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Abstract 

To facilitate scientific collaboration on polygenic risk scores (PRS) research, we created 

an extensive PRS online repository for 49 common cancer traits integrating freely 

available genome-wide association studies (GWAS) summary statistics from three 

sources: published GWAS, the NHGRI-EBI GWAS Catalog, and UK Biobank-based 

GWAS. Our framework condenses these summary statistics into PRS using various 

approaches such as linkage disequilibrium pruning / p-value thresholding (fixed or data-

adaptively optimized thresholds) and penalized, genome-wide effect size weighting. We 

evaluated the PRS in two biobanks: the Michigan Genomics Initiative (MGI), a 

longitudinal biorepository effort at Michigan Medicine, and the population-based UK 

Biobank (UKB). For each PRS construct, we provide measures on predictive 

performance, calibration, and discrimination. Besides PRS evaluation, the Cancer-

PRSweb platform features construct downloads and phenome-wide PRS association 

study results (PRS-PheWAS) for predictive PRS. We expect this integrated platform to 

accelerate PRS-related cancer research. 

Introduction 

Since 2005, genome-wide association studies (GWAS) have successfully uncovered 

many common genetic variants associated with a plethora of complex traits and 

disorders [1-3]. Translation of these findings into clinical practice to improve pre-

symptomatic screening and patient care is a major aspiration in the research 

community. However, genetic risk factors for complex diseases like cancer usually have 

relatively small risk effects and/or low frequencies and thus only have limited ability as 

individual predictors of risk in the overall population. Alternatively, the integration of all 

common risk variants into a single biomarker, called a polygenic risk score (PRS), 

represents a widely used approach for potentially identifying high-risk individuals at the 

highest levels of PRS [4-6]. For example, it was shown that PRS for five common 

complex diseases (coronary artery disease, atrial fibrillation, type 2 diabetes, 

inflammatory bowel disease, and breast cancer) have the potential to detect individuals 

at significantly higher genetic risk [4] that might benefit from intensified screening 

efforts, prophylactic prevention or earlier treatment. Several challenges have to be 
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overcome for constructing a PRS that incorporates state of the art scientific knowledge: 

one needs (1) summary statistics from an independent discovery GWAS with phenotype 

and ancestry matching the target study [7]; (2) individual-level genetic data of a 

sufficiently large cohort to correct for linkage disequilibrium (LD) between genetic 

variants; and (3) a computationally efficient method to calculate each PRS and to find 

the best PRS construct for the target cohort. 

The gold standards for GWAS to define PRS constructs are independent, large 

GWAS analyses or GWAS meta-analyses. Full summary statistics enable exploration of 

the complete spectrum of PRS construction methods, e.g., those that determine the 

optimal inclusion p-value threshold of risk variants for prediction, which often deviates 

from the standard threshold for genome-wide significance (P-value  ≤ 5x10-8). So far, 

several cancer GWAS research groups and consortia have openly shared their full 

GWAS summary statistics with the research community: ovarian carcinoma [8, 9], 

breast cancer [10, 11], prostate cancer [12], colorectal cancer [13], and cervical 

carcinoma [14]. Other groups have released variants that reached an arbitrarily chosen 

p-value threshold below genome-wide significance (e.g., P-value < 10-5)[15]. In addition 

to complete or partial GWAS summary statistics, lists of genome-wide significant hits 

are available for nearly all published GWAS results. The NHGRI-EBI GWAS Catalog [2] 

(https://www.ebi.ac.uk/gwas/) curates and stores published risk variants for a plethora of 

traits in a structured database, offering a convenient and efficient way to extract GWAS 

hits for automated processing. 

Alternative and growing sources for publicly available GWAS summary statistics 

across a large ensemble of diseases use UK Biobank genotype and phenotype data 

[16], adjusting for population stratification and/or relatedness between individuals ([17]; 

http://www.nealelab.is/uk-biobank and https://www.leelabsg.org/resources). These 

biobank-based approaches accessed thousands of phenotypes and traits that were 

defined in efficient automated fashion, e.g., by ICD10 diagnosis category, with specific 

phenotype defining algorithms like PHESANT [18] or PHEWAS CODES [19], or even 

with consortium-based curated phenotype constructs using the content of the electronic 

health records (EHR)  (FINNGEN; https://www.finngen.fi/en/researchers/clinical-

endpoints). 
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Another important aspect of finding a suitable set of GWAS summary statistics 

for a PRS is the mapping of the discovery GWAS trait, here the cancer phenotype, with 

the trait of interest in the target study. GWAS efforts usually balance specificity and 

sample size to maximize power for discovery. Consequently, the analyzed phenotype 

definition might not necessarily represent an ideal match to the phenotype of the target 

study.  Also, differences in diagnosis coding practices in EHR systems, e.g., the 

preference for certain diagnoses due to billing purposes, might limit the transferability of 

phenotype definitions across cohorts, even if the same coding systems were used [20]. 

The simplest form of PRS construction requires two things: a selected set of 

independent risk variants with estimated or weighted risk effect sizes (say ��
� ), and 

genotype data of individuals genotyped at the selected sites (say �� where � � a list �. 

A PRS can then be calculated for each individual as the sum of the weighted risk 

increasing alleles, namely ������ � ���  �� ).   

PRS construction methods and their underlying variant selection procedures can 

roughly be categorized into four groups: (i) fixed P-value thresholds of independent risk 

variants, e.g., “GWAS hits,” variants that reached genome-wide significance (with 

� � 5 � 10��; (ii) LD pruning (actually clumping) / P-value thresholding (“P&T”) of 

summary statistics that increases power by determining the most predictive P-value cut-

off that can be above or below genome-significance [6]; (iii) genome-wide PRS that 

consider the full GWAS summary statistics after modeling LD, applying shrinkage or 

Bayesian approaches, e.g., LDpred and lassosum, [21-24] and (iv) methods that use 

individual-level data from a GWAS to determine an optimal set of independent 

predictors through Bayesian spike and slab or mixture priors [25]. The first two 

approaches typically use the originally reported effect sizes for weighting, while the 

latter two approaches model LD and/or shrink effect sizes. All methods require a 

reference panel for LD estimation that ideally resembles or matches the genotype data 

underlying the discovery GWAS source. Since most only have summary statistics and 

not individual-level data of the discovery study, we will use only the first three 

approaches for PRS construction, i.e., fixed P-value thresholds, LD pruning / P-value 

thresholding, and Lassosum. 
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PRS have increasingly been used in cancer risk prediction and stratification. A 

brief survey of PRS related literature in PubMed shows that ~15% of all PRS articles are 

related to cancer, with 67% of cancer PRS papers focusing on common cancers 

(defined by the US National Cancer Institute (NCI; 

https://www.cancer.gov/types/common-cancers; estimated incidence of 40,000 or more 

in the United States in 2019). As of November 9, 173 PubMed articles on PRS and 

cancer have been published in 2019, more than double the previous high of 86 set in 

2018, indicating the rapid growth in collection, curation, and generation of genetic data. 

These studies typically employ construction methods (i) and (ii) as described above, 

although joint variant models are becoming more common because they generally 

outperform methods (i) and (ii) and advanced software has made joint modeling more 

computationally efficient for large sample sizes [26, 27]. Several publications 

constructed PRS for cancer traits using different methods [28-30] and described their 

PRS methodology. However, very few share the variants selected and their 

corresponding weights, making it a challenge to compare or replicate PRS results in 

different cohorts. The Polygenic Score Catalog (http://www.pgscatalog.org) is a 

resource under active development to help researchers share, apply, and evaluate 

PRS. However, this resource primarily relies on external PRS sources and currently 

considers only 21 traits (including only four cancer traits: ovarian, colorectal, prostate 

and breast cancer), and no validation is carried out in large biobanks.  

The primary goal of this study is the generation of PRS constructs for common 

groupings of cancer by using published, freely available cancer GWAS summary 

statistics and established PRS methods and genetic data from two large biobanks: the 

Michigan Genomics Initiative (MGI) and the UK Biobank (UKB) (Table 1). We explore 

hundreds of PRS constructs and offer optimized predictive PRS (in terms of maximal 

increase in an R2-type metric) for 49 cancers. The resulting repository of cancer PRS is 

made available online via an interactive platform, called Cancer PRSweb 

(http://prsweb.sph.umich.edu). In this platform, we accompany each GWAS source / 

PRS method combination with its downloadable constructs and performance metrics 

(like area under the receiver operating curve, tail enrichment, and Brier score), and we 

offer insights into secondary trait associations through screening of hundreds of cancer 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.22.915751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

and non-cancer phenotypes of the EHR-derived phenomes of MGI and UKB (Table 1). 

We also make the summary statistics for the phenome-wide association study 

(PheWAS) available. Thus, this centralized and unified platform is a timely attempt to 

accelerate cancer research related to PRS. 

Our repository contributes to the new and necessary work of democratizing PRS 

constructions and applications for several cancers under a uniform analytic framework 

to eventually develop transferable risk scores with clinical utility. We also offer 

phenome-wide exploration of PRS association through PRS-PheWAS, a tool previously 

introduced by this group [31, 32]. 

Results 

PRS Construction 

We screened the GWAS Catalog, PubMed, and UK Biobank GWAS efforts for any 

cancer GWAS summary statistics that were reported for European ancestry, to match 

the predominantly European cohorts of MGI and UKB, and that were openly available, 

i.e., did not require contacting the main authors or any form of written approval process. 

We identified 232 source sets that reported complete information for each tested single 

nucleotide polymorphisms (SNP) (position [and/or dbSNP ID], effect allele, effect 

estimate, p-value, and, ideally, effect allele frequency). We obtained 188 SNP sets 

based on UKB GWAS, 29 based on excerpts from the GWAS Catalog, and 20 from 

large GWAS or GWAS meta-analyses (Table S1 & S2). 

 We manually matched the traits of the identified cancer GWAS to cancer traits of 

MGI and UKB PheWAS-codes and analyzed each GWAS source separately, generating 

PRS for each. The discovery GWAS traits of the 232 source sets approximated 68 

cancer PheWAS-codes of the MGI phenome and 21 PheWAS-codes in the UKB 

phenome (Table S1 & S2). Following the scheme in Figure 1 and Table 2, we 

generated PRS using the “P & T” and/or “lassosum” approach and also generated PRS 

using fixed P-value thresholds after LD clumping (P-value  ≤ 5x10-5, 5x10-6, 5x10-7, 

5x10-8 [“GWAS Hits”], or 5x10-9). Using these methods and the available GWAS 

sources, we generated a total of 1,292 PRS (1,080 PRS for the MGI cohort and 212 

PRS for the UKB cohort) (Table S3). 
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PRS Evaluation 

We tested the association between each PRS and its corresponding cancer trait and 

evaluated each PRS in terms of performance (pseudo-R2), accuracy (Brier score), 

discrimination (area under the receiver operating characteristic curve [AUC]), and 

calibration (Hosmer-Lemeshow test). Finally, we tested their utility for risk stratification, 

i.e., their ability to enrich cases in five selected top percentiles (1, 2, 5, 10, and 25%) 

versus the rest of the PRS distribution (Figure 1). 

