global and gene-specific translational 
frame preference and codon-specific ribosome 
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protection patterns. To facilitate its use by scientists 
with limited bioinformatic expertise, we have 
implemented interactive features in the visualization 
reports, which allow for smooth exploratory analysis, 
such as zooming and hovering over features of interest 
or easy comparison between samples. In addition, we 
have also implemented a rich variety of text output files 
describing count distributions and statistics that can be 
used by more experienced computational biologists for 
advanced downstream analysis. Fivepseq requires 
minimal data preprocessing, and also provides a single 
command line option to convert raw reads to alignment 
files before main analysis. 

To demonstrate robustness and applicability of 
fivepseq, we first re-analyzed previous data from our 
group focused on the 5’P degradome sequencing in 
budding yeast after eIF5A depletion (7). We could 
identify increased ribosome protection at termination 
level and codon specific ribosome pauses such as 
DNP (Asp-Asn-Pro) and PPP (Pro-Pro-Pro) associated 
with eIF5A depletion (7, 38). In addition to known eIF5A 
biology, our new single gene analysis is able to identify 
novel features from the original dataset. We identified 
57 genes with anomalous frame protection patterns 
both in the wild-type and the mutant strains. Analysis of 

those data revealed evidence for frameshifting in 13 
genes in the wild type strain associated with the 
ribosome and translational process. Interestingly the 
observed f rameshi f ts were assoc iated wi th 
combinatorial presence of arginine and lysine rich 
“slippery” sequences and KKK, RKK motifs that in the 
wild type strain may induce ribosome pausing (42, 43). 
This result is in agreement with recent reports showing 
how ribosome stalling can facilitate frame-shifting 
events (41). Particularly interesting is the case of the 
gene TMA46 that is associated with the resolution of 
arginine and lysine stalls (14) and for which we also 
identify a stall dependent frameshift. Suggesting thus a 
potential cross regulation between both processes. 
However, it is important to note that 5’P degradome 
analysis focuses on those molecules undergoing co-
translational degradation that represent a subset of the 
mRNA molecules undergoing active translation. More 
detailed molecular analysis will be required to confirm 
both the production of frameshifted proteins and their 
potential functional role. 

Finally, we demonstrate the flexibility of our 
computational pipeline by analyzing A. thaliana 
GMUCT 2.0 degradome data, originally developed to 
investigate miRNA regulation during development. In 
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Figure 5. Ribosome protection patterns in Arabidopsis thaliana. A. Metagene level protection patterns at start and stop. The stop 
peak at -17nt is highlighted to underline the increase in protection associated with growth. B. Top: Fast Fourier transform (FFT) 
analysis showing the strength (y-axis) and periodicity (x-axis) values. Bottom: Histograms displaying the global frame 
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addition to previously described general ribosome 
protection features (4, 9), we found both similarities 
and differences in respect to our work in budding yeast. 
Even though in vivo 5’P codon specific ribosome 
footprints have a similar size between yeast and A. 
thaliana, in the latter ribosome protection at translation 
termination level is one nucleotide shorter (16 nt in 
plants in comparison to the 17 nt observed in yeast). 
Interestingly, we found that increased ribosome 
protection at translation termination level increases with 
developmental stage. This phenomenon resembles our 
observation that in budding yeast limited nutrition or 
stationary phase also leads to an accumulation of 
ribosomes stalled at termination level (3, 8). All this is in 
agreement with an expected decrease in overall 
translation with age and suggests that translation 
termination is often regulated (45). In addition to this 
general regulation, we also identified codon-specific 
r ibosome paus ing assoc ia ted wi th spec i f i c 
developmental stages. 
In summary our work shows how the development of 
improved computational tools for the analysis of 5’P 
degradome datasets is critical to derive novel 
biological insights regarding the crosstalk between 
translation and mRNA decay.  We expect that fivepseq 
will facilitate the analysis of 5’P degradome sequencing 
data across multiple organisms and support its 
reproducible investigation. 
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