 

As an initial filtering step, we removed 625 PRS (48% of total PRS considered) that 

were not significantly (603 PRS with P > 0.05) or negatively (241 PRS) associated with 

their corresponding cancer trait in MGI and/or UKB. The majority of these filtered PRS 

were either based on discovery GWAS with small sample sizes that often did not 

identify any genome-wide significant hits or were evaluated for diseases with few cases 

or both, indicating a potential lack of power in our analysis. A total of 667 PRS for 49 

different cancer traits were positively and significantly associated with their 

corresponding cancers in MGI (478 PRS; 49 cancer traits) and UKB (189 PRS; 19 

cancer traits) (Table S3). 

 

Comparison of Performance Metrics: In general, we found that the ranking by pseudo-

R2 ensured strong performance across other metrics related to discrimination, accuracy, 

and overall association of PRS constructs for their specific cancers. Conversely, the 

enrichment analyses in the extreme PRS percentiles (e.g., top 5% versus rest) was not 

always concordant with the selection of optimal PRS based on pseudo-R2, showing that 

performance in the extreme tails could be optimized by a modified criterion that focuses 

on extremes of the risk distribution [33].  

An example evaluation is shown in Table 3. Here we compare PRS across 

seven construction methods (lassosum, P&T, and five fixed P-value thresholds) that 

were all based on a single summary statistics source, a large GWAS on overall breast 

cancer [11]. In MGI, we observed that the lassosum-based PRS (44,815 SNPs) had the 

best performance (highest pseudo-R2 = 0.057), the highest accuracy (Brier score = 
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0.137), the best discrimination between breast cancer cases and controls (AUC = 0.635 

[95% confidence interval (CI): 0.624, 0.647]), and showed the strongest association with 

breast cancer itself (odds ratio [OR] continuous PRS = 1.66 [95% CI: 1.58,1.73]). In this 

scenario, modeling LD information with lassosum retained more information than LD 

clumping [22], even though, unlike the other methods, lassosum only considered 

autosomal variants. 

The enrichment of cases in the top 1% compared to the rest was more 

pronounced for the “GWAS hits” PRS (Fixed Threshold P <= 5e-08; 334 SNPs; ORTop1% 

3.77 [95% CI: 2.71,5.23]) than for the lassoum-PRS (OR Top1% = 3.38 [95% CI: 

2.42,4.71]). We found signs that the logistic regression model that we used for the 

evaluation might be misspecified for some PRS, e.g., four of the seven PRS were not 

well-calibrated according to the Goodness-of-Fit test statistics (Hosmer-Lemeshow P <= 

0.05) (Table 3). In UKB, we observed an identical ranking of PRS methods but we 

noted several differences with MGI. First, the tuning parameters of the lassosum-PRS 

and the P&T-PRS differed between MGI and UKB, resulting in a different number of 

included variants (lassosum: MGI: 44,815 variants versus UKB: 286,144 variants; P&T: 

MGI 2,723 variants versus UKB: 1,682 variants) (Table 3). Closer inspection of the 

underlying tuning parameter optimization revealed comparable parameter ranking for 

lassosum and P&T, suggesting that optimizations seem cohort-specific but stable, i.e., a 

predictive PRS established in UKB might perform similarly well in MGI and vice versa 

(Spearman's rank correlation > 0.98) (Figure S1). 

 

Comparison across GWAS Sources: We also explored the influence of various GWAS 

sources on the predictive performance of PRS. As an illustrative example, we again 

focus on breast cancer PRS, but now consider PRS constructed from different breast 

cancer GWAS sources, using for each source the method that yielded the highest 

pseudo-R2 (Table 4). In MGI, the PRS (lassosum) of the largest available GWAS 

(122,977 cases and 105,974 controls) yielded the best performance across most PRS 

metrics (e.g. pseudo-R2 = 0.057, AUC = 0.635 [0.624,0.647]). The GWAS Catalog-PRS 

(P&T), which included 79 top hits from 18 different GWAS [11, 34-51], was ranked 

second (pseudo-R2 = 0.034) and showed significantly inferior discrimination ability (AUC 
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0.603 [0.591,0.615]). The case enrichment in the top 1% was pronounced but not 

significantly different from the top-ranked PRS (ORTop1%[GWAS Catalog] = 3.38 

[2.42,4.71] versus ORTop1%[Large GWAS] = 3.52 [2.52,4.89]). The four UKB GWAS-

based PRS (all based on lassosum) followed next and showed similar performances 

(pseudo-R2: 0.029 – 0.022; AUC between 0.603 – 0.586 with overlapping confidence 

intervals) and could be ranked according to their effective sample sizes. Most 

interestingly, the “UKB PheCode” PRS (6,977 variants) could differentiate cases and 

controls as well as the GWAS Catalog PRS, which was based on 79 independent risk 

variants with P <= 2.5e-08 reported in 18 GWAS (both AUC 0.603 [0.591,0.615]). This 

suggested that biobank-based PRS can be a viable alternative for PRS construction, 

especially if summary statistics from a large disease-specific GWAS are unavailable 

(Table 4). A detailed comparison of GWAS sources across the 49 cancer traits in MGI 

is available in Table S3. 

 

Comparison of Performance Across Methods: First, we explored the benefit of p-value 

thresholding for the pre-filtered risk variants of the GWAS Catalog. Compared to the 

GWAS hits only approach, i.e., only perform LD-clumping of risk variants with P <= 

5x10-8, the P-value thresholding step of the P&T PRS construction improved PRS 

performance, as previously reported [52]. This implied that P-value thresholding might 

to be beneficial even for the relatively sparse sets of GWAS hits reported in the GWAS 

Catalog (Figure S2). 

The P&T approach will, by definition, also cover fixed p-value thresholds in its 

tuning parameter optimization, i.e., the final P&T PRS will be based on the p-value 

threshold with the highest pseudo-R2 and thus perform at least as well as any tested 

fixed p-value thresholds. Therefore, we limited our next comparison of PRS methods for 

full summary statistics to P&T and lassosum PRS. We assessed both methods for 

different GWAS sources in MGI (58 PRS) and UKB (12 PRS). We found that both 

methods ranked comparably, i.e., a GWAS source that produced a lassosum PRS with 

high pseudo-R2 also produced a P&T PRS with high pseudo-R2 and vice versa 

(Spearman's rank correlation: rho > 0.937; (Figure S3). 
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Comparison of Performance across Cancers: Next, we were interested in comparisons 

between PRS across traits to assess overall performance and general differences 

between cancer traits. Table 5 shows the top-ranked PRS for the 20 most common 

cancer traits in MGI and highlights the different properties of the generated PRS. The 

PRS vary in their numbers of included SNPs and their abilities to distinguish cases from 

controls or to enrich cases in the top percentiles. The AUC of the presented PRS was 

highest for cancer of prostate PRS (AUC=0.664 [0.652, 0.676]) and lowest for the 

nodular lymphoma PRS (0.535 [95% CI:0.512, 0.559]). Significant enrichment of cases 

in the top 1% ranged from OR of 6.54 (95% CI: 4.41, 9.79; cancer of prostate) to 2.13 

(95% CI: 1.03, 4.01; leukemia). Due to limited sample sizes in the top percentiles, we 

could not detect significant enrichment for most of the rarer cancers.  

Our observed variations between these cancer PRS likely recapitulates the 

different genetic architectures of cancers in combination with their prevalences in the 

discovery and evaluation cohorts. First, the prevalence impacted the ability to identify 

true associations in the discovery GWAS and also affected our capacity to observe 

significant effects in the PRS performance evaluation.  

 

Comparison of Performance across Cohorts: The two evaluation cohorts, MGI and 

UKB, varied in, among other things, their sample sizes, their use of diagnosis code 

systems, and their recruitment mechanisms, with UKB representing a population-based 

cohort and MGI an EHR-based, cancer-enriched cohort.  We limited a comparison of 

the cancer PRS to the top-ranked PRS for 19 cancers that were present for both 

cohorts. We selected the top PRS for each cancer within each cohort, i.e., their GWAS 

source and method might be different between MGI and UKB.  

We noticed the same ranking of AUC values for most cancer PRS but found 

significantly higher estimates for cancer of brain, cancer of brain / nervous system, 

colorectal cancer, and prostate cancer in UKB than in MGI (Figure S4). The former two 

estimates might reflect the different underlying GWAS sources, while the latter two 

might be inflated in UKB due to overlapping samples between their discovery GWAS 

meta-analyses and the UKB cohort [12, 15]. The other 15 cancers showed a similar 

ranking of AUC estimates in both cohorts that ranged between “Cancer of other 
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lymphoid, histiocytic tissue” (AUCMGI: 0.527, AUCUKB: 0.532) and highest for “chronic 

lymphoid leukemia” (AUCMGI: 0.682, AUCUKB: 0.690). AUC values tended to be slightly 

higher for UKB than for MGI, while confidence intervals were mostly smaller in UKB 

corresponding to their (often) larger observed effective sample sizes. 

A similar comparison of the enrichment of cases in the top 10% versus bottom 

90% revealed a lack of power for many cancer PRS in MGI with OR <= 1.3, but a 

relatively consistent ranking from PRS for pancreatic cancer (MGI ORTop10%: 1.37 and 

UKB ORTop10%: 1.64) to prostate cancer (MGI ORTop10%: 3.65 and UKB ORTop10%: 3.97). 

Overall enrichment effects were often stronger in UKB compared to MGI, reflecting the 

larger sample sizes of these cancers but also indicated a disparity between population- 

and hospital-based controls (Table 1 & Table S6; Figure S5). However, when 

comparing the enrichment of cases for two PRS that were well-powered in both cohorts 

(PRS for breast cancer and chronic lymphoid leukemia), we found it to be strikingly 

comparable across all tested percentiles (1, 2, 5, 10, and 25% versus rest; Figure 2). 

 
Phenome-wide Association Analyses 

Beyond case enrichment and risk stratification, PRS can also be used in phenome-wide 

screenings to uncover secondary trait associations through shared genetic risk factors 

[31, 32]. These secondary traits might uncover features in the EHR that occur before 

cancer diagnosis and thus could represent important predictors for cancer outcomes. 

From the generated PRS for 49 cancer traits, we selected 13 PRS in MGI and 18 PRS 

in UKB (whose association with their corresponding cancer traits reached phenome-

wide significance) for phenome-wide screens of PRS associations. In total, we observed 

phenome-wide significant associations between 21 cancer PRS and 150 different 

secondary traits (Table S5). We performed “Exclusion-PRS-PheWAS” (i.e., removed 

primary cancer cases and repeated the phenome-wide analysis) to assess if the 

identified secondary associations were mainly driven by the primary cancer trait, e.g., 

through intensified screening or represent post-treatment effects [31]. While the 

exclusion of cases markedly decreased case counts of secondary traits, we still 

identified secondary traits that remained significantly associated with the corresponding 

cancer PRS (Table 7&8, Table S5). Most of the secondary traits in MGI that remained 
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phenome-wide significant in the Exclusion-PRS-PheWAS, e.g., skin cancer PRS 

associated with actinic keratosis or thyroid cancer PRS associated with hypothyroidism, 

were reported in our previous studies [32, 53]. Due to the larger sample sizes for most 

traits in UKB compared to MGI (Table S6), we observed more and stronger secondary 

trait associations in UKB PRS-PheWAS. Several secondary trait associations were 

seen in both cohorts (e.g., hypothyroidism associated with thyroid cancer PRS after 

exclusion thyroid cancer cases: ORMGI = 0.864 [0.838, 0.89] and ORUKB = 0.896 

[0.881,0.912]; Figure 3 A & C). We also observed several secondary trait associations 

exclusively in UKB. Some of these associations, e.g., hyperplasia of prostate associated 

with cancer of prostate PRS (Exclusion-PRS-PheWAS in UKB: OR 1.07 [95% CI: 1.05, 

1.09], P = 2.16E-10), represent known risk factors or presentation features of primary 

cancers [54, 55]. However, we also observed traits where the cancer relevance was 

less clear, e.g., varicose veins associated with breast cancer PRS (Exclusion-PRS-

PheWAS in UKB: OR 1.05 [95% CI: 1.03,1.07], P = 2.88E-07) (Figure 3 C & D; Table 

S5). Deeper explorations and replications are needed to understand these observed 

associations and to distinguish between spurious and genuine associations. 

 

Online Visual Catalog: Cancer PRSweb and R package Rprs 

In our current study, we compared three PRS construction methods for 68 cancer traits 

using over 232 sets of GWAS summary statistics. By doing so, we created a large 

number of PRS in which predictive or enrichment properties differed between GWAS 

source, PRS method, and/or evaluation cohort. After assessing 1,292 constructed PRS, 

we found PRS for 49 different cancer traits that we deemed to have predictive value. In 

our explorations, we established that it could be beneficial to select PRS with certain 

predictive properties for a specific application instead of using one PRS for all 

applications. Also, it could be computationally more convenient to use a slightly less 

powerful PRS based on a fewer number of SNPs than to use a PRS that is based on a 

few hundred thousand variants. To allow the user the option to explore various PRS 

constructs, we created PRSweb (http://prsweb.sph.umich.edu), an interactive and 

intuitive web interface, to explore the available PRS constructs for 49 different cancer 
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traits as well as their performance metrics and suitability for risk stratification, 

association studies, or other PRS applications. 

After an initial selection menu for cancer trait and evaluation cohort (MGI or UKB) 

PRSweb provides tabularized information about all available PRS, their evaluation 

metrics (performance, discrimination, calibration, and accuracy) and case enrichment 

capabilities in five top percentiles of their distributions. The tables, similar to Tables 3 & 

4, can be sorted, filtered, or downloaded in full. These tables contain detailed 

information about the underlying GWAS source(s), LD reference panels and are directly 

linked to downloadable PRS constructs. The PRS construct files include headers with 

information about the PRS construction (source, version, method, and references) and 

lists its underlying risk variants, their physical positions, effect/non-effect alleles (forward 

strand orientation for a given genome assembly), and its weights. Together with the 

“Rprs” R package (https://github.com/statgen/Rprs) we developed, the construct file will 

enable the reproduction of PRS association in MGI or UKB and allow a straightforward 

generation of comparable PRS in external datasets using imputed dosage data in VCF 

or BCF format. 

For phenome-wide predictive PRS (association PPrimaryCancer ≤ 0.05 / [# 

phenotypes in phenome]), PRSweb also links to PRS-PheWAS results for their 

evaluation cohort. The PRS-PheWAS result page includes interactive Manhattan plots 

for PRS-PheWAS and Exclusion-PRS-PheWAS with mouseover information for each 

tested association. The PheWAS plots can be exported as scalable vector graphics 

(SVG) and are accompanied by interactive and downloadable result tables that provide 

PheWAS summary statistics plus sample counts per analyzed phenotype. 

We also implemented a search interface for each phenotype/PheCode to provide 

insights into the ICD-codes underlying the primary cancers as well as the traits of our 

EHR-derived MGI and UKB phenomes. A methods section describes the applied 

approaches.
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Discussion  

In our study, we constructed and evaluated a large set of cancer PRS using more than 

200 different sources of GWAS summary statistics. We applied three common PRS 

construction methods: GWAS hits, LD pruning/P-value thresholding, and lassosum. 

While doing so, we created an online repository called “PRSweb” 

(http://prsweb.sph.umich.edu/) with over 600 PRS for 49 cancer traits. 

We observed that construction and resulting performance of PRS depend on 

multiple factors, including GWAS source, PRS method, and evaluation cohort. 

Researchers who plan to apply PRS in their projects are often faced with an agony of 

choice from a set of PRS in the current literature or might not find predictive PRS at all. 

Furthermore, if PRS are available, a direct comparison of multiple constructs is often not 

feasible, as their performance can be cohort-specific and limited by available sample 

size. 

To alleviate this situation, we generated “PRSweb” that could serve as a central 

hub for standardized PRS. PRSweb so far offered a selection and exploration of PRS 

based on publicly available cancer GWAS data. The platform integrated the evaluation 

of the rich EHR data of two independent biobanks, MGI and UKB. In our initial version 

of PRSweb, we focused on cancer traits because MGI is enriched for cancer. 

There are several remaining challenges in developing PRS, and we will discuss 

the following four: access to independent GWAS summary statistics, mapping of trait 

definitions between discovery and evaluation cohorts, power limitations, and finally, 

transferability of PRS across cohorts and ancestries. 

 

Access to independent GWAS summary statistics 

Limited accessibility to full summary statistics for cancer GWAS in the published 

literature resulted in a lack of PRS constructs for many cancers. By systematically 

integrating openly available cancer GWAS summary statistics, we can also openly 

share PRS constructs, some with millions of markers, with the research community. 

However, there are large cancer GWAS datasets used in the cancer research 

community that are not yet integrated into PRSweb. For example, a recent study 
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analyzed fourteen different cancer types based on summary-level association statistics 

from larger cancer GWAS consortia [56]. To our knowledge, only the full summary 

statistics on breast cancer [11], ovarian cancer [9], and prostate cancer [12] were 

openly shared. We are confident that future versions of PRSweb will be able to integrate 

summary statistics from other large GWAS consortia, e.g., on chronic lymphocytic 

leukemia, glioma, melanoma, esophageal, testicular, oropharyngeal, pancreatic, renal, 

colorectal, endometrial, or lung cancer, some with substantially larger samples sizes 

than the GWAS used in our current analysis. 

With the tendency to form large consortia and to integrate available biobank data 

comes another challenge, namely the potential overlap between the discovery and 

evaluation cohorts and, thus, potential overfitting. For our current study, we used GWAS 

that are to the best of our knowledge, independent from MGI. Since UKB is a popular 

and widely used resource, the assumption of independence of large GWAS efforts from 

UKB, does not always hold true as we have seen for the large colorectal cancer 

GWAS[15]. In the future, the assessment of independence of GWAS from PRS 

construction will become more challenging, especially when relying on GWAS 

databases (e.g., the GWAS Catalog), where the distinction of contributing cohorts might 

not be obvious from a database entry alone. An alternative solution, especially for 

consortia joining large GWAS, is leave-one-out meta-analysis where in addition to the 

full meta-analysis results, a separate set of meta-analysis results will be provided for 

each contributing cohort so that each resulting leave-one-out meta-analysis can be 

shared and used for PRS generation in that cohort to avoid overfitting. 

We anticipate a more accessible landscape of high-quality full GWAS results in 

the near future, not only for cancer. First, funding agencies are updating their policy 

regarding access to GWAS summary statistics of funded projects , e.g., the US National 

Institutes of Health (NIH), (https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-

023.html). Secondly, biobank studies are growing in numbers and size and, when 

connected to EHR data, enable GWAS for thousands of traits each [53]. In addition, 

global efforts are forming that will enable even more powerful phenome x GWAS meta-

analyses through collaboration, likely reaching sample sizes that can compete with 

classical disease-specific consortia [57]. 
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Mapping of Trait Definitions 

One of the premises for PRS utility is the resemblance of the original trait in the 

discovery GWAS with the trait of the evaluation cohort.  

For our current study, we relied on EHR-based cohorts and defined cancer via 

PheWAS codes that are adopted from ICD codes. It is important to bear in mind that we 

used EHR-based diagnosis data that per se were not collected for research. Besides 

misclassification, EHR-derived phenomes might be prone to selection and recruitment 

biases that can negatively impact power or result in false-positive associations [53]. ICD 

codes usually serve administrative and billing purposes and often lack the specificity 

found in the discovery GWAS. Due to the difference in trait definitions, we often had to 

fall back to the broad phenotype definition in the EHR cohorts and, by doing so, might 

have negatively influenced the predictive power for PRS [58]. For example, we only had 

one definition for ovarian cancer in MGI and UKB (Phecode 184.11 “Malignant 

neoplasm of ovary”) that was defined by ICD9 codes 183.0 and V10.43 as well as by 

ICD10:C56 and their sub-codes. In contrast, the large GWAS on ovarian cancer 

included results for nine more refined cancer subtypes: invasive epithelial, low-grade 

serous, high-grade serous, serous invasive, endometrioid, epithelial, mucinous, low-

grade serous and serous borderline ovarian cancer, and ovarian clear cell cancer. For 

our PRS generation, we used all nine GWAS as separate sources and tested each 

resulting PRS against the single PheWAS code 184.11. Consequently, the best 

performing PRS might represent the combination where the discovery GWAS’s trait 

specificity and the cohort’s trait composition maximized predictive power.  

While we were bound to PheWAS code definitions, future PRS explorations and 

evaluations of growing EHR data should include more refined cancer phenotypes by 

integrating cancer registry data and/or natural language processing of clinical notes. 

Still, the chosen phenotype definitions represent valid and common cancer groupings 

that are frequently used in clinical and research applications [59]. 

 

Power Limitations 
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For our project, we used data from MGI, a medical center-based cohort, and UKB, a 

population-based cohort. Due to MGI’s recruitment mechanism through surgery, the 

observed case counts in MGI reflected the numbers of adult (18+) patients that 

underwent a surgical procedure and had at least one corresponding cancer diagnosis in 

their medical records. The case counts in UKB, a rather healthy subset of the older (40-

69) British population [60], might be even lower than the population’s cancer 

prevalence. We observed an enrichment of many cancers in MGI compared to UKB, 

especially for rarer cancers like thyroid cancer, but generally registered more cases in 

the UKB because its cohort is ten times larger (Table S6). In addition, MGI’s recruitment 

through surgical procedures likely resulted in a relative depletion of blood cancers (e.g., 

leukemia, lymphoma, and myeloma), since affected patients undergo surgery less 

frequently than somatic cancer patients. As a consequence, we often had sufficient 

power to evaluate and analyze PRS for these diseases in UKB but not MGI. 

One may be interested in defining a combined phenotype of “any cancer” for a 

composite cancer PRS with a maximal sample size. We defined this phenotype in UKB 

(with 69,190 cases of any cancer; Tables S6 & S7, Figures S7 & S8), performed a 

GWAS that revealed known risk variants for numerous cancers, and created an “any 

cancer” PRS using our established methods. The lassosum PRS with a choice for 179 

variants performed best amongst the constructs (Table S8). However, while defining 

such a composite phenotype, we have to remember that the endpoint is a 

heterogeneous mix of various cancers, and the discovery will be driven by the cancers 

with larger numbers of cases or strong risk effects in the discovery (UKB) and 

evaluation (MGI) cohort. In the PRS PheWAS in MGI, we saw many related traits 

associated with the overall PRS. No secondary trait reached phenome-wide significance 

in the exclusion PRS-PheWAS (Table S9; Figure S9). We incorporated this overall 

PRS constructs in Cancer-PRSweb. 

Besides accessible sample sizes, the ability to create predictive PRS depends on 

the cancers’ “chip heritability,” i.e., the variance explained through polygenic variants of 

genotyped and imputed datasets. A previous study on six common cancers found that 

chip heritability estimates can vary substantially for cancers (e.g., estimated heritability 

for prostate cancer: 27%, breast cancer 12%, and pancreatic cancer 7%) [61]. Thus, 
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indicating that even if the most powerful cancer PRS can be generated, other factors 

play a bigger role, emphasizing the limitations of PRS for personal risk prediction if used 

on its own without considering other risk factors [62].  

Also, genetic architecture affects the choice of PRS construction methods. A 

recent study estimated the heritability explained by genome-wide significant variants for 

14 common cancers and found a wide variability of explained heritability estimates 

among the analyzed cancer types. For some cancers like testicular cancer, chronic 

lymphocytic leukemia, prostate, and breast cancer, GWAS hits could explain a large 

fraction of the chip heritability, while GWAS hits for other cancers like esophageal, 

colorectal, endometrial, ovarian or lung cancer explained only moderate to very low 

fractions [56]. Consequently, approaches that only consider GWAS hits might work 

better for the former, while less conservative p-value thresholds or genome-wide PRS 

methods might work better for the latter cancer traits.  

 

Transferability of PRS across cohorts 

In our current study, we constructed and evaluated PRS in individuals of broadly 

European ancestry. However, we recognize the need to also construct and share PRS 

for non-European ancestry groups, especially because of the limited transferability of 

PRS across ancestries and ethnicities [7]. The integration of PRS for non-European 

individuals into our platform PRSweb so far is hampered by the scarcity of GWAS data 

for diverse ancestry groups [63], and by the limited diversity in MGI and UKB, both 

encompassing predominantly European ancestry individuals. 

Differences in genotyping and sequencing strategies can also negatively impact 

comparability between studies. Ideally, genotype data in the discovery GWAS, the LD 

reference panel, and the evaluation cohort should be comparable in quality, density and 

LD structure for ultimate compatibility. GWAS usually rely on genotyping arrays that can 

differ in composition and density of variants. Phasing and imputation methods are 

constantly improving thanks to growing reference panels and refined methods [64] and 

are essential in harmonizing genotype data across cohorts. However, the achievable 

accuracy is dependent on the study’s sample size and variant density. Consequently, a 
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PRS that was constructed from a large and marker-dense GWAS might not be directly 

transferable to smaller, sparser genotype data. 

In our current analysis of two genotype datasets that differed in genotype density 

and sample size, we found that the tuning parameters of PRS established separately for 

MGI and UKB were ranked similarly in terms of their resulting predictive performance. 

This indicated that sharing of PRS constructs might represent a feasible and convenient 

alternative to computationally expensive PRS methods and evaluations. 

 

Conclusions 

By generating PRS from a large collection of freely available cancer GWAS summary 

statistics and by evaluating them in two independent biobanks, we created the analytical 

backbone of PRSweb, an online repository for cancer PRS offering detailed constructs 

and comparisons. We designed PRSweb for transparency and convenience to 

democratize PRS research. So far, we included PRS constructs and analyses for 49 

different cancer traits that showed promising performance in MGI and/or UKB. We 

anticipate the inclusion of additional PRS constructs and methods in an upcoming 

version of PRSweb that also will expand our focus beyond cancers. 

Several challenges remain in PRS research in terms of access, power, and 

transferability. Nevertheless, PRS have proven to be a valuable tool for risk 

stratification, especially if combined with non-genetic risk factors [65-67]. PRS will likely 

become more powerful with growing sample sizes, better tools, and more diverse 

resources. 
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Methods 

Evaluation cohorts 

MGI cohort. Adult (18+) participants were recruited through the Michigan Medicine 

health system while awaiting diagnostic or interventional procedures either during a 

preoperative visit prior to the procedure or on the day of the procedure that required 

anesthesia. In addition to coded biosamples and secure, protected health information, 

participants understood that all EHR, claims, and national data sources linkable to the 

participant may be incorporated into the MGI databank. Each participant donated a 

blood sample for genetic analysis, underwent baseline vital sign testing, and completed 

a comprehensive history and physical assessment (also see Ethics Statement below). 

We report results obtained from 38,360 unrelated, genotyped patients of inferred recent 

European ancestry with available integrated EHR data (~90 % of all MGI participants 

were inferred to be of recent European ancestry) [68]. The data used in this study 

included diagnoses coded with the Ninth and Tenth Revision of the International 

Statistical Classification of Diseases (ICD9 and ICD10) with clinical modifications (ICD9-

CM and ICD10-CM), sex, precomputed principal components (PCs), genotyping batch, 

and age. Data were collected according to the Declaration of Helsinki principles [69]. 

MGI study participants’ consent forms and protocols were reviewed and approved by 

the University of Michigan Medical School Institutional Review Board (IRB ID 

HUM00099605 and HUM00155849). Opt-in written informed consent was obtained. 

 

UK Biobank cohort (UKB). UKB is a population-based cohort collected from multiple 

sites across the United Kingdom and includes over 500,000 participants aged between 

40 and 69 years when recruited in 2006–2010 [16]. The open-access UK Biobank data 

used in this study included genotypes, ICD9 and ICD10 codes, inferred sex, inferred 

White British ancestry, kinship estimates down to third degree, birthyear, genotype 

array, and precomputed principal components of the genotypes. Table 1 provides some 

descriptive statistics of the MGI and UK Biobank samples. 

 

Genotyping, sample quality control and imputation 

MGI 
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DNA from 47,364 blood samples was genotyped on customized Illumina Infinium 

CoreExome-24 bead arrays and subjected to various quality control filters, resulting in a 

set of 392,323 polymorphic variants. Principal components and ancestry were estimated 

by projecting all genotyped samples into the space of the principal components of the 

Human Genome Diversity Project reference panel using PLINK (938 individuals) [70, 

71]. Pairwise kinship was assessed with the software KING [72], and the software 

fastindep was used to reduce the data to a maximal subset that contained no pairs of 

individuals with 3rd-or closer degree relationship [73]. We removed participants without 

EHR data and participants not of recent European descent from the analysis, resulting 

in a final sample of 38,360 unrelated subjects. Additional genotypes were obtained 

using the Haplotype Reference Consortium reference panel of the Michigan Imputation 

Server [58] and included over 24 million imputed variants with R2 ≥0.3 and minor allele 

frequency (MAF) ≥0.01%. Genotyping, quality control, and imputation are described in 

detail elsewhere [68]. 

 

UK Biobank 

We used the UK BioBank Imputed Dataset (v3, 

https://www.ebi.ac.uk/ega/datasets/EGAD00010001474) and limited analyses to the 

documented 408,961 White British [74] individuals and 47,836,001 variants with 

imputation information score >= 0.3 and MAF >= 0.01% of which 22,846,729 

overlapped with the imputed MGI data (see above). Two random subsets of 5,000 and 

10,000 unrelated, White British individuals were used for LD analyses of UKB-based 

summary statistics.  

 

Phenome generation 

MGI 

The MGI phenome was used as the discovery dataset and was based on ICD9-CM and 

ICD10-CM code data for 38,360 unrelated, genotyped individuals of recent European 

ancestry. Longitudinal time-stamped diagnoses were recoded to indicators for whether 

a patient ever had given a diagnosis code recorded by Michigan Medicine. These ICD9-

CM and ICD10-CM codes were aggregated to form up to 1,857 PheWAS traits using 
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the PheWAS R package (as described in detail elsewhere [68, 75]). For each trait, we 

identified case and control samples. To minimize differences in age and sex 

distributions, avoid extreme case-control ratios, and reduce the computational burden, 

we matched up to 10 controls to each case using the R package “MatchIt” [76]. Nearest 

neighbor matching was applied for age and the first four principal components of the 

genotype data (PC1-4) using Mahalanobis distance with a caliper/width of 0.25 standard 

deviations. Exact matching was applied for sex and genotyping array. A total of 1,689 

case-control studies with >50 cases were used for our analyses of the MGI phenome. 

 

UK Biobank 

The UK Biobank phenome was used as a replication dataset and was based on ICD9 

and ICD10 code data of 408,961 White British [74], genotyped individuals that were 

similarly aggregated to PheWAS traits as MGI (as described elsewhere [77]). In contrast 

to MGI, there were many pairwise relationships reported for UKB participants.  

To retain a larger effective sample size for each phenotype, we first selected a maximal 

set of unrelated cases for each phenotype (defined as no pairwise relationship of 3rd 

degree or closer [11, 73]) before selecting a maximal set of unrelated controls unrelated 

to these cases. Similar to MGI, we matched up to 10 controls to each case using the R 

package “MatchIt” [76]. Nearest neighbor matching was applied for birthyear and PC1-4 

(Mahalanobis-metric matching; matching window caliper/width of 0.25 standard 

deviations), and exact matching was applied for sex and genotyping array. A total of 

1,419 case-control studies with >50 cases each were used for our analyses of the UK 

Biobank phenome.  

On average, we were able to match 9 controls per case in the MGI phenome and 9.9 

controls per case in the UKB phenome. Additional phenotype information for MGI and 

UK Biobank is included in (Table S6).  

 

PRS Structure 

PRS combine information across a defined set of genetic loci, incorporating each 

locus’s association with the target trait. The PRS for patient j takes the form 

PRSj=∑ ����	�  where i indexes the included loci for that trait, weight �� is the log odds 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.22.915751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.22.915751
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 23

ratios retrieved from the external GWAS summary statistics for locus i, and ��	 is a 

continuous version of the measured dosage data for the risk allele on locus i in subject j. 

In order to construct a PRS, one must determine which genetic loci to include in the 

PRS and their relative weights. Below, we obtain GWAS summary statistics from 

several different sources, resulting in several sets of weights for each trait of interest. 

For each set of weights, we consider several strategies for determining which genetic 

loci to include in the PRS construction.  

 

Sources of GWAS summary statistics  

For each of 68 cancers of interest, we collected GWAS summary statistics from up to 

three different sources: (1) merged genome-wide significant association signals 

published in the NHGRI EBI GWAS Catalog [78] if available; (2) large cancer GWAS 

meta-analysis if available; and (3) publicly available GWAS summary statistics of 

phenome x genome screening efforts of the UK Biobank data [77] (see Web 

Resources; Figure 1). If needed, we used LiftOver to convert coordinates of GWAS 

summary statistics to human genome assembly GRCh37 (https://genome-

store.ucsc.edu/). 

 

GWAS Catalog 

We downloaded previously reported GWAS variants from the NHGRI-EBI GWAS 

Catalog (file version: r2019-05-03, https://www.ebi.ac.uk/gwas/) [78, 79]. Single 

nucleotide polymorphism (SNP) positions were converted to GRCh37 using variant IDs 

from dbSNP (build 151; UCSC Genome Browser, http://genome.ucsc.edu/) after 

updating outdated dbSNP IDs to their merged dbSNP IDs. 

Entries with missing risk alleles, risk allele frequencies, or SNP-disease odds 

ratios were excluded. If a reported risk allele did not match any of the reported forward 

strand alleles of a non-ambiguous SNP (not A/T or C/G) in the imputed MGI genotype 

data (which correspond to the alleles of the imputation reference panel), we assumed 

minus-strand designation and corrected the effect allele to its complementary base of 

the forward strand. Entries with a reported risk allele that did not match any of the 

alleles of an ambiguous SNP (A/T and C/G) in our data were excluded at this step. We 
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only included entries with broad European ancestry (as reported by the NHGRI-EBI 

GWAS Catalog) to match ancestries of discovery GWAS and target cohorts (MGI and 

UKB). As a quality control check, we compared the GWAS Catalog reported risk allele 

frequencies (RAF) with the RAF in MGI individuals. We then excluded entries whose 

RAF deviated more than 15%. This chosen threshold is subjective and was based on 

clear differentiation between correct and likely flipped alleles on the two diagonals 

(Figure S6), as noted frequently in GWAS meta-analyses quality control procedures 

[80]. For SNPs with multiple entries, we kept the SNP with the most recent publication 

date (and smaller p-value, if necessary) and excluded the others.  

 

Large GWAS meta-analyses 

We downloaded full GWAS summary statistics made available by the “Breast Cancer 

Association Consortium” (BCAC) [11], the “Prostate Cancer Association Group to 

Investigate Cancer Associated Alterations in the Genome” (PRACTICAL) [12], and the 

“Ovarian Cancer Association Consortium” (OCAC) [9]. In addition, we extracted partial 

GWAS summary statistics that accompanied recent publications but were incomplete, 

i.e. reporting only SNPs below a certain p-value threshold [15, 81-83]. GWAS summary 

statistics were harmonized and, if needed, lifted over to human genome assembly 

GRCh37. In this paper, this source is referred to as “Large GWAS”. 

 

UK-Biobank-based GWAS 

We downloaded UK Biobank based GWAS summary statistics from two public 

repositories.  

The first set of UK Biobank GWAS summary statistics were based on the 

analysis of up to 408,961 White British European-ancestry samples 

(https://www.leelabsg.org/resources). SNP-disease odds ratios were estimated using 

logistic mixed modeling adjusting for sample relatedness, and p-values were estimated 

using saddlepoint approximations (SAIGE method [17]) to calibrate the distribution of 

score test statistics and, thus, control for unbalanced case-control ratios. The underlying 

phenotypes were auto-curated phenotypes based on the PheCodes of the PheWAS R 
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package [68, 75, 77] similar to the phenomes used in our study and in the following are 

referred to as “UKB PHECODE” (Table S1).  

The second set of UK Biobank GWAS summary statistics were based on a linear 

regression model of up to 361,194 unrelated White British samples adjusting for 

relevant covariates (https://github.com/Nealelab/UK_Biobank_GWAS). Three 

phenotype models were used in their analyses: (1) “PHESANT”: auto-curated 

phenotypes using PHEnome Scan ANalysis Tool 

(https://github.com/MRCIEU/PHESANT), (2) “ICD10”: individuals with the same ICD10 

category code (first three characters, e.g. “C50”) were used as cases while all non-

coded individuals were treated as controls, and (3) “FINNGEN”: curated phenotypes / 

endpoints based on definitions of the Finngen consortium 

(https://www.finngen.fi/en/researchers/clinical-endpoints). In addition to the “UKB 

PHECODE” (described above), these three latter sources are referred to as “UKB 

PHESANT”, “UKB ICD10” and “UKB FINNGEN”, respectively (Table S1). 

 

PRS Construction 

For each set of GWAS summary statistics from the above-mentioned sources and each 

cancer, we develop up to seven different PRS using three different construction 

methods (Figure 1). Our goal of this approach was to compare multiple PRS methods 

and find the method that works best for the various types of GWAS summary statistics.  

For the first two construction strategies, we performed LD clumping/pruning of 

variants with p-values below 10-4 by using the imputed allele dosages of 10,000 

randomly selected samples and a pairwise correlation cut-off at r2 < 0.1 within 1Mb 

window. Using the resulting loci, we defined up to five sub-sets of variants with p-values 

below different thresholds (<5x10-9 to <5x10-5). These were used to construct a PRS 

tied to each threshold, where the PRS associated with p-values less than 5x10-8 is 

sometimes denoted as “GWAS hits.” For the second PRS construction method, we 

construct many different PRS across a fine grid of p-value thresholds. The p-value 

threshold with the highest cross-validated pseudo-R2 (see PRS Evaluation below) was 

used to define the more optimized “Pruning and Thresholding (P & T)” PRS.  
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As an alternative to the p-value thresholding and “P&T” PRS construction 

strategies, we also used the software package “lassosum” [22] to define a third type of 

PRS for GWAS sources with full summary statistics. Lassosum obtains PRS weights by 

applying elastic net penalization to GWAS summary statistics and incorporating LD 

information from a reference panel. Here, we used 5,000 randomly selected, unrelated 

samples as the LD reference panel. We applied a MAF filter of 1 % and, in contrast to 

the other two approaches, only included autosomal variants that overlap between 

summary statistics, LD reference panel, and target panel. Each “lassosum” run resulted 

in up to 76 combinations of the elastic net tuning parameters s and λ, and consequently, 

in 76 SNP sets with corresponding weights used to construct 76 PRS. We then selected 

the PRS with the highest cross-validated pseudo-R2 to define the “lassosum” PRS. 

For each cancer and set of GWAS summary statistics, this approach resulted in 

up to seven PRS, where PRS with less than 5 included variants were excluded and the 

available GWAS summary statistics limited the available PRS construction techniques 

in some cases. Using the R package “Rprs” (https://github.com/statgen/Rprs), the value 

of each PRS was then calculated for each MGI participant and, if the GWAS source was 

not based on UKB, also for each UKB participant. For comparability of association effect 

sizes corresponding to the continuous PRS across cancer traits and PRS construction 

methods, we centered PRS values in MGI and UKB to their mean and scaled them to 

have a standard deviation of 1. 

 

PRS Evaluation 

For the PRS evaluations, we fit the following model for each PRS and cancer phenotype 

without adjusting for covariates: 

logit (P(Phenotype is present | PRS)) =�
 � ���PRS 

We performed a 5-fold cross validation with the R package “caret” [84] to obtain fitted 

predictors for the actual PRS evaluations. We used Nagelkerke’s pseudo-R2 [85] to 

select the tuning parameters within the “P&T” and lassosum construction methods (P-

value for “P&T” SNP sets; s and λ for lassosum) and kept the PRS with the highest 

pseudo-R2 for further analyses. For each PRS derived for each GWAS source/method 
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combination, we assessed the following performance measures relative to observed 

disease status in MGI and UKB: 

(1) overall performance with Nagelkerke’s pseudo-R2 using R packages “rcompanion” 

[85], (2) accuracy with Brier score using R package “DescTools” [86]; (3) ability to 

discriminate between cases and controls as measured by the area under the receiver 

operating characteristic (ROC) curve (denoted AUC) using R package “pROC” [87] and 

(4) calibration using Hosmer-Lemeshow Goodness of Fit test in the R package 

“ResourceSelection” [88-90]. 

 

PRS Association Testing 

Next, we assessed the strength of the relationship between these PRS and the traits 

they were designed for. To do this we fit the following model for each PRS and cancer 

phenotype adjusting for various covariates: 

logit (P(Phenotype is present | PRS, Age, Sex, Array, PC)) =�
 �

���PRS � ����Age � ���Sex � ������Array � ! PC,  

where the PCs were the first four principal components obtained from the principal 

component analysis of the genotyped GWAS markers, where “Age” was the age at last 

observed diagnosis in MGI and birthyear in UKB and where “Array” represents the 

genotyping array. Our primary interest is ���, while the other factors (Age, Sex and PC) 

were included to address potential residual confounding and do not provide 

interpretable estimates due to the preceding application of case-control matching. Firth's 

bias reduction method was used to resolve the problem of separation in logistic 

regression (Logistf in R package “EHR”) [91-93]. 

To study the ability of the PRS to identify high risk patients, we fit the above 

model but replacing the PRS with an indicator for whether the PRS value was in the top 

1, 2, 5, 10, or 25% among the matched case control cohort.  

 

Phenome-wide Exploration of PRS Associations 

We selected PRS that were strongly associated with the cancer trait they were designed 

for phenome-wide association exploration in the phenomes of MGI and UKB for (p-

value  ≤ (0.05 / [#phenotypes in corresponding phenome]); see below). 
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We conducted PheWAS in MGI and also UKB (if the GWAS source was not 

based on UKB) to identify additional, secondary phenotypes associated with the PRS 

[31]. To evaluate PRS-phenotype associations, we conducted Firth bias-corrected 

logistic regression by fitting model of equation 1 above for each PRS and each 

phenotype of the corresponding phenome. To adjust for multiple testing, we applied the 

conservative phenome-wide Bonferroni correction according to the total number of 

analyzed PheWAS codes (MGI: 1,689 phenotypes; UKB: 1,419 phenotypes). In 

Manhattan plots, we present –log10 (p-value) corresponding to tests of $
: ��� & 0.  

Directional triangles on the PheWAS plot indicate whether a phenome-wide significant 

trait was positively (pointing up) or negatively (pointing down) associated with the PRS. 

To investigate the possibility of the secondary trait associations with PRS being 

completely driven by the primary trait association, we performed a second set of 

PheWAS after excluding individuals affected with the primary or related cancer traits for 

which the PRS was constructed, referred to as “Exclusion-PRS-PheWAS” as described 

previously [68]. 

 

Online Visual Catalog: PRSweb 

The online open access visual catalog PRSweb was implemented using Grails, a 

Groovy- and Java-based backend logic, to integrate interactive visualizations and 

MySQL databases. Interactive PheWAS plots are drawn with the JavaScript library 

“LocusZoom.js” which is maintained by the UM Center for Statistical Genetics 

(https://github.com/statgen/locuszoom) and offers dynamic plotting, automatic plot 

sizing, and label positioning. Additional data-driven visualizations (e.g. temporal 

relationship plots) were implemented with the JavaScript library “D3.js”. 

 

Unless otherwise stated, analyses were performed using R 3.6.1 [94]. 
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Data availability 

Data cannot be shared publicly due to patient confidentiality. The data underlying the 

results presented in the study are available from University of Michigan Medical School 

Central Biorepository at https://research.medicine.umich.edu/our-units/central-

biorepository/get-access and from the UK Biobank at 

http://www.ukbiobank.ac.uk/register-apply/ for researchers who meet the criteria for 

access to confidential data. 
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Tables 

 
Table 1. Demographics and clinical characteristics of the analytic datasets. The 

provided characteristics are based on the European (MGI) and White British (UKB) 

subjects for which phenotype and imputed genotype data were available. 

Characteristic MGI UKB 

Total participants 38,360 408,595 

Females, n (%) 20,141 (52.5%) 220,896 (54.1%) 

Mean age, years (S.D.) 56.8 (16.2) 56.9 (8.0) 

Median number of visits per participant 45 not available 

Median time (years) between first and last visit 5.5 not available 

Median number of unique ICD9 codes 36* 2 

Median number of unique ICD10 codes 31* 6 

Number of Phecodes with more than 50 cases 1,689 1,419 

Any cancer diagnosis 20,751 (54.1%) 69,190 (16.9%) 

20 Most Common Cancer Traits in MGI (Phecode) 

Basal cell carcinoma (172.21) 2,988 (7.79%) not available 

Melanomas of skin, dx or hx (172.1) 2,701 (7.04%) 2,682 (0.66%) 

Breast cancer [female] (174.1) 2,605 (12.93%) 12,483 (5.65%) 

Cancer of prostate (185) 2,432 (13.35%) 5,977 (3.18%) 

Squamous cell carcinoma (172.22) 1,917 (5.00%) not available 

Cancer of bladder (189.2) 1,575 (4.11%) 2,413 (0.59%) 

Colorectal cancer (153) 1,196 (3.12%) 4,585 (1.12%) 

Non-Hodgkins lymphoma (202.2) 1,141 (2.97%) 1,810 (0.44%) 

Malignant neoplasm of kidney, except pelvis (189.11) 1,083 (2.82%) 1,033 (0.25%) 

Colon cancer (153.2) 941 (2.45%) 3,108 (0.76%) 

Myeloproliferative disease (200) 886 (2.31%) 992 (0.24%) 

Cancer of bronchus; lung (165.1) 874 (2.28%) 2,232 (0.55%) 

Thyroid cancer (193) 798 (2.08%) 347 (0.08%) 

Malignant neoplasm of rectum, rectosigmoid junction, and anus (153.3) 669 (1.74%) 2,167 (0.53%) 

Malignant neoplasm of uterus (182) 643 (3.19%) 1,285 (0.58%) 

Nodular lymphoma (202.21) 632 (1.65%) 365 (0.09%) 

Cancer of tongue (145.2) 550 (1.43%) 310 (0.08%) 

Leukemia (204) 545 (1.42%) 1,665 (0.41%) 

Cancer of brain (191.11) 483 (1.26%) 525 (0.13%) 

Cervical cancer (180.1) 430 (1.12%) 272 (0.12%) 

* ICD9/10-CM codes 
S.D. standard deviation 
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Table 2. Overview of GWAS sources and PRS construction methods. Multiple PRS 

were constructed per trait of interest depending on availability of GWAS summary 

statistics. 

Source of  

Summary Statistics  

PRS Construction Method 

Fixed P-value 

Thresholds* 
P & T** Lassosum 

GWAS Catalog Yes Yes No 

Large GWAS Yes Yes 
Yes, if  

full GWAS 

UKB GWAS 

PHECODE Yes Yes Yes 

FINNGEN Yes Yes Yes 

ICD10 Yes Yes Yes 

PHESANT Yes Yes Yes 

* Uncorrelated variants with p-value <= 5x10-5, 5x10-6, 5x10-7, 5x10-8 [“GWAS Hits”], or 5x10-9 
** LD Pruning & P-value Thresholding 
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Table 3. Comparison of PRS methods on Breast Cancer PRS Performance in MGI (2,605 breast cancer cases and 

12,548 controls). PRS are based on the BCAC Consortium GWAS on overall breast cancer [11]. Shaded cells indicate 

best performing PRS according to the corresponding metrics for MGI or UKB. 

Cohort Method 
Tuning Paramter # SNPs Pseudo-R2 Hosmer-Lemeshow 

P Brier Score AUC 
(95% CI) 

Odds Ratio 
continuous PRS 

(95% CI) 

Odds Ratio 
Top 1% 
(95% CI) 

MGI 

Lassosum 
s = 0.5, λ = 0.0055 

44,815 0.057 0.013 0.137 0.635 
(0.624,0.647) 

1.66 
(1.58,1.73) 

3.38 
(2.42,4.71) 

P&T 
P <= 0.00032 2,723 0.046 0.018 0.138 0.626 

(0.615,0.638) 
1.59 

(1.52,1.67) 
3.58 

(2.56,4.96) 
Fixed Threshold 

P <= 5e-05 1,307 0.045 0.008 0.138 0.625 
(0.613,0.637) 

1.58 
(1.51,1.65) 

3.41 
(2.43,4.73) 

Fixed Threshold 
P <= 5e-06 712 0.044 0.16 0.138 0.622 

(0.61,0.634) 
1.56 

(1.49,1.63) 
3.35 

(2.4,4.66) 
Fixed Threshold 

P <= 5e-07 464 0.043 0.18 0.139 0.621 
(0.609,0.633) 

1.55 
(1.49,1.63) 

3.69 
(2.65,5.12) 

Fixed Threshold 
P <= 5e-08 334 0.041 0.084 0.139 0.619 

(0.608,0.631) 
1.54 

(1.48,1.61) 
3.77 

(2.71,5.23) 
Fixed Threshold 

P <= 5e-09 264 0.04 0.02 0.139 0.618 
(0.606,0.629) 

1.53 
(1.47,1.6) 

3.15 
(2.25,4.38) 

UKB 

Lassosum 
s = 0.9, λ = 0.0043 

286,144 0.047 3.50E-27 0.0808 0.645 
(0.64,0.65) 

1.71 
(1.68,1.74) 

4.48 
(3.98,5.03) 

P&T 
P <= 1e-04 1,682 0.04 3.10E-23 0.0811 0.635 

(0.63,0.64) 
1.64 

(1.61,1.67) 
3.57 

(3.16,4.03) 
Fixed Threshold 

P <= 5e-06 712 0.04 2.40E-20 0.0811 0.633 
(0.628,0.638) 

1.62 
(1.59,1.66) 

3.8 
(3.37,4.28) 

Fixed Threshold 
P <= 5e-05 1,307 0.04 2.70E-18 0.0811 0.633 

(0.628,0.638) 
1.63 

(1.6,1.66) 
3.63 

(3.21,4.09) 
Fixed Threshold 

P <= 5e-07 464 0.039 3.80E-20 0.0812 0.632 
(0.627,0.637) 

1.61 
(1.58,1.64) 

3.9 
(3.45,4.39) 

Fixed Threshold 
P <= 5e-08 334 0.037 1.00E-18 0.0813 0.629 

(0.624,0.634) 
1.59 

(1.56,1.62) 
3.71 

(3.28,4.18) 
Fixed Threshold 

P <= 5e-09 264 0.035 6.60E-15 0.0813 0.626 
(0.621,0.631) 

1.57 
(1.54,1.6) 

3.42 
(3.02,3.87) 
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Table 4. Influence of GWAS sources on Breast Cancer PRS Performance in MGI. Shaded cells indicate best performing 

PRS according to the corresponding metrics for MGI or UKB. 

Cohort 
GWAS Source 

(Effective 
Sample Size*) 

Method 
Tuning Parameter # SNPs Pseudo

-R2 

Hosmer- 
Lemeshow 

P 
Brier 
Score 

AUC 
(95% CI) 

Odds Ratio 
continuous 

PRS 

Odds 
Ratio 

Top 1% 

MGI 

Large GWAS 
[11] 

(113,844) 

Lassosum 
s = 0.5, λ = 0.0055 

44,815 0.057 0.013 0.137 0.635 
(0.624,0.647) 

1.66 
(1.58,1.73) 

3.38 
(2.42,4.71) 

GWAS Catalog 
[11, 34-51] 
(variable) 

P&T 
P <= 2.5e-08 79 0.034 0.35 0.139 0.603 

(0.591,0.615) 
1.46 

(1.39,1.52) 
3.52 

(2.52,4.89) 

UKB GWAS 
PheCode 
(23,838) 

Lassosum 
s = 0.5, λ = 0.014 

6,977 0.029 0.012 0.140 0.603 
(0.591,0.615) 

1.44 
(1.38,1.50) 

2.28 
(1.60,3.22) 

UKB GWAS 
FINNGEN 
(18,375) 

Lassosum 
s = 0.9, λ = 0.014 

31,252 0.028 0.63 0.140 0.599 
(0.587,0.611) 

1.41 
(1.35,1.47) 

2.23 
(1.56,3.14) 

UKB GWAS 
PHESANT 
(15,282) 

Lassosum 
s = 0.5, λ = 0.018 

5,025 0.023 0.51 0.140 0.586 
(0.574,0.598) 

1.36 
(1.30,1.42) 

2.55 
(1.79,3.57) 

UKB GWAS 
ICD10 

(15,792) 

Lassosum 
s = 0.9, λ = 0.018 

7,388 0.022 0.027 0.140 0.588 
(0.576,0.600) 

1.35 
(1.29,1.41) 

2.34 
(1.65,3.28) 

UKB 

Large GWAS 
[11] 

(113,844) 

Lassosum 
s = 0.9, λ = 0.0043 

286,144 0.047 3.5E-27 0.0808 0.645 
(0.640,0.65) 

1.71 
(1.68,1.74) 

4.48 
(3.98,5.03) 

GWAS Catalog 
[11, 34-51] 
(variable) 

P&T 
P <= 2.5e-08 79 0.024 4.4E-07 0.0818 0.605 

(0.600,0.610) 
1.46 

(1.43,1.48) 
2.65 

(2.32,3.02) 

* Effective sample size: 2 / (1/#cases + 1/#controls);  
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Table 5: Top PRS for the 20 most common cancer traits in MGI (see Table 1) 
PRS Cancer Trait 
(PheWAS Code) GWAS Source Method 

Tuning Parameter # SNPs 
Hosmer-
Lemesho

w P 

Brier 
Score 

AUC 
(95% CI) 

Odds Ratio 
continuous 

PRS (95% CI)* 

Odds Ratio 
Top 1% 

(95% CI)** 

Basal cell carcinoma (172.21) Large GWAS [82] 
P&T 

P <= 4e-08 
27 0.074 0.11 

0.629 
(0.618, 0.64) 

1.63 
(1.57, 1.7) 

3.93 
(2.96,5.18) 

Melanomas of skin (172.1) Large GWAS [81] 
P&T 

P <= 7.9e-09 
18 0.096 0.0964 

0.608 
(0.597, 0.619) 

1.5 
(1.44, 1.57) 

3.47 (2.6,4.57) 

Breast cancer [female] (174.1) Large GWAS [11] 
Lassosum 

s = 0.5, λ = 0.0055 
44,815 0.013 0.137 

0.635 
(0.624, 0.647) 

1.66 
(1.58, 1.73) 

3.38 
(2.42,4.71) 

Cancer of prostate (185) Large GWAS [12] 
Lassosum 

s = 0.5, λ = 0.007 
26,418 0.0089 0.159 

0.664 
(0.652, 0.676) 

1.91 
(1.82, 2.01) 

6.54 
(4.41,9.79) 

Squamous cell carcinoma 
(172.22) 

GWAS Catalog [83, 95, 
96] 

P&T 
P <= 5e-08 13 0.07 0.101 

0.602 
(0.588, 0.616) 

1.47 
(1.41, 1.55) 

3.68 
(2.62,5.12) 

Cancer of bladder (189.2) GWAS Catalog [97-103] P&T 
P <= 5e-09 

12 0.14 0.093 0.564 
(0.549, 0.579) 

1.22 
(1.16, 1.29) 

2.49 
(1.66,3.62) 

Colorectal cancer (153) Large GWAS [15] 
P&T 

P <= 4e-07 
81 0.27 0.0826 

0.568 
(0.551, 0.585) 

1.27 
(1.2, 1.35) 

1.95 
(1.19,3.04) 

Non-Hodgkins lymphoma (202.2) UKB GWAS (ICD10) 
Lassosum 

s = 0.5, λ = 0.078 
455 0.24 0.0825 

0.545 
(0.527, 0.562) 

1.11 
(1.04, 1.17) 

1.19 
(0.647,2.03) 

Cancer of kidney, except pelvis 
(189.11) 

UKB GWAS 
(PHESANT) 

Lassosum 
s = 1, λ = 0.014 

2,617,621 0.65 0.0826 0.537 
(0.519, 0.555) 

1.07 
(1, 1.14) 

1.26 
(0.679,2.14) 

Colon cancer (153.2) 
UKB GWAS (PHEWAS-

CODES) 
Lassosum 

s = 1, λ = 0.001 
5,745,506 0.17 0.083 

0.542 
(0.522, 0.561) 

1.16 
(1.09, 1.25) 

2.17 
(1.27,3.51) 

Myeloproliferative disease (200) 
UKB GWAS (PHEWAS-

CODES) 
P&T 

P <= 1e-05 29 0.93 0.0826 
0.539 

(0.519, 0.558) 
1.07 

(1, 1.15) 
1.45 

(0.762,2.54) 
Cancer of bronchus / lung 

(165.1) 
GWAS Catalog [104-

107] 
P&T 

P <= 6.3e-11 
12 0.77 0.0826 0.549 

(0.529, 0.569) 
1.13 

(1.05, 1.21) 
1.23 

(0.607,2.23) 

Thyroid cancer (193) 
GWAS Catalog [108-

112] 
P&T 

P <= 1e-16 
5 0.56 0.0812 

0.631 
(0.611, 0.651) 

1.57 
(1.46, 1.69) 

3.87 
(2.37,6.11) 

Cancer of rectum, rectosigmoid 
junction, and anus (153.3) 

UKB GWAS (ICD10) 
Lassosum 

s = 1, λ = 0.001 
4,963,147 0.79 0.0827 

0.551 
(0.528, 0.574) 

1.1 
(1.01, 1.19) 

1.82 
(0.918,3.3) 

Cancer of uterus (182) GWAS Catalog [113-
115] 

P&T 
P <= 6.3e-07 

31 0.65 0.0828 0.55 
(0.527, 0.574) 

1.14 
(1.05, 1.24) 

1.74 
(0.851,3.23) 

Nodular lymphoma (202.21) 
UKB GWAS (PHEWAS-

CODES) 
P&T 

P <= 6.3e-05 
151 0.072 0.0825 

0.535 
(0.512, 0.559) 

1.1 
(1.02, 1.19) 

1.54 
(0.727,2.93) 

Cancer of tongue (145.2) 
UKB GWAS 
(PHESANT) 

Lassosum 
s = 1, λ = 0.018 

2,064,908 0.3 0.0826 
0.545 

(0.52, 0.571) 
1.11 

(1.02, 1.21) 
1.38 

(0.588,2.8) 

Leukemia (204) UKB GWAS (PHEWAS-
CODES) 

Lassosum 
s = 0.5, λ = 0.03 

35,027 0.69 0.0824 0.546 
(0.521, 0.572) 

1.12 
(1.03, 1.23) 

2.13 
(1.03,4.01) 

Cancer of brain (191.11) 
UKB GWAS (PHEWAS-

CODES) 
P&T 

P <= 1e-05 
27 0.99 0.0822 

0.56 
(0.534, 0.587) 

1.17 
(1.07, 1.28) 

1.34 
(0.531,2.84) 

Cervical cancer (180.1) 
UKB GWAS 
(PHESANT) 

Fixed Threshold 
P <= 5e-07 

5 0.072 0.0824 
0.548 

(0.519, 0.576) 
1.13 

(1.02, 1.24) 
2.15 

(0.952,4.32) 
Notes: Cancer traits are sorted by observed case counts in MGI. 
* PRS were scaled to mean = 0 and sd = 1 
** Top 1% versus rest 
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Table 6: Best performing PRS for the 19 cancer traits in UKB  
PRS Cancer Trait 
(PheWAS Code) GWAS Source Method 

Tuning Parameter # SNPs 
Hosmer- 

Lemeshow 
P 

Brier 
Score 

AUC 
(95% CI) 

Odds Ratio  
continuous PRS 

(95% CI)* 

Odds Ratio 
Top 1% 

(95% CI)** 
Breast cancer [female] 

(174.1) 
Large GWAS 

[11] 
Lassosum 

s = 0.9, λ = 0.0043 286,144 3.50E-27 0.0808 
0.645 

(0.64, 0.65) 
1.71 

(1.68, 1.74) 
4.48 

(3.98,5.03) 

Cancer of prostate (185) 
Large GWAS 

[12] 
Lassosum 

s = 0.9, λ = 0.0055 178,259 1.90E-33 0.08 
0.698 

(0.691, 0.705) 
2.1 

(2.04, 2.16) 
6.28 

(5.34,7.37) 

Colorectal cancer (153) 
Large GWAS 

[15] 
P&T 

P <= 7.8e-06 87 0.0062 0.0813 
0.618 

(0.61, 0.627) 
1.55 

(1.5, 1.59) 
3.48 

(2.84,4.25) 

Melanomas of skin (172.1) 
GWAS Catalog 
[81, 116-121] 

P&T 
P <= 1e-06 29 0.023 0.0815 

0.611 
(0.6, 0.623) 

1.5 
(1.44, 1.56) 

2.94 
(2.22,3.86) 

Cancer of bladder (189.2) 
GWAS Catalog 

[97-103] 
P&T 

P <= 7e-07 15 0.2 0.082 
0.577 

(0.565, 0.589) 
1.32 

(1.27, 1.38) 
2.24 

(1.62,3.04) 
Cancer of other lymphoid, 

histiocytic tissue (202) 
GWAS Catalog 

[122, 123] 
P&T 

P <= 2.5e-06 6 0.76 0.0823 
0.532 

(0.519, 0.545) 
1.12 

(1.07, 1.16) 
1.98 

(1.41,2.72) 
Cancer of bronchus / lung 

(165.1) 
GWAS Catalog 

[104-107] 
P&T 

P <= 2.5e-08 19 0.47 0.0823 
0.558 

(0.545, 0.57) 
1.22 

(1.17, 1.28) 
1.75 

(1.21,2.46) 
Non-Hodgkins lymphoma 

(202.2) 
GWAS Catalog 

[124-128] 
P&T 

P <= 1e-09 10 0.21 0.082 
0.558 

(0.544, 0.573) 
1.23 

(1.18, 1.29) 
1.96 

(1.32,2.83) 

Cancer of uterus (182) 
GWAS Catalog 

[113-115] 
P&T 

P <= 5e-08 18 0.55 0.0821 
0.571 

(0.554, 0.587) 
1.27 

(1.2, 1.35) 
1.98 

(1.24,3.04) 
Cancer of kidney, except 

pelvis (189.11) 
GWAS Catalog 

[129, 130] 
P&T 

P <= 5e-08 12 0.084 0.0826 
0.54 

(0.521, 0.558) 
1.11 

(1.04, 1.17) 
1.45 

(0.797,2.44) 

Cancer of ovary (184.11) Large GWAS [9] 
Lassosum 

s = 0.9, λ = 0.0089 312,194 1 0.0821 
0.573 

(0.554, 0.592) 
1.28 

(1.2, 1.37) 
2.3 

(1.36,3.7) 

Pancreatic cancer (157) 
GWAS Catalog 

[131-135] 
P&T 

P <= 7.9e-08 18 0.95 0.082 
0.588 

(0.565, 0.61) 
1.35 

(1.25, 1.47) 
3.39 

(1.94,5.66) 
Cancer of brain and 

nervous system (191.1) 
GWAS Catalog 

[136-142] 
P&T 

P <= 5e-07 25 0.15 0.0814 
0.628 

(0.604, 0.651) 
1.51 

(1.4, 1.64) 
3.84 

(2.14,6.58) 

Multiple myeloma (204.4) 
GWAS Catalog 

[143-148] 
P&T 

P <= 6.3e-08 24 0.72 0.0817 
0.597 

(0.572, 0.621) 
1.41 

(1.29, 1.54) 
2.26 

(1.13,4.16) 

Cancer of brain (191.11) 
GWAS Catalog 
[141, 142, 149] 

P&T 
P <= 6e-06 15 0.099 0.081 

0.638 
(0.612, 0.663) 

1.58 
(1.45, 1.72) 

3.95 
(2.16,6.9) 

Lymphoid leukemia, chronic 
(204.12) 

GWAS Catalog 
[150-156] 

P&T 
P <= 7.9e-08 33 0.0022 0.0794 

0.69 
(0.667, 0.714) 

1.98 
(1.8, 2.17) 

5.82 
(3.31,9.99) 

Thyroid cancer (193) 
GWAS Catalog 

[108-112] 
P&T 

P <= 1e-16 5 0.27 0.0797 
0.643 

(0.612, 0.675) 
1.67 

(1.5, 1.86) 
7.29 

(3.79,13.7) 

Cancer of testis (187.2) 
GWAS Catalog 

[157-164] 
P&T 

P <= 5e-06 44 0.00013 0.0805 
0.677 

(0.646, 0.708) 
1.87 

(1.65, 2.12) 
2.98 

(1.21,6.47) 

Hodgkin's disease (201) 
GWAS Catalog 

[165-169] 
P&T 

P <= 1e-06 20 0.66 0.0805 
0.608 

(0.57, 0.646) 
1.43 

(1.26, 1.61) 
3.4 

(1.37,7.51) 
Notes: Cancer traits are sorted by observed case counts in UKB. * PRS were scaled to mean = 0 and sd = 1; ** Top 1% versus rest 
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Table 7. Secondary traits associated with primary cancer PRS in MGI. Trait / PRS associations that 

reached phenome-wide significance (P <= 0.05/1679) in the PRS PheWAS in MGI after excluding 

the primary and related cancer traits from the analysis are shown 

Cancer trait  
underlying PRS 
(PheWAS Code) 

Secondary trait  
associated with PRS 

(PheWAS Code) 

Primary analysis After exclusion* 

OR (95% CI) P OR (95% CI) P 

Colorectal cancer 
(153) 

Benign neoplasm of 
colon (208) 

1.1 
(1.07,1.13) 2.75E-13 

1.08 
(1.05,1.11) 5.19E-09 

Non-melanoma skin 
cancer (172.2) 

Benign neoplasm of 
skin (216) 

1.07 
(1.04,1.09) 

1.49E-07 0.937 
(0.91,0.966) 

2.72E-05 

Squamous cell 
carcinoma (172.22) 

Actinic keratosis 
(702.1) 

1.38 
(1.34,1.44) 

4.54E-68 
1.24 

(1.17,1.31) 
1.99E-14 

Carcinoma in situ of 
skin (172.3) 

Actinic keratosis 
(702.1) 

1.29 
(1.25,1.34) 

6.78E-49 
1.18 

(1.12,1.24) 
6.78E-10 

Thyroid cancer 
(193) 

Hypothyroidism 
(244) 

0.926 
(0.901,0.953) 

1.05E-07 
0.864 

(0.838,0.89) 
7.40E-22 

Thyroid cancer 
(193) 

Hypothyroidism NOS 
(244.4) 

0.914 
(0.887,0.941) 1.26E-09 

0.855 
(0.829,0.882) 2.46E-23 

Thyroid cancer 
(193) 

Other disorders of 
thyroid (246) 

0.947 
(0.918,0.978) 

0.000741 0.904 
(0.875,0.934) 

1.88E-09 

* primary and related cancer traits excluded from analysis; NOS: not otherwise specified 
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Table 8. Secondary traits associated with primary cancer PRS in UKB. PRS / trait associations that reached phenome-wide significance (P 

<= 0.05/1419) in the PRS PheWAS in UKB after excluding the primary and related cancer traits from the analysis are show. 

Cancer trait  
underlying PRS 
(PheWAS Code) 

Secondary trait  
associated with PRS 
(PheWAS Code) 

Colorectal cancer (153) Neoplasm of unspecified nature of digestive system (158); Malignant neoplasm of other and ill-defined sites within the digestive 
organs and peritoneum (159); Cancer, suspected or other (195); Malignant neoplasm, other (195.1); Benign neoplasm of colon (208); 
Diverticulosis and diverticulitis (562); Diverticulosis (562.1); Functional digestive disorders (564); Personal history of diseases of 
digestive system (564.9); Anal and rectal conditions (565); Anal and rectal polyp (565.1) 

Pancreatic cancer (157) Phlebitis and thrombophlebitis (451); Phlebitis and thrombophlebitis of lower extremities (451.2) 

Cancer of bronchus / lung 
(165.1) 

Cancer of urinary organs (incl. kidney and bladder) (189); Peripheral vascular disease (443); Other specified peripheral vascular 
diseases (443.8); Peripheral vascular disease, unspecified (443.9); Celiac disease (557.1) 

Melanomas of skin 
(172.1) 

Benign neoplasm of skin (216); Angina pectoris (411.3); Disorder of skin and subcutaneous tissue NOS (689); Degenerative skin 
conditions and other dermatoses (702); Actinic keratosis (702.1) 

Breast cancer [female] 
(174.1) 

Varicose veins (454); Varicose veins of lower extremity (454.1); Celiac disease (557.1); Benign mammary dysplasias (610); Benign 
neoplasm of breast (610.4) 

Cancer of uterus (182) Breast cancer (174); Breast cancer [female] (174.1); Malignant neoplasm of female breast (174.11); Coronary atherosclerosis (411.4); 
Osteoporosis, osteopenia and pathological fracture (743); Osteoporosis (743.1); Osteoporosis NOS (743.11) 

Cancer of ovary (184.11) Phlebitis and thrombophlebitis (451); Celiac disease (557.1); Inflammatory diseases of female pelvic organs (614); Inflammatory 
disease of cervix, vagina, and vulva (614.5) 

Cancer of prostate (185) Celiac disease (557.1); Hyperplasia of prostate (600); Other disorders of prostate (602); Other abnormal blood chemistry (790.6) 

Cancer of brain and 
nervous system (191.1) 

Benign neoplasm of uterus (218); Uterine leiomyoma (218.1); Cataract (366); Coronary atherosclerosis (411.4); Polyp of female 
genital organs (622); Polyp of corpus uteri (622.1) 

Cancer of brain (191.11) Benign neoplasm of uterus (218); Uterine leiomyoma (218.1); Nontoxic nodular goiter (241); Glaucoma (365); Cataract (366); 
Ischemic Heart Disease (411); Myocardial infarction (411.2); Angina pectoris (411.3); Coronary atherosclerosis (411.4); Other chronic 
ischemic heart disease, unspecified (411.8); Excessive or frequent menstruation (626.12) 

Thyroid cancer (193) Hypothyroidism (244); Hypothyroidism NOS (244.4) 

Hodgkin's disease (201) Diabetes mellitus (250); Type 1 diabetes (250.1); Type 1 diabetes with ketoacidosis (250.11); Type 1 diabetes with ophthalmic 
manifestations (250.13); Multiple sclerosis (335); Nasal polyps (471); Celiac disease (557.1); Rheumatoid arthritis and other 
inflammatory polyarthropathies (714); Rheumatoid arthritis (714.1) 

Cancer of other lymphoid, 
histiocytic tissue (202) 

Thyrotoxicosis with or without goiter (242); Disorders of protein plasma/amino-acid transport and metabolism (270); Disorders of 
plasma protein metabolism (270.3); Celiac disease (557.1) 

Non-Hodgkins lymphoma 
(202.2) 

Multiple sclerosis (335); Nasal polyps (471); Celiac disease (557.1); Sarcoidosis (697); Rheumatoid arthritis and other inflammatory 
polyarthropathies (714); Rheumatoid arthritis (714.1); Ankylosing spondylitis (715.2) 

Lymphoid leukemia, 
chronic (204.12) 

Celiac disease (557.1) 

Multiple myeloma (204.4) Skin cancer (172); Other non-epithelial cancer of skin (172.2) 
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Figures 

 
Figure 1. Schematic overview of PRS generation and analysis. 
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Figure 2. Distribution of breast cancer PRS (A, B), and chronic lymphoid leukemia (C, D) in matched 

case controls samples in MGI (A, C) and UKB (B, D). Enrichment of cases in five top PRS percentiles is 

indicated by the shaded areas under the density curves while corresponding Odds ratios (OR) are given 

in the top right corner of each plot. PRS were standardized. 
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Figure 3 Exclusion PRS-PheWAS in the MGI and UKB phenomes. The horizontal line indicates 

phenome-wide significance. Only the strongest and phenome-wide significantly associated traits within a 

category are labelled. Directional triangles indicate whether a phenome-wide significant trait was 

positively (pointing up) or negatively (pointing down) associated with the PRS. 
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